
1 Circle Packings

Lemma 1.1 (Ring Lemma). If D is surrounded by l disks, then rj ≥ εl for all j.

Proof. Assuming the inner radius r0 is 1, let D1 be the largest disk. Then r(D1) ≥ cl. If r2 were
small, since r3 ≤ Cr2, and rk ≤ Ckr2, for all k.

Lemma 1.2. f(0) = 0, f(1) = 1, f : D→ D, K-qc, conformal outside a set E. Then:

‖f − id‖∞ ≤ cK
√
|E|.

Theorem 1.3 (Hexagonal packing). If Hn is a circle packing with combinatorics of n generations
of hexagonal packing, then:

rn
r0

= 1 + o(
1

n
),

where rn is of the first generation, r0 the root.

sketch. Denote by H0
n the ”uniform” hexagonal packing (all circles with same radius). Construct

a quasi-conformal homeomorphism of C defined from H0
n to Hn as such: map centers to centers,

interstices to interstices by Mobius maps, and extend radially.
Extend F := f |Hn

2
to a K-qc map of C, K universal (the fact that K is universal follows from

the Ring lemma). Modify F using reflection as we did previously, and obtain a K-qc homeomor-
phism that is conformal outside a set E. The key point is the following:

|E ∩ D| ≤ C

n2
.

Once we have this, our theorem follows from the previous lemma.

We can now prove the Circle packing theorem.

Proof. Let G be a triangulation of S2, embedded in C. Assume that ∞ 6∈ G. Every edge e ∈
E is identified with γe : [0, 1] → C. Fix ε > 0. Define Gε = Ĉ\ ∪e∈E (γe(0,

1
2 − ε) ∪ γe(12 +

ε, 1)).Thereexistsaconformalmapfε : Gε → Dε, with Dε = ∪iDε
i . Moreover, we can assume fε is

hydrodynamically normalized. As ε → 0, Dε goes to a circle packing. For this to hold, we need
to show that the diameters of the image circles do not degenerate. We already know that the
”outer” circles are bounded above and below. Let Ci be a connected component of C\Gε and look
at M(Γ(Ci, Cj , Gε), whereCi and Cj adjacent.

M(Γ(Ci, Cj , Gε)) ≥M(Γ(Ci,r, Cj,r, Dr))

≥ 1

2
M(Γ(Ci,r, Cj,r,C)),

by reflection, where Dr = D(γe(
[
12), r) and Ci,r = Ci ∩ Dr. Hence, M(Γ(Ci, Cj , Gε)) goes to ∞

as ε goes to 0, and in consequence,
dist(Di,Dj)

min(diam(Di),diam(Dj))
goes to 0 as ε goes to 0. Need to show

that diam(Dj) does not go to 0 as ε goes to 0 (which is already true for outer circles since they’re
bounded above and below). Suppose we have two discs D1 and D2 with radii ≥ ρ > 0. Assume
r3 goes to 0 (D3 neighbor of D1 and D2. Denote the neighbors of v1 by vj , 4 ≤ j ≤ n. By an
argument similar to the ring lemma, diam(Dn) ≤ Cn−3diam(D3), and hence rj goes to 0 for every
j. But

∑n−1
i=2 angle(vi, v1, vi+1) ≥ C, contradicting angle(vi, v1, vi+1) goes to 0.
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Corollary 1.4. If G is any infinite planar graph, then there exists a circle packing with tangency
graph G.

Proof. Pick a vertex v0, root of G. For each n, Gn= ball of radius n in dG (combinatorial distance).
Circle pack with D0 = D. From the ring lemma, get upper and lower bounds for radii in terms of
dG.

Theorem 1.5. P is a circle packing of S2, whose tangency graph is a triangulation. If S2\(∪v∈VDv∪
∪f∈F I(f)) is countable, then any other packing P ′ with the same graph is a Moebius map.
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