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0 Introduction

In 1980 A. P. Calderén published a short paper entitled “On an inverse boundary value prob-
lem” [C I]. This pioneer contribution motivated many developments in inverse problems, in
particular in the construction of “complex geometrical optics” solutions of partial differential
equations to solve several inverse problems. We survey these developments in this paper. We
make emphasis in the new results in the last 5 years since the survey paper [U] was written.
The problem that A. P. Calderén proposed in [C I] is whether it is possible to determine
the conductivity of a body by making current and voltage measurements at the boundary.
This problem arises in geophysical prospection [Z-K]. Apparently Calderén thought of this
problem while working as an engineer in Argentina but he did not publish his results until
several decades later. More recently this non-invasive inverse method, also referred in the
literature as FElectrical Impedance Tomography, has been proposed as a possible diagnostic
tool and in medical imaging [B-B|, [W-F-N]|. One concrete clinical application, which seems
to be very promising, is in the monitoring of pulmonary edema [I-N-G-Ch], [N-I-C-S-G].
We now describe more precisely the mathematical problem.
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Let Q C R" be a bounded domain with smooth boundary (many of the results we will
describe are valid for domains with Lipschitz boundaries). The electrical conductivity of
is represented by a bounded and positive function y(x). In the absence of sinks or sources
of current the equation for the potential is given by

(0.1) div(yVu) = 0in Q

since, by Ohm’s law, yVu represents the current flux.
Given a potential f € Hz(09) on the boundary the induced potential u € H(£2) solves
the Dirichlet problem

div(yVu) = 0in Q,

(0.2) u‘aa -t

The Dirichlet to Neumann map, or voltage to current map, is given by

(0.3) Ay(f) = (7%> ‘an

where v denotes the unit outer normal to 0.
The inverse problem is to determine v knowing A,. More precisely we want to study
properties of the map

(0.4) y—2 A,

Note that A, : H 2(09) — H™2(09) is bounded. We can divide this problem into several
parts.

Injectivity of A (identifiability)
Continuity of A and its inverse if it exists (stability)

)
)
¢) What is the range of A? (characterization problem)
) Formula to recover « from A, (reconstruction)

)

Give an approximate numerical algorithm to find an approximation of the conductivity
given a finite number of voltage and current measurements at the boundary (numerical
reconstruction).



It is difficult to find a systematic way of prescribing voltage measurements at the bound-
ary to be able to find the conductivity. Calderén took instead a different route.
Using the divergence theorem we have

(0.5) ()= [ AIVupis= [ a(pras

where dS denotes surface measure and u is the solution of (0.2). In other words Q,(f) is
the quadratic form associated to the linear map A,(f), i.e., to know A,(f) or Q,(f) for all
f € Hz(99) is equivalent. Q. (f) measures the energy needed to maintain the potential f at
the boundary. Calderén’s point of view is that if one looks at @, (f) the problem is change
to find enough solutions u € H'(2) of the equation (0.1) in oder to find + in the interior.
We will explain this approach further in the next section where we study the linearization
of the map

(0.6) 8 — @y
Here we consider (), as the bilinear form associated to the quadratic form (0.5).

In section 1 we describe Calderon’s paper and how he used complex exponentials to
prove that the linearization of (0.6) is injective at constant conductivities. He also gave an
approximation formula to reconstruct a conductivity which is, a priori, close to a constant
conductivity.

In section 2 we describe the construction by Sylvester and Uhlmann [S-U I,II] of complex
geometrical optics solutions for the Schrédinger equation associated to a bounded poten-
tial. These solutions behave like Calderén’s complex exponential solutions for large complex
frequencies. In section 3 we use these solutions to prove, in dimension n > 3 a global identi-
fiability result [S-U, I], stability estimates [Al I] and a reconstruction method for the inverse
problem [N I], [No]. We also describe an extension of the identifiability result to non-linear
conductivities [Su I].

In section 4 we consider the two dimensional case. In particular we follow recent work of
Brown and Uhlmann [B-U] to improve the regularity result in A. Nachman’s result [N II].
In turn the [B-U] paper relies in work of Beals and Coifman [B-C III] and L. Sung [Sung] in
inverse scattering for a class of first order systems in two dimensions.

In section 5 we consider other inverse boundary value problems arising in applications.
A common feature of these problems is that they can be reduced to consider first order
scalar and systems perturbations of the Laplacian. In the scalar case we consider an inverse
boundary value problem for the Schrodinger equation in the presence of a magnetic potential.
We also consider an inverse boundary value problem for the elasticity system. The problem is
to determine the elastic parameters of an elastic body by making displacements and traction
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measurements at the boundary. In section 6 we give a general method, due to Nakamura
and Uhlmann [N-U I], to construct the complex geometrical optics solutions in this case and
a method, due to Tolmasky [To], to construct these solutions for first order perturbations of
the Laplacian with less regular conductivities.

Finally we consider in section 7 the case of anisotropic conductivities, i.e. the conduc-
tivity depends also of direction. In particular we outline recent progress in the study of the
quasilinear case [Su-U III].

1 Calderdn’s paper

Calderén proved in [C I] that the map @ is analytic. The Fréchet derivative of @ at v = 7,
in the direction A is given by

(1) Qo (W(f,9) = [ 1V Vuda

where u,v € H'(2) solve

{ div(yoVu) = div(1Vv) = 0 in Q
(1.2)

1 1
— [ € H}(09), o] =geHi00)
ul =feH}09), v| =geH!09)
So the linearized map is injective if the products of H!(Q) solutions of div(y,Vu) = 0 is
dense in, say, L*(Q).
Calderén proved injectivity of the linearized map in the case vy = constant, which we
assume for simplicity to be the constant function 1. The question is reduced to whether the

product of gradients of harmonic functions is dense in, say, L*(9).
Calderén took the following harmonic functions

(1.3) u=¢e"’ v=e"’
where p € C* with

(1.4) p-p=0

We remark that the condition (1.4) is equivalent to the following

_n+ik

(1.5) p="%

,nk eR"

Il = [kl,n-k=0



Then plugging the solutions (1.3) into (1.1) we obtain if d@|,,=1(k) =0
k*(xoh)"(k) =0 VEkeR"

where yqo denotes the characteristic function of €. Then we easily conclude that h = 0.
However one cannot apply the implicit function theorem to conclude that ~ is invertible
near a constant since conditions on the range of ) that would allow use of the implicit
function theorem are either false or not known.

Calderén also observed that using the solutions (1.3) one can find an approximation for
the conductivity ~ if

(1.6) y=1+h

and A small enough in L* norm.
We are given

) e P
onN

G, =Q, ( TP

)

with p € C"* as in (??7). Now

(1.7) G, = /Q(l%—h)Vu-Vv dx
+ /Q h(Véu - Vv + Vu - Viév) dz
+ /Q(l + h)Viéu - Vv dz

with u,v as in (1.3) and

div(yV(u + 6u)) = div(yV(v +6v)) =0in

5u‘ = 51}‘ =0.
a0 an

(1.8)

Now standard elliptic estimates applied to (1.8) show that
(1.9) IV6ull 2y, V80l n2) < Cllhl|noeqey|klez™*

for some C > 0 where r denotes the radius of the smallest ball containing 2.
Now plugging u, v into (??) we obtain

(1.10) Xo7(k) = —Q‘i—‘g + R(k) = F(k) + R(k)



where F' is determined by G, and therefore known. Using (1.9), we can show that R(k)
satisfies the estimate

(1.11) [R(E)| < CllAl[fye™

In other words we know Xq7y(k) up to a term that is small for k& small enough. More
precisely, let 1 < a < 2. Then for

1
1o

2—«
(1.12) k| < log =:
r [[72]| o

we have that
(1.13) [R(k)| < C||h]|Ze ()

for some C' > 0.
We take 7 a C* cut-off so that 7(0) = 1, suppf(k) C {k € R",|k| < 1} and n,(x) =
o™n(ox). Then we obtain

;@(k)ﬁ(%) = _fgﬂﬁ (g) + R(k)7 (g)

Using this we get the following estimate

1 n
(114) 0(0)| < g 08— |
[[2]] oo ()

where p(z) = (xo7 * 7,)(x) — (F * 1,)(z). Formula (1.14) gives then an approximation to
the smoothed out conductivity, xavy * 7,, for h sufficiently small.

This approximation estimate of Calderén and modifications of it have been tried out
numerically ([Id-Ie]) .

This estimate uses the harmonic exponentials for low frequencies. In the next section we
consider high (complex) frequency solutions of the conductivity equation

L, =div(yVu) =0

2 Complex geometrical optics for the
Schrodinger equation

Let v € C?(R"), v strictly positive in R* and v = 1 for || > R some R > 0. Let
L,u = div(yVu). Then we have

(2.1) vIL(yT) =A—g



where

(2.2) q= M

Vai
Therefore, to construct solutions of Lyu = 0 in R" it is enough to construct solutions of
the Schrédinger equation (A — ¢)u = 0 with ¢ of the form (2.2). The next result proven in
[S-U, I, II] states the existence of complex geometrical optics solutions for the Schrédinger
equation associated to any bounded and compactly supported potential.

Theorem 2.1 Let ¢ € L®¥(R"), n > 2, with q(x) = 0 for |x| > R > 0. Let -1 < § < 0.
There exists €(0) and such that for every p € C* satisfying

p-p=0

and

1+ J2*) 2 gl ey + 1 _

] -
there exists a unique solution to
(A=qu=0

of the form
(2.3) w= (1 + y(3, p))

with y(-, p) € L3(R™). Moreover iy(-, p) € HZ(R") and for 0 < s < 1 there ezists C =
C(n,s,d) > 0 such that

(2.4) (s )llz < %

Here
I2(R") = {f: / (1 + |2[2)°| £ (x) |2dz < oo}

with the norm given by ||f||%g = [(1+]z[*)°| f(z)|*dz and H{*(R™) denotes the corresponding

Sobolev space. Note that for large |p| these solutions behave like Calderén’s exponential
solutions. The equation for v, is given by

(2.5) (A+2p- V)b = q(1+ ¢y).

The equation (2.5) is solved by constructing an inverse for (A + 2p - V) and solving the
integral equation

(2-6) Vg = (A +2p- V)_I(Q(l + wq))-



Lemma 2.1 Let -1 <6 <0, 0<s<1 LetpeC' —0,p-p=0. Let f € L ,(R").
Then there ezists a unique solution u, € L3(R") of the equation

(2.7) Apu, = (A+2p-V)u, = f.
Moreover u, € HZ(R") and
Cioll fllzz

lupll s @ny < —
Pl Hs (R™) p[T

for 0 < s <1 and for some constant Cs5 > 0.

The integral equation (2.5) can then be solved in L?(R") for large |p| since
(I=(A+20-V)T'q)py = (A+2p-V)7'g

and [[(A +2p-V)"qllr2p2 < % for some C' > 0 where || [[z2_,;2 denotes the operator

norm between L#(R") and LZ(R"™). We will not give details of the proof of Lemma 2.1 here.
We refer to the papers [S-U I, II]. We describe the underlying ideas in the case n > 3.

The point is that the operator A, = A + 2p -V has a symbol —|¢|? + 2ip - € which is
jointly homogeneous of degree 2 in (&, p). Since we want to look at the behavior of A, in p
we consider p as another dual variable (this will be made more precise in section 6).

Now the characteristic variety of A, in {-space for every p is a codimension two real
submanifold. One simple example that exhibits both behaviors is the equation |p|(0x1+i0z5)
in R*. We have that the “principal symbol” of |p|(0z1 + i0z5) is homogeneous of degree
two in (&, p) and its characteristic variety has codimension two. The point then is that A,
is microlocally equivalent to |p|(Ox1 + i0z2) and the estimates follow from the Nirenberg-
Walker [N-W] estimates for the d equation in two dimensions. Namely in [N-W] it is proved
the following.

Lemma 2.2 Letn =2. Let —1 < § < 0. Let L =90 or d. Then given f € L3 ,(R?) there
ezists a unique u € LE(R?) so that

Lu=f.
Moreover ||ul|2 < C”f||L§+1 for some C' = C(d) > 0.

0z1+id : ;
|($1J;7’”) with the variables z3, ... ,z, as parameters

Now if we apply this result to |p
we get lemma 2.1 for s = 0 since
lullls = Jau(+ |2 |u(@)Pde < fou (1 + |21 + [22]*)|u(z) Pdz
@ Jen (L4 21 + |22 )+ £ (2) [Pda
1+ [2[?)"* f () da.

INIA

161 Jren (



We mention here the following extension due to R. Brown ([Br I]) of Lemma 2.1 to Besov
spaces.

Lemma 2.3 Let p e C*—0, n > 3, satisfying p-p = 0. Then for =1 <d <0 and0 < s < %
we have that

C
-1
185" fll pyg < |p|17_25||f||32—,;,5+1

where C = C(n, s,9).
Here B30 = {f : (1 + 1z|2)% f € B, ,} with the norm

)
£l gss = 1L+ [2]*)2 £l 55,

and By , denotes the standard Besov space, i.e., f € By, if and only if

28) s+ ([ ([ 17+ B = fa)Pdayonor=1an):

is finite and (2.8) gives a norm.

We shall discuss the proof of Lemma 2.1 in the two dimensional case in section 4 together
with and an extension of the estimates to weighted LP spaces.

In Theorem 3.1 one assumes that v € C?(Q2) in order to have ¢ € L*®(2). Brown [Br I
showed that one can relax the smoothness assumption on the conductivity further. Let v be
a bounded function on R” strictly positive and + equal 1 for || > M and for some 0 < s < 1

(2.9) IV lgy < M.

Let u € C*°(R"). We denote by m,(u) be the distribution defined by
1
mg(u)(p) = — V’y-V(—wp)dm, V¢ e C5°(R™).
@) == [ V7V (% = (R)

Note that if v € C?(R") then
Ay
vl
In [Br I] it was proven that the map m, is bounded between certain Besov spaces. More
precisely we have

(2.10) [lmq ()]l g, gs+1 < Cllul

mg(u) = qu with ¢ =

3,8
By

for =1 <0 < 0,0 < s < 1. Combining Lemma 2.3 and (2.10) one concludes

9



Theorem 2.2 ([Br I]) Let v be a bounded function in R" strictly positive and one outside
a large ball. Let p € C* satisfy p-p=10. Let 0 < s < 3 Land -1 <6 <0. Let f € B_SHI.

Then 3 R > 0 such that for |p| > R there exists a umque solution 1 € B22 to

A+ 2p - Vi —my (1) = .

Furthermore we have for some C' = C(n,s,0, M) >0

19 5

5‘5 S ‘p|1 25||f||B 8,6+1

3 The inverse conductivity problem in n > 3

The identifiability question was resolved in [S-U I] for smooth enough conductivities. The
result is

Theorem 3.1 Let v; € C?(Q), ; strictly positive, i = 1,2. If Ay, = A,, then v; = 7, in Q.

In dimension n > 3 this result is a consequence of a more general result. Let ¢ € L>°(Q).
We define the Cauchy data as the set

(3.1) C, = {(u‘m, %‘BQ) } ,  where u € H'(Q)

is a solution of
(3.2) (A —q)u=01in Q.

We have that C, C Hz(99) x H 2(%). If 0 is not a Dirichlet eigenvalue of A — ¢, then in
fact C, is a graph, namely

= {(f, Ag(f)) € HZ(0) x H7(99)}

where Ay(f) = %% o with u € H'(Q) the solution of

(A—q@u = 0in Q
u|8Q = I

A4 is the Dirichlet to Neumann map in this case.
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Theorem 3.2 Let ¢; € L*(Q2), i = 1,2. Assume C,y, = C,,, then ¢1 = ¢o.

We now show that Theorem 3.2 implies Theorem 3.1.
Using (2.1) we have that

1 - -4 = %
Co = {(f; (57 BQ) [+ BQA% (’Y anf>) , feH (89)}

Then we conclude C,, = C,, since we have the following result due to Kohn and Vogelius
([K-V 1J).

i
aQ Ov

Theorem 3.3 Let v; € C1(Q) and strictly positive. Assume A, = A,,. Then

aa’)/l y |O!| S 1.

— 9°
V2 20

o

Remark 3.1. In fact Kohn and Vogelius proved that if y; € C*(Q), v; strictly positive then
A, = A,, implies that

8“71

= ‘ Y a.
o0 72 oN @

This settled the identifiability question in the real-analytic category. They extended the
identifiability result to piecewise real-analytic conductivities in [K-V II].

Proof of Theorem 8.2. Let u; € H'(Q2) be a solution of
(A —g;)u; =01in Q, i=1,2.

Then using the divergence theorem we have that

. 6”1 aUQ
(3.3) /Q(ql — @o)urusdr = /an (EU/Q — U15) ds.

Now it is easy to prove that if C;, = C,, then the LHS of (3.3) is zero.
Now we extend ¢; = 0 in Q°¢. We take solutions of (A — ¢;)u; = 0 in R" of the form

(3.4) w; = %P (1 + 1y, (z, pi)), i=1,2

with |p;| large, i = 1,2, with

_n [kt
(3.5) p1—2+z(—2 )

__n., (k=1
P2 = 2+2< 7 )



and 7, k,l € R" such that

(3.6) n-k=k-l=n-1=0
[nl* = [k[* + 11,

Condition (??) guarantees that p; - p; = 0, i = 2. Replacing (3.4) into

(3.7) /Q(ql — qa)uruedr =0
we conclude
(3:8) (41 — ) (k) = — / eH(g1 = @) (Vgs + Yo + Y Yin)

Now |[¢g; || r2(0) < MSI' Therefore by taking |I| — oo we get that

—

concluding the proof.

We now discuss Theorem 3.3.
Sketch of proof of Theorem 3.3. We outline an alternative proof to the one given by Kohn and
Vogelius of Theorem 3.3. In the case v € C*(§) we know, by another result of Calderén ([C
II]), that A, is a classical pseudodifferential operator of order 1. Let (z',2") be coordinates
near a point zo € 02 so that the boundary is given by 2™ = 0. If \,(2',¢’) denotes the full

symbol of A, in these coordinates. It was proved in [S-U III].

(3.9) Ay, &) = (2, 0)[¢'] + ao (2, &) + (2", €)

where ag(2',&') is homogeneous of degree 0 in & and is determined by the normal derivative
of v at the boundary and tangential derivatives of v at the boundary. The term r(2',¢’) is

a classical symbol of order —1. Then 7 o0 is determined by the principal symbol of A, and

gu—l ‘a by the principal symbol and the term homogeneous of degree 0 in the expansion of the
Q

full symbol of A,,. More generally the higher order normal derivatives of the conductivity at
the boundary can be determined recursively. In [L-U] one can find a more general approach
to the calculation of the full symbol of the Dirichlet to Neumann map.

The case v € C'(Q) of Lemma (3.3) follows using an approximation argument [S-U IIT].
For other results and approaches to boundary determination of the conductivity see [Al II],
[Br I1], [N IJ.
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It is not clear at present what is the optimal regularity on the conductivity for Theorem
3.1 to hold. Chanillo proves in [Ch] that Theorem 3.1 is valid under the assumption that
Ay e FP p> ”T_l where F? is the Fefferman-Phong class and it is also small in this class. He
also presents an argument of Jerison and Kenig that shows that if one assumes ; € W2?(§2)
with p > % then Theorem 3.1 hold. An identifiability result was proven by Isakov [Is I] for
conductivities having jump type singularities across a submanifold.

R. Brown [Br I] has shown that theorem 3.1 is valid if one assumes v; € C2+¢(Q) by
using the arguments in [S-U I| combined with Theorem 2.2.

The arguments used in the proofs of Theorems 3.1, 3.2, 3.3 can be pushed further to prove
the following stability estimates. For stability estimates for the inverse scattering problem
at a fixed energy see [St].

Theorem 3.4 ([Al1]) Suppose that s > % and that v1 and v, are C* conductivities on
Q CR" satisfying

)0< <y <E

i) ||[yjllret2@) < E

Then there ezists C = C(Q, E,n,s) and 0 < o <1 (0 =0(n,s)) such that

(3.10) 71 = 2lle@) < C{llog Ay, = Agolls =277 + [[Agy = Aglls o1}
where || [|1 =1 denotes the operator norm as operators from H2(09) to H™2(%).

This result is a consequence of the next two results.

Theorem 3.5 ([Al1I]) Assume 0 is not a Dirichlet eigenvalue of A—q;, i =1,2. Let s > %,
n >3 and

gl 2y < M.

Then there ezists C = C(Q2, M,n,s) and 0 <o <1 (0 =0o(n,s)) such that

(3.11) g1 = galla-10) < C([og[[Agy = Agol[1 517 4 [[Agy = A, |

The stability estimate at the boundary is of Holder type.
Theorem 3.6 ([S-U III]) Suppose that v, and v, are C® functions on Q C R* satisfying

i)0<Ll<y<E
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it) Illagey < B

Given any 0 < 0 < ?, there exists C = C(S2, E,n,o) such that
(3.12) I = ellzeon) < CllAy = Aylls =1
and
01 07
.1 e < C|A _
(313) [ o SO AT

The complex geometrical optics solution of Theorems 3.1 and 3.2 were also used by A.
Nachman [N I] and R. Novikov [No I] to give a reconstruction procedure of the conductivity

from A,.
We first can reconstruct vy at the boundary since 7‘ |¢'| is the principal symbol of A,

Q
/

(see (3.9). In other words in coordinates (z', z™) so that 02 is locally given by z" = 0 we

have

; ! ! ]. ; / 7
,Y(x/’ 0) — lim efzs<w ;W >—A (6zs<z 3w >)

$§—00 S

with o’ € R*™! and |o'| = 1.
In a similar fashion, using (3.9), one can find % ) by computing the principal symbol of
Q

(Av—*y‘ a0/\1) where A; denotes the Dirichlet to Neumann map associated to the conductivity

Therefore if we know A, we can determine A,. We will then show how to reconstruct ¢
from A4. Once this is done, to find /7, we solve the problem

(3.14) Au —qu=0in Q,
_ ﬁ‘

o0

Let ¢; = ¢, g2 = 0 in formula (3.3). Then we have

(3.15) /quv—/ (Ag — Ao) ( |an u‘aﬂds

where u,v € H'(Q) solve Au — qu = 0, Av = 0 in Q. Here Ay denotes the Dirichlet to
Neumann map associated to the potential ¢ = 0. We choose p;,i = 1,2 as in (3.6) and (?7).
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Take v = €™, u := u, = e"”*(1+,(z, p2)) as in Theorem 2.1. By taking lim in (3.15)

[I| =00
we conclude

q(—k) = lim (Ag — Ag) (™™

\l\—)oo a0

ds.

)“p 00

o

So the problem is then to recover the boundary values of the solutions u, from A,.
The idea is to find up‘a by looking at the exterior problem. Namely by extending ¢ = 0
Q
outside €2, u, solves

(3.16) Au,=0in R* — Q
Ou,
—F =A )
ov laa a(tp an)

Also note that

(3.17) e "y, —1 € Li(R").

Let p € C" — 0 with p- p=0. Let G,(z,y) € D'(R* x R") denote the Schwartz kernel of the
operator A_*. Then we have that

(3.18) 9,(@) = &G, ()
is a Green’s kernel for A, namely
(3.19) Ag, = do.

We shall write the solution of (??) and (3.17) in terms of single and double layer potentials
using this Green’s kernel (also called Faddeev’s Green’s kernel [F]. For applications to inverse
scattering at fixed energy of this Green’s kernel see [E-R], [N I], [N-H], [No LII].)

We define the single and double layer potentials

(3.20) S.f(z) = / = DIWds,  TeR -Q
(3.21) Dofa) = [ Yoz —y)f)dS, TR -0
(3.22) B,f(z) = p. /a ) %(x ) fW)dS,  z €0
(3.23)
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Nachman showed that f, = u, o0 is a solution of the integral equation

(3.24) fo=2e""=(SAg = B, - %I)fp-
Moreover (3.23) is an inhomogeneous integral equation of Fredholm type for f, and it has a
unique solution in H %(OQ) The uniqueness of the homogeneous equation follows from the
uniqueness of the solutions in Theorem 3.2.

We end this section by considering an extension of Theorem 3.1 to quasilinear conduc-
tivities.

Let (x,t) be a function with domain Q x R. Let o be such that 0 < o < 1. We assume

(3.25) vyeCH*Qx [-T,T)), VT,

(3.26) Y(z,t) >0V (z,t) € A xR
Given f € C%%(01), there exists a unique solution of the Dirichlet problem (see [G-T])

div(y(z,u)Vu) = 0 in{,
u‘ = f.

o

(3.27)

Then the Dirichlet to Neumann map is defined by

ou ‘
a0 0v 10

(3.28) () = y(z. )
where u is a solution to (3.27). Sun ([Su I]) proved the following result.

Theorem 3.7 ([Su I]) Let n > 3. Assume v; € CYY(Q x [-T,T)) VT >0 and A, = A,.
Then y1(z,t) = Yo(x,t) on Q x R.

The main idea is to linearize the Dirichlet to Neumann map at constant boundary data
equal to ¢ (then the solution of (3.26) is equal to t). Isakov [Is II] was the first to use
a linearization technique to study an inverse parabolic problems associated to non-linear
equations. The case of the Dirichlet to Neumann map associated to the Schrodinger equation
with a non-linear potential was considered in [I-S], [Is-N] under some assumptions on the
potential. We note that, in contrast to the linear case, one cannot reduce the study of
the inverse problem of the conductivity equation (3.26) to the Schrédinger equation with a
non-linear potential since a reduction similar to (2.1) is not possible in this case. The main
technical lemma in the proof of Theorem 3.7 is
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Lemma 3.1 Let y(z,t) be as in (3.25) and (3.26). Let 1 < p < 00, 0 < a < 1. Let us define

(3.29) 7 (x) = (2, 1).
Then for any f € C**(0), t € R

) 1
(330) L |~ (¢4 5) = ot (D)l oy =

The proof of Theorem 3.7 follows immediately from the lemma. Namely (3.29) and the
hypotheses A,, = A,, = A, = A for all £ € R. Then using the linear result, Theorem 3.1,
we conclude that v¢ = ~4 proving the result.

4 The two dimensional case

A. Nachman proved in [N II] that, in the two dimensional case one can uniquely determine
conductivities in W%P(Q) for some p > 1 from A.,. An essential part of Nachman’s argument is
the construction of the complex geometrical optics solutions (2.3) for all complex frequencies
p € C2—0, p-p = 0 for potentials of the form (2.2). Then he applies the d-method in
inverse scattering, pioneered in one dimension by Beals and Coifman [B-C I] and extended
to higher dimensions by several authors [B-C II], [A-B-F], [N-A], [N-H], [Ts]. We note one
cannot construct these solutions for a general potential for all non-zero complex frequencies
as observed by Tsai [Ts].

In fact, the analogous of Theorem 3.2 is open, in two dimensions, for a general potential
g € L*>(Q). We describe later in part B of this section progress made in the identifiability
problem in this case. In part A we outline a different approach to Nachman’s result that
allows less regular conductivities.

A. The inverse conductivity problem

In this section we describe an extension of Nachman’s result to W1?(Q), p > 2, conductivities
proved by Brown and the author [B-U]. We follow an earlier approach of Beals and Coifman
[B-C I1I] and L. Sung [Sung] who studied scattering for a first order system whose principal

art is 0 0
P 0d)

Theorem 4.1 Let n = 2. Let v € W'?(Q),p > 2, «y strictly positive. Assume A, = A, .
Then

71 =" in Q.
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We first reduce the conductivity equation to a first order system. We define

1
(4.1) q= —ialogy

and define a matrix potential () by

(4.2) Q

I
7 N

O

o
N——

We let D be the operator

(4.3) D:(§ g).

An easy calculation shows that if u satisfies the conductivity equation div(yVu) = 0, then

(2) (%)

solves the system

o(2)-0(2)-0

In [B-U] are constructed matrix solutions of (4.5) of the form

o vk () S ).

(&

where z = x1 + ixe, k € C with m — 1 as |z| — oo in a sense to be described below. To
construct m we solve the integral equation

(4.7) m—D;'Qm =1

where, for a matrix-valued function A,

with
(4.9) EpA =A%+ AtAT
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and
i(zk+zk) 0
e
(4.10) Ak(z>=( . <>>

Here A% denotes the diagonal part of A and A% the antidiagonal part.
Let

(4.11) J:%(Bi S)

Then we have
(4.12) JA =[J,A] =2JA°T = —24°% .

where [ , ] denotes the commutator.
To end with the preliminary notation, we recall the definition of the weighted LP space

LA (R?) = {f; /(1 + |z*)*| f(x)[Pdz < oo}
The next result gives the solvability of (4.7) in an appropriate space.

Theorem 4.2 Let Q € LP(R?),p > 2, and compactly supported. Assume that Q is a her-
mitian matriz. Choose r so that ]—1) + % > % and then B so that Br > 2. Then the operator

(I - D,;lQ) is invertible in LT 5. Moreover the inverse is differentiable in k in the strong
operator topology.

Theorem 4.2 implies the existence of solutions of the form (4.6) with m —1 € L” ;(R?) with
B, r as in Theorem 4.2.
Next we compute a%m(z, k).

Theorem 4.3 Let m be the solution of (4.7) with m — 1 € L" 5(R?). Then

(4.13) a%m(z, k) = m(z, F)Ax(2)So (k) = 0
where the scattering data Sg is given by (see [B-C III])
1
(4.14) Sqlk) =——J / E,Qmdy
R2

where dp denotes Lebesgue measure in R2.
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Finally, we need an estimate for the growth of m in the variable k. The following result
is a straightforward generalization of Proposition 2.23 in [Sung]. (We remark that the proof
in [Sung] is incorrect. A corrected proof, kindly provided by L. Sung, appears in [B-U]).

Theorem 4.4 Let Q € LP(R?),p > 2, and compactly supported. Then there erists R = R(Q)

2
so that for all g > prga

sup;||m(2, ) = Y pagen>ry < CllQIIZs
where the constants depend on p,q and the diameter of the support of Q.

Outline of proof of Theorem 4.1 We recall (see Theorem 3.3) that if v; € W'?(Q) and
A, = A,,, then 6‘171‘89 = 80‘72‘69 V |a| < 1. Therefore we can extend v; € WP(R?),

71 =Y in R — Q and v; = 1 outside a large ball. Thus @ € W*?(R?). Then Theorems 4.2,
4.3 apply. Now we follow the following steps.

Step 1: A, =A,, = S, =S5, :=95.
This just follows using that
om; —Qim; =1,i=1,2

and integrating by parts in (4.14) (in a ball containing the support of Q).

Step 2 Using the d-equation (4.13) and Step 1 we conclude that

0

(4.15) ﬁ(ml —mg) — (M1 — ma)Ag(2)Sq(k) =0

Therefore m; — msy € L? ,(R?) satisfies the pseudoanalytic equation
B

(4.16) Ox(my — my) = r(z,k)(my — ma).
where 7(z, k) = Sq(k)Ar(2).

Step 3 We define
(417) (Tan — TNI'LQ) = (m1 — mg)ea r.

It is easy to check that



Then we can conclude that m; = my and therefore m; = my, which in turn easily implies
that @)1 = ()2 and therefore y; = v, by using the following result, combined with Theorems
4.3, 4.4.

Lemma 4.1 Let f € L*(R?) and w € LP(R?) for some finite p. Assume that we? I s
analytic. Then w = 0.

The idea of the proof of Lemma 4.1 is the observation that since r € L*(R?), u = 9 'risin
VMO(R?) (the space of functions with vanishing mean oscillation) and thus is 0(log |2|) as
|z| = oco. Hence e"w € LP for p > p. By Liouville’s theorem it follows that e*w = 0. The
details can be found in [B-U].

We remark that Theorem 3.7 is also valid in the two dimensional case [Su II].

B. The potential case

As we mentioned at the beginning of this section the analog of Theorem 3.2 is unknown at
present for a general potential ¢ € L*°(2). By Nachman’s result it is true for potentials of
the form ¢ = % with u € W?P(Q),u > 0 for some p, p > 1. Sun and Uhlmann proved
generic uniqueness for pairs of potentials in [Su-U I]. In [Su- U III] it is shown that one can
determine the singularities of an L* potentials from the Dirichlet to Neumann map. Namely
we have

Theorem 4.5 Let Q C R?, be a bounded open set with smooth boundary. Let g; € L°°(§2)
satisfying
Cq =0Cy,.
Then
q — g € C*(Q)
forall0 < a < 1.

We shall outline in the remaining of this section the proof of an identifiability result near
the 0 potential. This proof exhibits some of the features of the proof of Theorem 4.5. We
also use directly Calderén’s result that the product of harmonic functions are dense in L?(2).

Theorem 4.6 Let Q C R? be a bounded open set with smooth boundary. Let ¢; € W*°(Q),
i=1,2. Then 3 €(Q2) > 0 such that ||g;||w1.~) < () and

A¢11 = Aq2'
Then
qd1 = 4q2.
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We first state an extension of Theorem 3.2 to potentials in some weighted L? spaces. We
also find an asymptotic expansion for the remainder term 1.

Theorem 4.7 Let 1 < p < o0 and
2 2 1
(4.18) ——<5<—1+—,wzth - =1
p p p P
There exists a constant (3, p) such that for every ¢ € L, (R*)NL®(R?) and for every k € C
satisfying

I(L + [2[%) 2 qll ey

(4.19)

||
then there exists a unique solution to
(4.20) (A—qu=0inR?
such that
(4.21) w= (1 + (2, k)
with v € LY(R?) satisfying

1 <C
(4.22) 191l e ey + % ‘II Yllewey T 7 lallzz, 2
Furthermore
=1

100 q)
4.2 k)=- b(zx, k
(4.23) V(. k) = 7 + bz, k)
with
(4.24) ||b||L§(R2 |k| ||Vb||L5Jrl W||Q||L§'+I(R2)

for some C > 0.

Qutline of Proof of Theorem 4.7
We note that in two dimensions for z,k € C — 0

(4.25) e AeF f = 40(0 + ik) f.
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We first compute (0(0 + ik)) . We observe that
(4.26) a(ei(kz+EE)f) _ ei(kz+EE) (a + Zk)f

where f € C5°(R?).
We then define

(4.27) (0 + ik)"Lf = ¢ ik+ER) g1 (gilhatRD) £

where f € C5°(R?).
Because of Lemma 2.3 we have that (0 + ik)~! extends as a bounded operator from
L5, (R?) and L§(R?) and

(4.28) (0 + z‘k)*1||L§+1,L§ < C

with C independent of k. Here || || 12,0z denotes the operator norm. Also using (4.27) we
have that
(4.29) |D,(0+ik) e 1p < Cylkl

P
S+10s541 —

where D, denotes differentiation in any direction and Cs is independent of &.

The following identities are easy to check.
Let f e LY, (R?)

(4.30) (0 +ik)" f = %(1— 00 +ik))f
and

(4.31) (O+ik)'f = é — (2,2)2 (I —0(0+ik)™))f.
Therefore it follows from (4.30) that

(4.32) @@ +ik) " f = %[51 _7 00 +ik) S,
Using now (4.28) and (4.32) we get

(4.33) 100+ k) iz <
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and

(4.34) 1D, (8(8 +ik)) e 12 < C4

s+1ts41 —

with C3, C4 independent of k.
Now substituting (4.21) into (4.20) we get that 1 must satisfy

(4.35) 19(9 + ik)p = q(v + 1)
(4.36) v = 1(@0+ k) ) (a(1 +v).

The existence of a unique 9 in LE(R?) follows easily from a contraction argument using
(4.22) and (4.19). Also the estimate (4.22) follows from (4.33), (4.34). To obtain (4.23) and
(4.24) we note that (4.31) implies that

-1 -1

o f 0

— —=0(I —9(0 +1ik)"'f).

ik (RpoU — o0 Fk) )

(4.37) (00 +ik)) ' f =
According to (4.36)

(80 +ik)""q + (9D + ik)) " (q¥))-

| =

(4.38) ¥ =

The first term in (4.38) is

ik 4ik?
and the second term in (4.38) satisfies the estimate (4.24) because of (4.33), (4.37), (4.22),

concluding the proof.

Outline of proof of Theorem 4.6
The proof follows using a “compactness” lemma for elements orthogonal to the product
of solutions of the Schrodinger equation. Specifically

9 'q 0 0 -0 +ik) Y)g

A~ =

(0(0 +ik)~")g =

NG

(4.39)

Lemma 4.2 Let Q C R? be a bounded domain with smooth boundary. Let 0 < s < 1. Let
q, 1 = 1,2 satisfy

(4.40) il L4y < M.
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Then there ezists a constant C = C(2, s, M) such that if

0
for all u; € HY(Q) solution of Au; — qu; = 0,1 = 1,2 with f € L*(Q), then f € H*(Q) and
(4.42) /]

We now use the above lemma to conclude the proof of Theorem 4.6. Su}gpose that

Theorem 4.5 is false. Then 3 a sequence of pairs {q@,qén)} with q§") + qé" for all n

approaching zero in W1H*°(Q) and satisfying

o) < C|fllz2@)-

(The set of ¢’s for which C, = A, is dense in W*°(Q)). Now we have in this case
(4.49) [ =l =0
Q

for all u{™ solution of

(4.45) A—¢u™ =0inQ, i=12
Let

() _ (n)
(4.46) fn = (731 92

g™ — qgn)”m(n)
It follows from Rellich’s Lemma and (4.42) that the f, have a convergent subsequence

faGy = [ € L*(Q) with || f|lz2(@) = 1. Now, let u and v be arbitrary harmonic functions in

Q with boundary values of h and g. Let u{™ and v{® denote the solutions to (4.45) with the
same boundary values as v and v, respectively, then

Aw=—ul") = ¢ (u=uf”) - ¢"u
(u — ul™) = 0.

0N

Hence

Cr(la™ (u — w2y + 116 oo el 20)

(n)
u—u ||W212(Q)
(ap) v . ) )
Cr(lg™ Nl oo @ 1w = w20y + 110 1 moo oy lull 2 @)-
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For ||q§")||Loo(Q) small enough

lu — uf w22y < Calla™ || llullz2o

so that .
2(0
ugn) W=2(Q) u

and similarly
(n) W2(Q)
vy ——>

In particular, since convergence in W22(Q) implies convergence in L*(Q2) ([G-T])

2
(4.48) ulM i i P9

We know that

Q

so, it follows from (4.44) and (4.48) that

(4.49) 0= [ fun
Q
For all harmonic v and v. By Calderén’s argument we get f = 0, a contradiction.
Proof of Lemma 4.2 We begin by choosing u; and uy to be solutions to
Aui—qiui:O, Z:1,2

in R? of the form (4.21), with ¢; extended to be zero outside ), and § satisfying (4.18) with
p = 4 of the form

Uy eizf(l + 1 (z, k))
uy = e#F(14hy(z, k)

and, in order to satisfy (4.19),

11+ [2*)!?q]| Lo (o)
€
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Hence, using the expansion (4.23) with g; = 5—1% w; =1, (4.41) becomes

(4.51) - fR2 ei(z“ﬁ)f = fRz f¢1¢2€(im+ﬁ) -|_-_fR2 f%ei(zkﬁﬁ)
+ fR2 f(bl + b2)61(2k+2k)

where f is extended to be zero outside {2. We denote by Iy, I5, and I3 the three terms on
the right hand side of (4.51). We have

(L] < Cillfllzzo el Lz o)
< Cillfllzz@ll¥r ] ayllvbel o)
which implies, in view of (4.22),
Ca(Q)

1| < W||f||L2(n)||q1||L

1@ llellz, @)
so that, for 0 < s < 1

(4.52) [ EP Ll z2gr>r) < Cs(S s)llaullea, , @) llgell s

5+1

®) | fllz2(@)-

In addition,

= OB o g [ i
R2

41k
so that
HEP Lll2gri>r) < ”[f((91+92))|?AIIL2(|sz>

< [f(g1 + 92) |2 (w2
4.53
(4.53) < N Fllzz lgs + galli=o

< Cullfllez@llar + gl Ly
In summary,
(4.54) B[ Ll 2k >r) < Coll fllzz@) (laulles, ey + lla2lizs, )

To estimate I3, we use (4.24). We obtain

[E1*[Is] < RPNl o (161 |z ey + 11020l r2Re))

4.55 )
(4:55) < k2l (sl gen + laallz, eny)-

5+1

Finally, we note that

(4.56) 11 < 20 F 22 qui<ry (1 + B2 + 1K1 Fll2 (= R))-

Combining (4.56) with (4.51), (4.52), (4.54), and (4.55), where R is chosen in (4.50), gives
(4.20).
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5 First order perturbations of the Laplacian

In this section we consider inverse boundary value problems associated to first order pertur-
bations of the Laplacian. We consider two important cases arising in applications. We first
consider the Schrodinger equation in the presence of a magnetic potential. The problem is to
determine both the electric and magnetic potential of a medium by making measurements at
the boundary of the medium. The second example involves an elliptic system . We consider
an elastic body. The problem is to determine the elastic parameters of this body by mak-
ing displacements and traction measurements at the boundary. Another important inverse
boundary value problem involving the system of Maxwell’s equations is the determination
of the electric permittivity, magnetic permeability and electrical conductivity of a body by
measuring the tangential component of the electric and magnetic field ([S-C-1]). A global
identifiability result and a reconstruction method can be found in [O-P-S]. This problem can
also be reduced to construct complex geometrical optics solutions for first order perturba-
tions of the Laplacian ([Su-U IV]). Recently in [O-S] it was shown that, by considering a
larger system, one can reduce the problem of constructing the complex geometrical optics
solutions for Maxwell’s equations to a zeroth order perturbation of the Laplacian. Then the
solutions can be constructed as in section 2.

5.1 A. The Schrodinger equation with magnetic potential

Let 2 be a bounded domain in R, n > 3, with smooth boundary. The Schrédinger equation
in a magnetic field is given by

(5.1) H- :zn:(li—f-/lj(x)) +q(z), i=+—1,

where A = (AL, Ay, ..., A,) € CH(Q) is the magnetic potential and g € L*°() is the electric
-
potential. The magnetic field is the rotation of the magnetic potential, rot(A).

We assume that Z and ¢ are real-valued function and thus (5.1) is self-adjoint. We also
assume that zero is not a Dirichlet eigenvalue of (5.1) on Q (or as in section 2, one can
consider the Cauchy data associated to HZ . ), so that the boundary value problem

H- v = 0 in Q,
(5-2) qu 1
ulogn = f € Hz2(09Q)
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has a unique solution v € H'(Q). The Dirichlet-to-Neumann map A . which maps H? (092)
into H_%((?Q), is defined by

o B LG fembon),

(5.3) A o

where v is the unique solution to (5.2), and v is the unit outer normal on 99.

The inverse boundary value problem for (5.1) is to recover information of Z and ¢ from
knowledge of A—> :

It is easy to see [Su II] that the the Dirichlet to Neumann map A—» is invariant under

a gauge transformation in the magnetic potential: A — A + Vg, Where g € C4, where we
denote

(5.4) Gy = {f € C*(R"), suppf C 9.

In fact if we consider u as in (5.2), then v = e"u solves H vodl = = 0in @ and A f =

A+v f Thus, A—»q carries information about the magnetlc ﬁe]d instead of 1nformat10n

about A. The natural question is whether AX determines uniquely rot(A) and ¢. In [Su

4

%
I1], this question was answered affirmatively for A in the C? class and ¢ in the L*°(Q) class,

under the assumption that rot(;l)) is small in the L* topology.

The smallness assumption in Sun’s result was used to construct complex geometrical
optics solutions similar to (2.3) in this case. In section 6 we’ll describe how Nakamura and
Uhlmann [N-U I] constructed these types of solutions without the smallness assumption on

rot(Z). This combined with the methods of [Su II] lead to the following result [N-Su-U].

Theorem 5.1 Let Zj € C®(9Q), ¢; € C®(Q), j =1,2. Assume that zero is not a Dirichlet
eigenvalue of HX o j=12.1If

747

A=A
A1,q1 A2,q2
then

— —
rot(A;) = rot(A4z) and ¢; = ¢z in Q.

If we assume Zj € Cg, it was proved in [N-Su-U] that Theorem 5.1 holds even for
¢; € L*>(£2). We have
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Theorem 5.2 Let /Zj € C&, ¢ € L*(Q), j = 1,2. Assume that zero is not a Dirichlet
ergenvalue of HZ- o j=12.1If
795 A AL

A1,q1 Azygo’

then
— —
rot(A1) = rot(As) and q1 = ¢ in Q.

The inverse scattering problem at a fixed energy in this case has been considered in [E-R].

— —

C. Tolmasky ([To]) reduced the regularity of 4; in Theorem 5.2 to just A4; € C§. He

constructs the complex geometrical optics solutions under weaker regularity conditions. We
shall outline his approach in the next section.

B. Inverse boundary value problems for elastic materials

We assume now that € is an elastic material, that is, a deformed shape will try to come back
to its original shape. Let u(x) denote the displacement of the point z under the deformation.
The undeformed domain is called the reference configuration space. The linear strain tensor

1 /0u; Ou;
5.5 i = = ! ), Gy =1,...,
(5.5) % 2<axi+axj) “J "

measures the rate of deformation with respect to the Euclidean metric for small deformations.
Under the assumption of no-body forces acting on €2, the equation of equilibrium in the
reference configuration is given by the generalized Hooke’s law (see [Ci] for an excellent
treatment of elasticity theory)

(5.6) Leu =div o(u) =0in Q,

where o(u) is a symmetric two-tensor called the strain tensor. The elastic tensor C is a
fourth order tensor which satisfies

(57) oij(u) = Z Cijkl(x)akl(u), i,j = 1, s

k=1

We shall assume that the elastic tensor satisfies the hyperelasticity condition ([Ci], Chapter
4)

(58) Cijkl(a:) = Cklij(x) Ve Q.
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We also assume that C satisfies the strong convexity condition: there exists § > 0 such that
n n
(59) Z Cijkl(:c)t,-jtkl > ) Z t?j, z e
6,5,k =1 i,j=1
for any real-symmetric matrix (¢;;)1<;,j<n. Condition (5.9) guarantees the unique solvability

of the Dirichlet problem

(5.10) { divo(u) = 0 in Q,

“|39 = [

The Dirichlet integral associated to (5.10) is given by

- ouy Ou;
11 — L
(5.11) Wel(f) E /QC,JM(JJ) oz, 91, dz

1,5,k,l=1

with u solution of (5.10). Physically, W¢(f) measures the deformation energy produced by
the displacement f at the boundary.
Applying the divergence theorem we have that

(5.12) Welr) =3 [ (Aelr)uss do

where

n
auk

(5.13) (Ac(f))i = Z VjCijlcla—

‘ , 1=1,...,n
Cei—1 T 1092
.7)):

with u solution of (5.10) and v denotes the unit outer normal to 9. In other words, A¢ is
the linear operator associated to the quadratic form Ws. The map

(5.14) f =9 Ae(f)

is the Dirichlet to Neumann map in this case. It sends the displacement at the boundary
to the corresponding traction at the boundary. The inverse problem we consider in this
subsection is whether we can determine C' from Ac.

We shall assume that C'is isotropic, i.e., satisfies

(5.15) Cijkl(x) = A(x)dijdkl + ,U«(l‘)(dikdjl + 5il5jk:)
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where d;, denotes the Kronecker delta.
In this case the strain tensor takes the form

(5.16) o(u) = A(z)(trace e(u)) + 2u(z)div (u).
The strong-convexity condition (5.9) is equivalent to
(5.17) nA+2u >0, p>0in Q.

The main known results for identifiability of C' from A¢ are

Theorem 5.3 (N-U I) Let n > 3, C; € C*(2), isotropic elastic tensor. j =1,2. Assume
AC1 == ACz-
Then 01 = 02

Theorem 5.4 (N-U III) Let n = 2 and C; as in Theorem 3.4 with Lamé parameters
Ajs g, 7 = 1,2. There exists € > 0 such that if

1(Ajs 115) — (Mo, o) lwsreeey <€, j=1,2

and Ac, = Ac, then (Ai, ) = (A2, o). Here (Ao, o) denotes a constant and ||ul|wsieq) =
sup [0%u(z)]|.

z€eN
|| <31

The global uniqueness result Theorem 5.3 is the analog to Theorem 3.1 for the inverse
conductivity problem. Theorem 5.4 is analogous to the local result, Theorem 4.6. We remark
that there is no known global result in two dimensions similar to the one proven by Nachman
[N II] for the inverse conductivity problem. Theorem 5.3 has been extended in [N-S] to a
class of non-linear elastic materials, the so-called St. Venant-Kirchohoff’s materials, using a
linearization technique similar to Lemma 3.

We now indicate the main steps in the proofs of Theorems 5.3 and 5.4. The first obser-
vation is that under the hypothesis of Theorems 5.3, 5.4 we can prove an identity involving

A1 — Ao, p1 — pa.
Lemma 5.1 Let u®, i = 1,2 be solutions

div o(u®) =0 in Q,
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with u® € HY(Y), i = 1,2. Assume A¢, = A¢,. Then

(5.18) E@® u®) = / (A1 = Ap)div u - div u@dz
Q

i /n(/h — p2)e(ult) - e(u@)dz = 0.

The proof of the Lemma follows readily by applying the divergence Theorem and the bound-
ary determination result of [N-U II], which is the analog of Theorem 3.3. Namely under the
hypothesis of Theorems 5.1, 5.2 we have that the Taylor series of A, uy and Ao, o coincide.
(It is only needed 0%, 0%\, |af < 1).

The problem is now to find “enough” solutions of L, u® = 0 in Q to conclude that the
Lamé parameters coincide in €.

It is quite difficult to construct solutions of the form (2.3) directly for the elasticity
system. In the paper [N-U I] a reduction to a system with principal part the biharmonic
operator is made by multiplying L on the left by an explicit second order system 7 to get

(519) TcLC = A2+M1($,D)A+M2($,D)

with M;(x, D) an n x n system of order 4, i = 1,2. Then to construct solutions of Lou = 0 it
is enough to construct solutions of Mu = (A?+M, (z, D)A+M,(z, D))u = 0. By introducing
a new dependent variable v = Au we want to find solutions of the 2n x 2n system

s a(2) (3 8- (0 ) (2)-(2)

where A~! denotes the inverse of the Laplacian. Notice that (5.20) is a first order system
perturbation of the A with the 0 order perturbation being a pseudodifferential operator.

Ikehata [I] reduced the elasticity system to an (n + 1) X (n + 1) differential system as
follows.

u

Lemma 5.2 ([I]) Let ( !

system

(5.21) Al +Vi(z) < Vv-fu ) + V() ( ; ) = ( 8 )

with

) with u = (u1, ... ,u,)" be a solution of the (n+1) x (n+ 1)

2 (= V2 + LA™ —VI
(5.22) Vi) =| H(=VE+ LA V log
0 Aty 5

)\+2u'u
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—um V2 LA 205 (V2= AT
(5.23) VO(Q;):< pT2 (V2 4+ LAz 272 (V )Wu)

— 1 _
— 32 (Vi)' —plAp!

and Iy denotes the identity k x k matriz. Then

(5.24) w = p” 2+ p Y (uf)
satisfies
(5.25) Lew = 0.

Therefore we are reduced to finding “enough” solutions of the first order system (5.21)
which we rewrite as

(5.26) (A4 PY(z,D))v=0

with P1)(z, D) a first order (n+ 1) x (n + 1) differential system.
We shall indicate in section 6, how to construct these complex geometrical optics solu-
tions.

6 Complex geometrical optics solutions for first order
perturbations of the Laplacian

In this section we outline the construction of complex geometrical optics solutions for first
order perturbations of the Laplacian. For simplicity we do this for scalar equations. A similar
method applies to the first order system (5.21) arising from the elasticity system([N-U I])
Let us consider an operator of the form

(6.1) P(z,D) = AI + PY(z, D,)

where PY)(z, D,) is a first order scalar system with smooth coefficients in R” and I denotes
the identity matrix. Let p € C* with p- p=0,p # 0.

In this section, for |p| sufficiently large we shall outline the method of [N-U] to construct
solutions of

(6.2) P(z,D)u=0
in compact sets of R” of the form

(6.3) u = e"Pv(z, p)
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with a fairly precise control of the behavior of v(z, p) as |p| — occ.
We will construct v(zx, p) as a solution of

(6.4) P,(z,D)v =0

where

(6.5) P,(z,D) = A, + P{"(z, D)
and

A, =e TPA(e"P), Pp(l) (z, D) = e P PY(z, D)(e**).

As it was shown in Section 2 we have precise estimates for A;l. The problem is that

derivatives of A;l f don’t decay for large p. Also P,Sl) involves terms growing in p. The goal
is to, somehow, get rid of the first order terms in (6.5). Roughly speaking, we will construct
invertible operators A,, B,, and an operator C, of “lower order” so that

(6.6) P,A, = Bp(Ap + C’p)
We will then construct solutions of P,v, = 0 of the form
v, = A,w,

with w, solution of (A, + C,)w, = 0.

We’ll accomplish (6.6) using the theory of pseudodifferential operators depending on the
complex vector p. The main point is to regard the variables £ and p in equal footing. We
digress to discuss the main features of this theory. For more details see for instance [Sh]. Let

Z={peC%lp|>1,p-p=0}

Definition 6.1 Let l € R, 0 < §d < 1, U C R™, U open. We say that a, € SU, Z) <
Vp € Z fized, a,(x,§) € C°(U xR"); YVa € Z},V g€ Z?, ¥V K C U, K compact
ACap,x > 0 such that

Sup 0805 ap(2,6)] < Capr(L+ €[+ [p)F?1 Vpe Z,6eR".
fAS

ExaMPLE: We have that
To(x,€) = —[&]* + 2i€ - p € SH(R" x Z)
since it is homogeneous of degree 2 in (¢, p). Notice, however, that 7, is not elliptic. In fact

if n = 3 and we take Rep = 5(1,0,0), Imp = 5(0,1,0) , s € R, then the zeros of 7,(£) is a
codimension two circle in the plane & = 0 centered at the point (0, —s, 0) of radius s.
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Definition 6.2 Let U CR", U open, a, € Sy(U, Z). We define the operator A, € L4(U, Z)

by
1 . ~
©7) A1) = o [ of©d, 1 ecr)
The kernel of A, is given by
(6.8) ki, (2,y) = (2710” / @D (2, €)dg

where the integral in (6.8) is interpreted as an oscillatory integral. A, extends continuously
as a linear operator

A, E'U) - D'WU)

where E'(U) (resp. D'(U)) denotes the space of compactly supported distributions (resp.
distributions).

As usual, it is easy to check that if a, € S{(U,Z) VI, then A4, : &'U) — C®U), i.e. A,
is a smoothing operator.

Definition 6.3 We say that A, is uniformly properly supported if supp ka, is contained in
a fized neighborhood V' of the diagonal in U X U for all p € Z, so that VK C U, K compact,
V intersected with TI"(K) is compact where 11 denotes either one the projections of U x U
onto U.

Proposition 6.1 Let A, € L](U, Z). Then we can write
A, =B, +R,
with B, € LT uniformly properly supported and R, smoothing.

We shall assume from now on that all pseudodifferential operators are uniformly properly
supported.

Definition 6.4 Let A, € LY(U, Z) as in (6.7).
a) Then the full symbol of A, is given by o, (A,)(2,&) = a,(z,§).
b) The principal symbol of A, is given by
om(A,)(x,€) = a,(z, &) mod S5 (U, Z).
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The functional calculus for pseudodifferential operators depending on a parameter is
completely analogous to the standard calculus. Namely we have

Theorem 6.1 Let A, € LT(U, Z), B, € LT (U, Z). Then
a) A,B, € L™™(U, Z)
) Gnir(A,B,) ~ S4DEon(A,) 925 (By)
) Gme(A5By) = om(Ap)om(B,)

d) omiin([Ap, Byl) = Ho,(4,)0m(B,) where [A,, B,] denotes the commutator and H, de-
notes the Hamiltonian vector associated to p, i.e.

oS (20 0
P 8£j8:1:j aﬂijafj '

7j=1
Finally we shall use the following continuity property of A,’s on Sobolev spaces (see [Sh]).

Theorem 6.2 Supposel < 0, K a compact subset of R*" and A, € LL(R", Z) with supp Ky, C
K, VpeZ=VkeR, A, isabounded operator from H*(R") to H*(R") and 3Cyx > 0
such that

| Apllkk < Crilpl'Vpe Z
where ||A,||xx denotes the operator norm.
We define
(6.9) A e Ly(R", Z)
by
(6:10) o(A3) = (IE[* + o).

We use this to get a first order equation. Let 13,) = PpA;1 = ﬁp + ﬁ,sl)(x,D) with ﬁp =
A,,A;l, ]3,51) = P,EI)A;I. A key ingredient in the construction of complex geometrical optics
solutions is the following result proven in [N-U I].
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Theorem 6.3 (Intertwining property) V positive integer N 3A,, B, € LYR", Z) invertible
for |p| large so that

V€ CP(RY),Jp; € C3°(R"),j =2,3,4
so that
(6.11) 018, A, = (01Bp02) A (A, I + 03 RN py)
with RN € L;N(R*, Z), and Vs € R

||903R(_N) P4

|5, < Cslp| ™.

The last estimate follows from Theorem 6, since the kernel of ¢3 R~ ¢, has compact support
independent of p. Then to find solutions of P,v, = 0 in compact sets, it is enough to find
solutions of

(6.12) (AT + p3REM o )w, = 0.

Then A[lepwp solves P,v, = 0 on compact sets (take ¢; =1 on the compact set).

The proof of this result for the case § = 0 is given in [N-U I]. We will write in this case
LR, Z) =: L™(R™) and SJ*(U, Z) =: S™(U, Z). We'll just say a few words about the proof
which is quite technical. The main problem is to construct A,, B, near the characteristic
variety (i.e. the set of zeros of 7, with 7, as in Example 1). This is because away from
the characteristic variety P, and A, are elliptic and therefore invertible modulo elements of
L™N(R",Z) for all N € N and it is therefore easy to construct the intertwining operators
A,, B, in that case. The characteristic variety is given by

1 (0) = {(z,€) € R*";Rep-£ = 0,|¢ + Im p|2 = [Im p|*}
where
rp(€) = (|2 + [p[2) "2 (—|€]? + 2ip - €).

Near the characteristic variety we take A, = B,.
So we are looking for A, € L%(R", Z) such that

P,A, = A,A, mod L™N(R", Z)
i.e.
(A, + PM(z, D))A, = A,A, mod L™ (R", Z).
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We proceed inductively. We choose

A, —ZAU e L7I(R, Z)

Let oj(A,(gj)) be the principal symbol of A,(gj). Then by the calculus of pseudodifferential
operators depending on a parameter we need to solve

(6.13) H,,00(A") + o0(PV) oo (AD) = 0
and

H,,(0;(AY) + oo(Py))o;(AM) = g;(x,€)

P

with g; € S™(R", Z) so that
P,A, = A,A, mod L~ (R", Z).
(Recall that this is all done near the characteristic variety). We note that
H,, = Li,+ily,

with L, ,, Ly , real-valued vector fields R?” so that (L1, Lo ] = 0. Therefore Hr can be
reduced to a Cauchy-Riemann equation in two variables of the form 8‘9 + i+>. In fact
one can write down an explicit change of variables in (&, p) to accomphsh this (see [N-U]).
We also give conditions at oo in on A, to guarantee that it is invertible. Namely in the
coordinates in which the vector field Hrp is the Cauchy-Riemman equation we require, for
—1<a<0,that o(4,) — I € L2 where I denotes the identity matrix.

To prove Theorem 5.2 with less regularity in the magnetic potentials Tolmasky ([To]) con-
structed complex geometrical optics solutions with the coefficients of P(!)(z, D) in C?/3+¢(Q)
for any e positive. Using techniques from the theory of pseudodifferential operators with non
smooth symbols ([Bo], [C-M], [T]) one can decompose a non-smooth symbol into a smooth
symbol plus a less smooth symbol but of lower order. We describe below more precisely this
result. First we introduce some notation. C'¥(R") will denote the Zygmund class.

Definition 6.5 Let ¢ € [0,1]:
(a) p,(z,8) € CISTs ,(R*) if and only if

D8Py (2, )] < Cal(L+ €2 + [pf?)2)mle
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and .
o < Co (L4 [€]> + |pf*)2)mlol+s0

¥ —

1D (- )

for any o € Z7}..
(b)  pp(x,&) € C°ST; ,(R™) if, the conditions on (a) are satisfied and additionally:

« Lym—|al+j
1DEP, (- E)llei < Cal(L+ €7 + [pf?)z)mlel*a?
for any o € Z% andV j € N such that 0 < j <s.

Proposition 6.2 Let p,(z,§) € C;STy ,, then we can write for any 6 so that 0 <6 < 1:

where

(6.15) A€ € ST,

and

(6.16) ph(x,€) € C’f‘tS{'fo_,;‘s s,s—1t>0

Let p,(z, D), pﬁ (z, D), p’,’)(x, D) denote the corresponding operators associated to p,(z, §),
pg(ac, £), pg(ac, €), respectively. Then we have the following estimates which are proved using
a Littlewood-Paley decomposition of the phase space depending on the parameter p.

Theorem 6.1 Let p,(z,§) € C; ST, ,(R") . Then

py(z,D): H*™P(R") — H*P(R")
with
(6.17) 1p5(@, D) lsms < C((L+ p?)2)™+"

where 0 < s <1, p € (1,00) and || ||s+m,s denotes the operator norm between Sobolev spaces.

Now we describe how to construct complex geometrical optics solution of
(6.18) P(z,D) = A + PY(z, D)

Using Theorem (6.3) (for the sake of exposition we will eliminate all the cut-off functions)
we can find operators A,, B, € L}(R", Z) such that A,, B, are invertible for large p and

(6.19) (A, + Nﬂ)Ap = By(8, + C))
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with C, € LY(R", Z) where P\"(z, D) = N¥(z, D)+N(z, D) using the decomposition (6.14).
Then

(6.20) (Ap+ Bp(z,D)A, = B,(A,+Cp) + Nz(x, D)4,
= B,(A,+C,+B,'N)(z,D)A,)

Using the estimate (6.17) and the estimates for the operators A,, B, implied by Theorem
6.2 we conclude, the following estimate under the regularity assumption that the coefficients
of the first order term are in C%/3+¢ with € > 0

(6.21) (Cy + By N2z, D) Ap) A sy soioy < Clol~?
for some § = 3(e) > 0.

7 Anisotropic conductors

In sections 0-4 we considered isotropic conductivities, i.e. the electrical properties of €2
don’t depend of direction. Examples of anisotropic media are muscle tissue. In this section
we consider the inverse conductivity problem for anisotropic medium. The problem is well
understood in two dimensions. Using isothermal coordinates ([A]) one can in fact reduce, by
a change of variables, the anisotropic conductivity equation to an isotropic one and therefore
one can apply the two dimensional results of section 4. Of course this is not available in
dimension n > 2. In fact in this case the problem is equivalent to the problem of determining
a Riemannian metric from the Dirichlet to Neumann map associated to the Laplace-Beltrami
operator [L-U].

In this section we will consider the case of a quasilinear anisotropic conductivity. We
outline recent results [Su-U III] proving identical results to the linear case. One needs to go
further than the linearization procedure of Lemma 3.1 for isotropic non-linear conductivities.
In fact we show that one can reduce the problem question about the density of product of
solutions for the linear anisotropic conductivities, by using a second linearization.

We assume that y(x,t) € CH*(Q x R) be a symmetric, positive definite matrix function
satisfying

(7.1) Y(z,t) > erl, (x,t) € Qx [-T,T),T >0,
where e > 0 and I denotes the identity matrix.

It is well known (see e.g. [G-T]) that, given f € C%%(Q), there exists a unique solution
of the boundary value problem

(7.2) { V- (y(z,u)Vu) =

0 in €,
“‘an = I
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We define the Dirichlet to Neumann map A, : C*%(9) — C*(9Q) as the map given by

(7.3) Ay f—=v-y(z, f)Vu "
where u is the solution of (7.2) and v denotes the unit outer normal of 9.

Physically, y(z,u) represents the (anisotropic, quasilinear) conductivity of 2 and A,(f)
the current flux at the boundary induced by the voltage f.

We study the inverse boundary value problem associated to (7.2): how much information
about the coefficient matrix v can be obtained from knowledge of the Dirichlet to Neumann
map A,?

The uniqueness, however, is false in the case where v is a general matrix function as it
is also in the linear case [K-V III]: if ® : Q — Q is a smooth diffeomorphism which is the
identity map on 0€2, and if we define

(D2)" (-, 1)(D?)

7.4 P, = ot
then it follows that
(75) A<I>*'y = A’ya

where D® denotes the Jacobian matrix of ® and |D®| = det(D®).
The main results of [Su-U III] concern with the converse statement. We have

Theorem 7.1 Let Q C R? be a bounded domain with C** boundary, 0 < o < 1. Let vy, and
Y2 be quasilinear coefficient matrices in C*>*(Q x R) such that A, = A,,. Then there ewists
a C** diffeomorphism ® : Q — Q with (D‘an = identity, such that v, = ®. 7.

Theorem 7.2 Let Q) C R", n > 3, be a bounded simply connected domain with real-analytic
boundary. Let v and 7y, be real-analytic quasilinear coefficient matrices such that A, = A,,.
Assume that either v, or vy extends to a real-analytic quasilinear coefficient matriz on R".
Then there ezists a real-analytic diffeomorphism ® : Q — Q with (I>| o = tdentity, such that

Yo = ‘I’*’Yl-

Theorems 7.1 and 7.2 generalize all known results for the linear case ([S-U IV]). In this
case and n = 2, with a slightly different regularity assumption, Theorem 7.1 follows using
a reduction theorem of Sylvester [S], using isothermal coordinates, and Theorem 4.1 for the
isotropic case.

In the linear case and n > 3, Theorem 7.2 is a consequence of the work of Lee and
Uhlmann [L-U], in which they discussed the same problem on real-analytic Riemannian
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manifolds. The assumption that one of the coefficient matrices can be extended analytically
to R™ can be replaced by a convexity assumption on the Riemannian metrics associated to
the coefficient matrices. Thus Theorem 7.2 can also be stated under this assumption, which
we omit here. We mention that, in the linear case, complex geometrical optics solutions have
not been constructed for the Laplace-Beltrami operator in dimensions n > 3. The proof of
Theorem 2.1 in the linear case follows a different approach.

A. Linearization The proof of linearization Lemma 3.1 is also valid in the anisotropic
case. We shall use 7' to denote the function of x obtained by freezing ¢ in v(x, ).
Under the assumptions of Theorem 1.1., using Lemma 3.1 we have that

(76) A'y{ = A7§’ VteR

Since Theorems 7.1 and 7.2 hold in the linear case, it follows that, there exists a diffeomor-
phism ®', which is in C3 when n = 2 and is real-analytic when n > 3, and the identity at
the boundary such that

(7.7) 75 = Pl

It is proven in [Su- U III] that ®' is uniquely determined by ~f, and thus by v, | =1,2. We
then obtain a function

(7.8) O(r,t) =d'(2) : AxR = QxR

which is in C*%(Q) for each fixed ¢ in dimension two and real analytic in dimension n > 3.
It is also shown in [Su -U I] that ® is also smooth in ¢. More precisely we have, in every
dimension n > 2, that 2 € C%%(Q).

In order to prove Theorems 7.1 and 7.2, we must then show that ®' is independent of t.
Without loss of generality, we shall only prove

P _
(7.9) oo =0  in Q.
It |,

It is easy to show, using the invariance (7.5) that we may assume that
(7.10) ®(z,0) = z,that is, ®° = identity.
Let us fix a solution u € C3*(Q) of

(7.11) V-AVu =0, ulsga=F,
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where we denote A = 7Y = 49.
For every t € R and [ = 1,2, we solve the boundary value problem (7.11) with 4* replaced
by ~;. We obtain a solution u’él):

V- -yVul, = 0 inQ
(7.12) { Y

t
Yy

o

It is easy to check that B
U€1)(33) = UEQ)((I)t(g;)), z €.

Differentiating this last formula in ¢ and evaluating at ¢ = 0 we obtain

out out _
(7.13) (%—%) ~ X -Vu=0, z€Q,
=0
where
q)t
(7.14) x=9%
ot |,

It is easy to show that X - Vu = 0 for every solution of (7.11) implies X = 0. So we are
reduced to prove

oul ou!
<)) (2)
1 —_ = — =0.
(7.15) ( ot ot ) 0
t=0
Using (7.12) we get
(7.16) V- (nl(z, t)Vu’él)) -V - (72, t)VufZ)) =0.
Differentiating (7.16) in ¢ at ¢ = 0 we conclude
o Oy au?él) 8uf2)
1 (D22 av (20 _T@ —0.
o [(G-2) o] v (- 2| ]
t=0
We claim that to prove (7.15) it is enough to show that
0 0
(7.18) v (2292} vyl =o.
o ot )|,
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This is the case since we get from (7.17) and (7.18)

out out
y W _ U _
v (G-t

The claim now follows since the operator V-AV : H2(Q)NH'(Q) — L?(Q) is an isomorphism

and therefore . .
8u(1) B 8u(2)
ot ot

B. Second linearization and products of solutions

In order to show (7.18) we now study the second linearization. We introduce, for every
t € R, the map K,;: C>*(02) — H 2(99) which is defined implicitly as follows (see [Su I]):
for every pair (fi, f2) € C%200) x C?*(09),

V-

=0.
1)

t=0

0A
(7.19) [iKa(fo)ds = /QVul EVu%dx

N

with u;,l = 1,2, as in (7.12) with f replaced by f;,I = 1,2. We have

Proposition 7.1 ([Su I]) Let v(z,t) be a positive definite symmetric matriz in C?(Q x R),
satisfying (7.1). Then for every f € C>*(0Q) and t € R,

L = 0.
HZ(069)

lim |~ [AAHsf) AAt(f)]—KA,t(f)‘

s—0

Under the assumptions of Theorems 7.1 and 7.2, using Proposition 7.1 with ¢ = 0, we
obtain

Koy o(f) = Knppo(f), ¥ f€C*(09).
Thus, by (7.19) we have

871

Vusdr = / Vu, — L
0 Q at

with g, us solutions of (7.12). By writing

_ (O _On
(72 5o (% 2)

Vu%dx,
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and replacing in (7.20) u; by v and u2 by (u; + uy)? — u? — u2, we obtain
(7.22) / Vu - B(z)V(ujug)dx =0
0

with u, u; and usy solutions of (7.12).
To continue from (7.22), we need the following two lemmas.

Lemma 7.1 Let h(z) € C'(Q) be a vector-valued function. If

/Qh(x)V(ulug)dx =0

for arbitrary solutions uy and uy of (7.12) , then h(x) lies in the tangent space T,(02) for
all x € 09).

Lemma 7.2 Let A(z) be a positive definite, symmetric matriz in C>*(Q). Define
D4 = Span gy {uv;u,v € C**(Q),V-AVu =V - AVv = 0}.

Then the following are valid:

(a)If 1 € C¥(Q) and I 1Dy, then | =0 in Q

(b)If n =2, then D = L*(9).

Now we finish the proof of (7.18) concluding the proofs of Theorems 7.1 and 7.2.
By Lemma 7.1 we have that v - B(z)Vu = 0 in 0f). Integrating by parts in (7.22), we
obtain

(7.23) /[V - B(z)Vu]ujugdx = 0.

We now apply Lemma 7.1 to (7.23). If n > 3, we have that 7, and -, are real-analytic on
QO xR. Thus B € C¥(Q). Since the solutions u solves an elliptic equation with a real-analytic
coefficient matrix, we have that u is analytic in Q. If u is analytic on €, we can conclude
from Lemma 7.2 that

(7.24) V- (B(z)Vu) =0, T €.

We shall prove that (7.24) holds independent of whether u is analytic up to 92 or not.
This is due to the Runge approximation property of the equation. Using the assumptions
of Theorem 7.1, we extend A analytically to a slightly larger domain €2 O 2. For any
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solution u € C*%(Q) and an open subset O with O C ), we can find a sequence of solutions

{um} C C¥(Q), which solves (7.22) on €, and uy, o in the L? sense, where O; C (2,
1

O C O,. By the local regularity theorem of elliptic equations this convergence is valid in
H?(0). Since (7.24) holds with u = u,,, letting m — oo yields the desired result for u on O.
Thus (7.22) holds. If n = 2, Lemma 7.1(b) implies that V - (B(z)Vu) = 0 for any solution
u € C*(Q).

The proof of Lemma 7.1 follows an argument of Alessandrini [Al II], which relies on the
use of solutions with isolated singularities. It turns out that in our case, only solutions with
Green’s function type singularities are sufficient in the case n > 3, while in the case n = 2,
solutions with singularities of higher order must be used. There are additional difficulties
since we are dealing with a vector function h. We refer the readers to [Su-U III] for details.

— U
01 m—00

The proof of part (a) of Lemma 7.2 follows the proof of Theorem 1.3 in [Al] (which
also follows the arguments of [K-V I]). Namely, one constructs solutions u of (7.11) in a
neighborhood of €2 with an isolated singularity of arbitrary given order at a point outside of
2. We then plug this solution into the identity

/ lu?dz = 0.
Q

By letting the singularity of u approach to a point z in 0€), one can show that any derivative
of [ must vanish on z and thus by the analyticity of [, [ = 0 in Q. For more e details see
[Su-U I11].

To prove the part (b) of Lemma 7.2, we first reduce the problem to the Schrédinger
equation.

Using isothermal coordinates (see [A]), there is a conformal diffeomorphism F : (Q, g) —
(ﬁl, e), where g is the Riemannian metric determined by the linear coefficient matrix A with
gij = Ai_jl. One checks that F' transforms the operator V- AV (on ) to an operator V- A’V
(on Q') with A" a scalar matrix function 3(z)I. Therefore the proof of the part (b) is reduced
to the case where A = BI, with 8(z) € C*%(Q). By approximating by smooth solutions, we
see that the C®* smoothness can be replaced by H? smoothness. Thus we have reduced the
problem to showing that

Ds = Span, . {uv;u,v € H*(2); V- BVu =V - Vv = 0} = L*(Q).

We make one more reduction by transforming, as in section 2, the equation V- fVu =0
to the Schrodinger equation
Av—qu=0
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with

— _%’U A\/_ a(O)
(7.25) u=p"7v,q= i € C*(Q).

This allows us to reduce the proof to showing that
(7.26) D, = Span . {vivy;v; € H*(Q), Av; — qu; = 0,i = 1,2} = L*(Q)

for potentials ¢ of the form (7.25).

Statement (7.26) was proven by Novikov [No II]. In [Su-U III] it was shown that it is
enough to use the Proposition below which is valid for any potential ¢ € L>*(2). This result
uses some of the techniques of [Su -U LII] similar to the proof of Theorem 4.6.

Proposition 7.2 Let g € L*(Q),n = 2. Then D, has a finite codimension in L*().

It is an interesting open question whether D, = L?(f2) in the two dimensional case.

References

[A-B-F] M. Ablowitz, D. Bar Yaacov and A. Fokas, On the inverse scattering transform
for the Kadomtsev-Petviashvili equation, Studies Appl. Math., 69 (1983), 135

143.
[A] L. Ahlfors, Quasiconformal mappings, Van Nostrand, 1966.
[AlT] G. Alessandrini, Stable determination of conductivity by boundary measure-

ments, App. Anal., 27 (1988), 153-172.

[Al TT] , Stngular solutions of elliptic equations and the edetermina-
tzon of conductzmty by boundary measurements, J. Diff. Equations, 84 (1990),
252-272.

[B-B] D. Barber and B. Brown, Applied potential tomography, J. Phys. E 17 (1984),
723-733.

[B-C I R. Beals and R.R. Coifman, Transformation Spectrales et equation d’evolution

non lineares, Seminaire Goulaouic-Meyer-Schwarz, exp. 21, 1981-1982.

[B-C II] Multidimensional inverse scattering and nonlinear PDE,
Proc. Symp. Pure Math. 43, American Math. Soc., Providence, (1985), 45-70.

48



[G-T]

, The spectral problem for the Davey-Stewarson and Ishimori

hierarchies, in Nonlinear evolution equations: Integrability and spectral meth-
ods, pages 15-23, (1988), Manchester University Press.

G. Bourdaud, LP estimates for certain non-reqular pseudodifferential operators,
Comm. PDE 7 (1982), 1023-1033.

R. Brown, Global uniqueness in the impedance imaging problem for less reqular
conductivities, SIAM J. Math. Anal. 27 (1996), 1049-1056.

, Recovering the conductivity at the boundary from the Dirichlet
to Neumann map: a pointwise result, preprint.

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem with
less regular conductivities in two dimensions, Comm. PDE 22 (1997), 1009-1027.

A.P. Calderén, On an inverse boundary value problem, Seminar on Numer-
ical Analysis and its Applications to Continuum Physics, Soc. Brasileira de
Matematica, Rio de Janeiro, (1980), 65-73.

Boundary value problems for elliptic equations. Outlines of
the joint Soviet-American symposium on partial differential equations, 303-304,
Novisibirsk (1963).

S. Chanillo, A problem in electrical prospection and a n-dimensional Borg-
Levinson theorem, Proc. AMS, 108, (1990), 761-767.

P. Ciarlet, Mathematical elasticity Vol. I, Elsevier Science (1988).

R. Coifman and Y. Meyer, Au deld des opérateurs pseudo-differentiels,
Astérisque 57 (1978).

G. Eskin and J. Ralston, Inverse scattering problem for the Schrodinger equation
with magnetic potential at a fized energy, Comm. Math. Phys. 173 (1995), 199-
224.

L. Faddeev, Growing solutions of the Schrodinger equation ,Dokl. Akad. Nauk
SSSR, 165, (1965), 514-517 (translation in Sov. Phys. Dokl. 10, 1033).

D. Gilbarg and N. Trudinger, Elliptic partial differential equations, Interscience
Publishers (1964).

49



1
[Id-Te]

[I-N-G-Ch]

[Is I

[Is 11)

[Is I11]

[Is-N]

[Is-Sy]

K-V I]

K-V 11]

[K-V 111]

[L-U]

[N]

M. Ikehata, A remark on an inverse boundary value problem arising in elasticity,
preprint.

D. Isaacson and E. Isaacson, Comment on Calderdn’s paper: “On an inverse
boundary value problem” Math. Comput. 52, 553-559.

D. Isaacson, J.C. Newell, J. C. Goble and M. Cheney, Thoracic impedance im-
ages during ventilation, Annual Conference of the IEEE Engineering in Medicine
and Biology Society, Vol. 12, (1990), 106-107.

V. Isakov, On uniqueness of recovery of discontinuity conductivity coefficient,
Comm. Pure Appl. Math., 41 (1988), 865-877.

On uniqueness in inverse problems for semilinear parabolic
equations, Arch. Rat. Mech. Anal. 124 (1993), 1-12.

Completeness of products of solutions and some inverse prob-
lems for PDE, J. Diff. Equations. 92 (1991), 305-317.

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional semilinear
elliptic inverse problem, Trans. of AMS 347 (1995), 3375-3390.

V. Isakov and J. Sylvester, Global uniqueness for a semilinear elliptic inverse
problem, Comm. Pure Appl. Math. 47 (1994), 1403-1410.

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements,
Comm. Pure App. Math. 38 (1985), 643—667.

Determining conductivity by boundary measurements II. In-
terior results, Comm. Pure Appl. Math. 38, 1985, 644-667.

, Identification of an unknown conductivity by means of mea-
surements at the boundary, in Inverse Problems, edited by D. McLaughlin,
STAM-AMS Proc. No. 14, Amer. Math. Soc, Providence (1984), 113-123.

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by
boundary measurements, Comm. Pure Appl. Math, 42, (1989) 1097-1112.

A. Nachman, Reconstructions from boundary measurements, Annals of Math,
128, (1988), 531-587.

50



[N I1]

[N-A]

[N-Is]

[N-S]

[N-U ]

[N-U 11]

[N-U III]

[N-Su-U]

[N-Sy-U]

[N-I-C-S-G]

[N-W]

[No I

[No I1]

, Global uniqueness for a two-dimensional inverse boundary
value problem, Annals of Math, (1996), 71-96.

A. Nachman and M. Ablowitz, A multidimensional inverse scattering method,
Studies in App. Math. 71 (1984), 243-250.

A. Nachman and V. Isakov, Global uniqueness for a two-dimensional semilinear
elliptic inverse problem, Trans. AMS, 347 (1995), 3375-3390.

G. Nakamura and Z. Sun, An inverse boundary value problem for St. Venant-
Kirchhoff materials, Inverse Problems 10 (1994), 1159- 1163.

G. Nakamura and G. Uhlmann Global uniqueness for an inverse boundary value
problem arising in elasticity, Invent. Math. 118 (1994), 457-474.

Inverse problems at the boundary for an elastic medium, SIAM

J. Math. Anal. 26 (1995), 263-279.

, Identification of Lamé parameters by boundary measurements,
American Journal of Math. 115 (1993), 1161-1187.

G. Nakamura, G. Uhlmann and Z. Sun, Global identifiability for an inverse
problem for the Schrédinger equation in a magnetic field, Math. Ann. 303 (1995),
377-388.

A. Nachman, J. Sylvester and G. Uhlmann, An n-dimensional Borg-Levinson
theorem, Comm. Math. Physics 115 (1988), 595-605.

J. C. Newell, D. Isaacson, M. Cheney, G. J. Saulnier and D. G. Gisser, Acute
pulmonary edema assessed by electrical impedance imaging, Proceedings IEEE-
EMBS Conf. 14, 92-93 (1993).

L. Nirenberg and H. Walker, Null spaces of elliptic partial differential equations
in R, J. Math. Anal. Appl. 42 (1973), 271-301.

R. Novikov, Multidimensional inverse spectral problems for the equation —Ayp+
(v(z) — Eu(x))y = 0, Funktsionalny Analizi Ego Prilozheniya, Vol. 22, No. 4,
(1988) pp. 11-12, Translation in Functional Analysis and its Applications Vol.
22 No 4 (1988), 263-272.

0-method with nonzero background potential. Application to
wnverse scattering for the two-dimensional acoustic equation, preprint.

ol



[St]

[Su T]
[Su II]

[Su -U I

[Su-U II]

[Su-U I11]

[Su-U IV]

[Sung]

[S]

R. Novikov and G. Henkin, 0-equation in the multidimensional inverse scatter-
ing problem, Uspekhi Mat. Nauk Vol. 42 (1987), 93-1526 translation in Russian
Mathematical Surveys, Vol. 42, No 4, (1987), 109-180.

P. Ola, L. Péivarinta and E. Somersalo, An inverse boundary value problem
arising in electrodynamic, Duke Math. J. 70 (1993), 617-653.

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Som-
merfeld potentials, to appear STAM J. Appl. Math.

M. Shubin, Pseudodifferential operators and spectral theory, Springer Series in
Soviet mathematics, Springer-Verlag (1987).

E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value
problem for Mazwell’s equations, Journal of Comp. and Appl. Math. 42 (1992),
123-136.

P. Stefanov, Stability of the inverse scattering in potential scattering at a fixed
energy, Ann. Inst. Fourier, Grenoble 40 (1990), 867-884.

Z. Sun, On a quasilinear boundary value problem, Math. Z. 221 (1996), 293-305.

An inverse boundary value problem for Schréodinger operators
with vector potentials, Trans. of AMS 338 (1993), 953-969.

Z. Sun and G. Uhlmann, Recovery of singularities for formally determined in-
verse problems, Comm. Math. Phys. 153 (1993), 431-445.

Generic uniqueness for an inverse boundary value problem,
Duke Math. Journal, 62 (1991), 131-155.

, Inverse problems in quasilinear anisotropic media, to appear

Amer. J. Math.

, An inverse boundary value problem for Mazwell’s equations,
Archive Rat. Mech. Anal. 119 (1992), 71-93.

L. Sung, An inverse scattering transform for the Davey-Stewartson II equations,
LILIIL J. Math. Anal. Appl. 183, (1994) 121-154, 289325, 477-494.

J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl.
Math., (1990), 201-232.

92



S-UT]

[S-U 11]

[S-U 111]

[S-U IV]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse bound-
ary value problem, Ann. of Math., 125 (1987), 153-1609.

A uniqueness theorem for an inverse boundary value problem
in electrical prospection, Comm. Pure. App. Math., 39 (1986), 91-112.

, Inverse boundary value problems at the boundary — continuous
dependence, Comm. Pure Appl. Math. 41 (1988), 197-221.

Inverse problems in anisotropic media, Contemp. Math. 122
(1991), 105-117.

M. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Math-
ematics 100 (1991), Birkh&user.

C. Tolmasky, Global uniqueness for an inverse boundary value problem with non
smooth coefficients, PhD. thesis University of Washington (1996).

T.Y. Tsai, The Schrédinger equation in the plane, Inverse Problems 9 (1993),
763-787.

G. Uhlmann, Inverse boundary value problems and applications, Astérisque 207
(1992), 153-211.

A. Wexler, B. Fry and M. Neumann, Impedance-computed tomography algorithm
and system, Applied Optics 24 (1985), 3985-3992.

M. S. Zhdanov and G. V. Keller The geoelectrical methods in geophysical explo-
ration, Methods in Geochemistry and Geophysics, 31, Elsevier (1994).

53



