
APPLICATIONS OF THE STAR-K TOOL

TRACY LOVEJOY

Abstract. The purpose of this paper is to develop the useful star-K tool and
apply it to recovery questions. We start by developingthe star-K, and then give

some basic examples. Some more complex examples are given. Specifically,
the star-K is used to effectively explain the nature of 2 − 1 networks, which

have gone without clear explanations for far too long. We address how star-K’s
can shed light on the relationship between determinants and connections in

the graph, and finally pose some open questions.
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1. Introduction

The work in [3] outlines a functionally complete solution to the inverse problem
it proposes in the circular planar case. The problem, stated in a few sentences, is
this. We start with a graph, and then think about it like an electrical network in
what seems to be a pretty natural way. That is, we start with set of points, call
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them nodes, and set of connections between those nodes, call them edges. We then
designate some of those nodes as being special nodes, call them boundary nodes
if you like, and we might as well call the left over nodes interior nodes. Finally,
we assign to each connection between nodes a certain numerical value. We insist
that these numerical values be positive, and call them conductivies. Now, thinking
of this as an electrical system we write down what it means for Kirchoff’s law to
be satisfied at all the interior nodes. Since we are thinking of the boundary nodes
as the sources and sinks in the network, we don’t want to enforce Kirchoff’s law
there. Finally, we ask the following question. When and how can we determine the
conductivities assigned to each edge in the graph, by applying voltages at boundary
nodes, and measuring the resulting current, the response, at the other boundary
nodes. This is the inverse problem.

As I mentioned above this inverse problem has been essentially exhausted in a
specific case. “Circular planar” means that all the boundary nodes fall on a circle
and the whole rest of the network fits inside that circle. Yet, many networks are
not of this type. For example, one can not draw four points, boundary nodes, on
circle and connect every pair by nonoverlapping lines without leaving the circle.
We would call this network K4, the complete graph on 4 boundary nodes. It is
complete in the sense that any two boundary nodes are connected by an edge.
There is very little understood with regard to the inverse problem in the case of
an arbitrary graph. With that as motivation, in this paper we will derive and use
star-K transformations, a tool for examining arbitrary networks. Whether these
techniques can be generalized to form a general recovery algorithm is examined in
[1], and the author of that paper as well as Nick Addington contributed a great
deal to the ideas and results in this paper.

Lastly, as a brief history I should mention that a motivating example for this
technique is the remarkable light that it can shed on known 2− 1 networks. These
networks, originally proposed in [2], were so boggling and intriguing that I could
not stop working on them. The work paid off; The infamous triangle-in-triangle
network has never been so clearly understood. In general, many of the cases of
annular graphs exposed in [2] have been examined using this tool to various degrees
of success.

2. The Star-K Transformation with 4 Boundary Nodes

In this section we will examine the Star-K transformation for the case of four
boundary nodes. The star with four nodes is also called the plus. Kn is shorthand
for the complete graph, a graph with n boundary nodes, no interior nodes, where
every node is joined to every other by an edge.

On a star the current response at boundary node i due to a unit voltage at
node j is easily written down by computing the voltage at the only interior node
by the weighted average property. Knowing this, the current response is simply
the product of the two conductors joining nodes i and j divided by the sum of the
conductors around the interior node. This sum will often be abbreviated σ. Now
we talk about transforming the star into a network on a complete graph that will
still have the same current response for every pair of boundary nodes.

When we transform to a K we necessarily pick up some algebraic relations on
the conductances. These relations have previously been thought of as determinants
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Figure 1. quadrilateral and Triangle Conditions

which are zero in the response matrix, see section 4, due to the total lack of two con-
nections in the star, but [1] has a geometric interpretation that is quite clear and use-
ful. That is, the products of opposites sides of a quadrilateral in a K that came from a star are equal.
We can quickly prove this with what we have stated thus far. To say

(1) αγ = βδ

is equivalent to saying

st

σ

ar

σ
=

ta

σ

rs

σ
.

If we call (1) the quadrilateral condition we can rightly call (2) the triangle
condition. For any K coming from a star, the product of the legs divided by the
base is a constant for any pair of triangles sharing an vertex. The proof of this is
quite straightforward as well. We simply remark that

(2)
δζ

ε
=

αβ

γ

is equivalent to
br

σ

bs

σ

σ

rs
=

ba

σ

bt

σ

σ

at
.

We can also write down the formula for transforming a star back into a K. If γi

is the conductor with boundary node i in the star, Σi is the sum of the conductors
around node i in the K, and Kij is the conductivity on the corresponding edge in
the complete graph it is easy to show γi is given by the formula

(3) γi = Σi +
KijKik

Kjk
.

For the case of a four node K-star the transformation is shown below. Note:
Roman letters are on the star, Greek on the K, as in the diagram.

a = α + γ + ζ +
αζ

δ
b = α + δ + β +

βδ

ε
(4)

c = β + γ + ε +
βγ

α
d = ζ + δ + ε +

ζδ

ε
(5)
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Figure 2. The Plus-K and a Few Applications

We can also write down the quadrilateral relations,

αε = γδ βζ = αε αε = γδ.(6)

When the quadrilateral conditions are satisfeid these equations let us quickly
recover a plus from a K4 as in Figure 2. Figure 2 also shows two plus-graphs joined
at two boundary nodes. We see that when we make the transformation to the K4

on both pluses we get one parallel edge. However, this edge can be eliminated using
the quadrilateral condition which shows that the graph can still be recovered.

The third pair of graphs in Figure 2, is two pluses joined at three boundary nodes.
This is a more interesting case because the graph is not circular planar so we cannot
use our circular planar tools to examine it. When we transform both pluses into K’s
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we get three parallel edges. Clearly then, we can not use the quadrilateral condition
to recover all the parallel edges and this graph is not recoverable. Furthermore, if
we fix one parameter the others can be determined; from this we conclude that the
solution space is one dimensional. The last pair shown is two pluses joined at all
boundary nodes. In this case we get all six parallel edges. We have to specify four
parameters before we can determine all the conductances so the solution space is
four dimensional.

2 3

4

5 6
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Figure 3. The Triangle in Triangle with Three plus-K Transformations

3. The Triangle in Triangle and other Two to One Graphs

Certain graphs have been found in previous years to have the special property
that they could generate the same current response for exactly two sets of conduc-
tances. The “Triangle in Triangle” was the first of these and was described in [2]
where an explicit quadratic formula for the conductances was found in terms of
entries in the response matrix. After several pages of manipulations the terms of
this quadratic formula were found to be approximately 20 entries in length. In this
section we use the plus-K tool to derive a simpler quadratic equation and effectively
explain the nature of this 2 − 1 graph. As is done in Figure 3, first we draw the
triangle in triangle graph to clearly show how it is a sum of three plus-graphs. Then
we transform each plus into a K.

Entries in the response matrix, a matrix representation of the complete graph,
are by convention negative. We will not use this convention. Instead, let λij denote
the conductivity, a positive quantity by definition, on the complete graph. In this
way λij is both the ijth entry in the response martix, and the conductivity of the
edge joining nodes i and j on the complete graph.

Now, refer to figure 3. Using the quadrilateral condition we can see that the
parallel edges cannot be found within a single K4 so we assign a parameter to one
of the edges, say α. Then the other edge must be λ25 − α so that the sum of the
parallel edges is λ25. The quadrilateral relation gives us one of the edges joining
node 1 to node 4 as the product of edges 1,2 and 4,5 divided by α, or λ12λ45

α
.

As before, the other edge must be λ14 − λ12λ45
α . In turn, we can solve for the

edges joining node 3 to node 6 with the product of edges 1,3 and 4,6 divided by
λ14 − λ12λ45

α . So one edge is

λ13λ46

λ14 − λ12λ45
α

and the other edge is λ36 −
λ13λ46

λ14 − λ12λ45
α

.
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Figure 4. The Triangle-In-Triangle and Square-In-Square Graphs
Embedded on the Cylinder

Applying the quadrilateral condition one final time gives us

(7) α = λ25 −
λ23λ56

λ36 − λ13λ46

λ14−
λ12λ45

α

.

This quadratic equation can also be written in the more familiar form,

α2[λ13λ46−λ36λ14]+α[λ14λ23λ56+λ36λ14λ25−λ36λ12λ46−λ13λ46λ25]+λ23λ56λ12λ45 = 0.

In this form we can see that we do indeed have a quadratic because the coefficient
of α2 is non-zero. The coefficient is non-zero for the following reason. If all the edges
involved had come from a star, then by the results previously stated, λ13λ46−λ36λ14

would be zero. Yet, in our case λ36 and λ14 come from two stars. Hence, they both
have a positive quantity added to the value they would have to be in order to make
the term zero. Thus, the coefficient is not zero. For a further explanation of this
see section 4.

This corresponds to the determinant of a unique connection which is present in
the network. We expand on the relationship between connections and determinants
in section 4.

3.1. The Locus of Degenerate Points. The locus of degenerate points and other
interesting characteristics of this graph have led to previous attempts to understand
2−1 behavior. Many such attempts were made before the star-K tool was discovered
so we will give some mention of these here. First, when the discriminant of this
quadratic equals zero we get a locus of points where the conductances can be
determined exactly from the response matrix. This discriminant is given by D =
b2 − 4ac, or

D = [λ14λ23λ56+λ36λ14λ25−λ36λ12λ46−λ13λ46λ25]2−4[λ13λ46−λ36λ14][λ23λ56λ12λ45].

Another way to examine this behavior is from a topological point of view. If we
take a parameterization of α as α = − b

2a + t D
2a with t ∈ [−1, 1] and then compute

the response matrix Λ(t), then Λ(t) forms a closed curve as t varies.

3.2. Other Two to One and 2n to One Graphs. Other two to one graphs
were also known to exist in previous years. However, without any precise tools to
examine them, the algebra involved was very complex and in some cases misleading.
For example, some networks that seem to have every property of a 2−1 network in



APPLICATIONS OF THE STAR-K TOOL 7

Figure 5. An Example Network and its Star-K Equivalent Graph

an algebraic sense can actually be shown using the star-K tool to be recoverable.
However, we can now prove our original conjecture that an ”n-gon in an n-gon
graph” is 2 − 1. An ”n-gon in an n-gon graph” is a graph consisting of n plus-
graphs joined at two boundary nodes such that they form a chain that loops back
to the original plus-graph. This can be visualized as in figure 4 as n diamonds
embedded on the cylinder. Annular graphs like those in [2] can in general can be
embedded on the cylinder (no caps on the top or bottom) with their boundary
nodes on the two boundary circles. Before we work on these, we should develop a
complete definition of the response matrix so that we can apply, and in some cases
derive, useful results from [3].

4. Connections and Determinants(In Progress)

Insert riveting exposition of the response matrix, and the relationships of sub-
determinants thereof to connections in the graph. Emphasize star-K as way to
understand this.

4.1. The Response Matrix. A complete discussion of the response matrix can
be found in [3], but we will develop the ideas in a slightly different way so it may
prove useful to read this section even if you are already familiar with the response
matrix.

We define the response matrix to be the n x n matrix, where n is the number of
boundary nodes, such that the ijth entry denoted λij is the current that flows out
of node i due to a single unit voltage at node j. It can be shown that the response
matrix is symmetric. The response matrix can also be calculated quickly using the
Schur-Complement. The interested reader should refer to [3]. We will work out one
example here to make solid our construction.

Consider the network shown in figure 3.2. Let σ6 and σ7 denote the sums of
the conductances surrounding nodes 6 and seven respectively. Then, it is a simple
extension of the work done in deriving the formula for λij in the case of star, as in
section 2 to see that the response matrix, denoted (λij) or Λ, is essentially given by




∗ γ16γ26
σ6

γ16γ36
σ6

γ16γ46
σ6

γ16γ56
σ6

∗ ∗ γ26γ36
σ6

+ γ27γ37
σ7

γ26γ46
σ6

+ γ27γ47
σ7

γ26γ56
σ6

+ γ27γ57
σ7

∗ ∗ ∗ γ36γ46
σ6

+ γ37γ47
σ7

γ36γ56
σ6

+ γ37γ57
σ7

∗ ∗ ∗ ∗ γ46γ56
σ6

+ γ47γ57
σ7

∗ ∗ ∗ ∗ ∗




.

We have written *’s in certain places to communicate the fact that response
matrix has a lot redundantly redundant information in it. Because the response
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matrix is symmetric we can find all the off diagonal entries from the information
above. And because the total amount of current is conserved the diagonal entries
are simply the negative of the row sums without the diagonal entries. The complete
response matrix, which we are interested in, is shown below.




−γ16(σ6−γ16)
σ6

γ16γ26
σ6

γ16γ36
σ6

γ16γ46
σ6

γ16γ56
σ6

γ16γ26
σ6

−γ26(σ6−γ26)
σ6

− γ27(σ7−γ27)
σ7

γ26γ36
σ6

+ γ27γ37
σ7

γ26γ46
σ6

+ γ27γ47
σ7

γ26γ56
σ6

+ γ27γ57
σ7

γ16γ36
σ6

γ26γ36
σ6

+ γ27γ37
σ7

∗ γ36γ46
σ6

+ γ37γ47
σ7

γ36γ56
σ6

+ γ37γ57
σ7

γ16γ46
σ6

γ26γ46
σ6

+ γ27γ47
σ7

γ36γ46
σ6

+ γ37γ47
σ7

∗ γ46γ56
σ6

+ γ47γ57
σ7

γ16γ56
σ6

γ26γ56
σ6

+ γ27γ57
σ7

γ36γ56
σ6

+ γ37γ57
σ7

γ46γ56
σ6

+ γ47γ57
σ7

∗




The three remaining diagonal entries are left as excercise for the reader (because
they caused to matrix to run off the page). They are quite similar to the λ22 entry.
Now, the response matrix has the property that when you apply it to a vector of
input potentials and each of the nodes, the resulting vector is the current response.
That is, the entries is the resulting vector are the currents that flow out of each
node. Notice that the current flowing out of node 1 due to a unit voltage at node
1 is negative because current would actually flow into node 1.

4.2. Connections. Before we can effectively talk about subdeterminants of the
response matrix we must first introduce the idea of a connection. Given two sets
of boundary nodes P = {p1, . . . , pn} and Q = {q1, . . . , qn} we say P and Q are
connected through the interior, or just “connected”, if there is a permutation, τ ,
of the nodes in Q such that there a set of vertex disjoint paths α = {α1, . . . , αn}
through the interior such that α1 joins p1 to qτ(1) and α2 joins p2 to qτ(2) and so
on.

In other words, P and Q are connected if, after jumbling the nodes around
however we like, we can connect every node in P to one node in Q and vice versa.
Note that if the boundary nodes appear on a circle, and the network is drawn in
the plane inside that circle, then there is only one permutation of the nodes that
could possibly connect P to Q.

The submatrix of the response matrix corresponding the connection (P ; Q) is the
submatrix whose columns are nodes in P and whose rows are nodes in Q. There is
an example of this in the next section.

4.3. Determinants. The primary result that we will make use of is denoted Ob-
servation 3.3 on page 52 of [3].

Claim 4.1. If detΛ(P ; Q) = 0, then one or the other of the following two possibil-
ities is true.

(1) There is no connection from P to Q.
(2) There are (at least) two connections α and β from P to Q, with permutation

τα and τβ of opposite sign.

We have called the above statement a claim. It is in fact a theorem whose
complete proof can be found in [3], but the proof is complicated. There may be
a more straightforward proof. We are interested in this paper in the application
of the Star-K tool. We will see that we may be able to prove this assertion in
general using Star-K’s. We can certainly see that this is true in many examples
using Star-K’s. Consider the network shown in figure 6. We could use 4.1 to see
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that detΛ(1, 3; 5, 4) 6= 0. Yet, suppose that we had never seen 4.1. How could we
proceed then? Well, look at the sequence of star-K transformations that is shown.
Since we know that the subdeterminant detΛ(1, 3; 5, 4) would equal zero if it had
come from a star, those two extra non-zero edges push that determinant away from
zero. This argument, while not complicated, is very exciting. Is it possible to prove
claim 4.1 using star-K’s? It hasn’t been done yet, but it would be a very interesting
project.

4 5

3 1

2

Figure 6. 5-node graph with certain two connections highlighted

5. N-gon in N-gon Graphs are Two to One.

5.1. The Square in Square Graph. The Square in Square graph is also 2−1. We
will show this by explicitly finding the coefficient of the α2 term and showing that
it is also non-zero. By a very close analogy to the triangle-in-triangle calculation
we can write down the terminating continued fraction version of the quadratic for
the square-in-square easily. If we fix the parameter shown in Figure 5 then the
quadratic in continued fraction form is

(8) λ15 −
λ14λ58

λ48 −
λ34λ78

λ37 −
λ23λ67

λ26 −
λ12λ56

α

= α.

When we clear denominators we can see the coefficient of the α2 term is

(9) [λ48λ23λ67 + λ34λ78λ62 − λ48λ37λ62].

As in the triangle-in-triangle case, this is also a non-zero subdeterminant of
entries in the response matrix. To see that it is so, note that D(2,4,7;3,6,8) =
λ23(λ46λ78 − λ76λ48) + λ34(λ26λ78 − λ76λ28) + λ73(λ26λ78 − λ67λ28) is equal to
equation 9 if λ46 and λ28 are zero. They are zero in the response matrix of the



10 TRACY LOVEJOY

1

2

4

3

6 7

85

9 11

12

10

5 8

41

2 3

76

α

Figure 7. The Square in Square Graph and the Star-K Equivalent Graph
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Figure 8. The Pentagon in Pentagon Graph and the Star-K
Equivalent Graph

square-in-square because those pairs of nodes are not connected through the inte-
rior. Refer to claim 4.1; there is only one way to make the connection (2,4,7;3,6,8)
so this determinant is non-zero. At this point we could speculate that the coeffi-
cient of the α2 term in the pentagon-in-pentagon graph shown in Figure 6 will be
D(2,8,4,10;7,3,9,5).

5.2. The Pentagon-in-PentagonGraph. The pentagon-in-pentagon graph shown
in Figure 7 has an associated quadratic that can be easily written down in its ter-
minating continued fraction form as

(10) λ16 −
λ15λ6,10

λ5,10 −
λ45λ9,10

λ49 −
λ34λ89

λ38 −
λ23λ78

λ27 −
λ12λ67

α

= α.

Again, we can clear denominators and this will show the coefficient of the α2

term to be

[λ5,10λ49λ38λ27+λ5,10λ34λ89λ27−λ5,10λ49λ23λ78−λ38λ45λ9,10λ27+λ45λ9,10λ23λ78].

That is, in fact, D(2,8,4,10;7,3,9,5) because of the zeros in the response matrix.
There is only one way to make this connection as before which guarantees we do
in fact have a quadratic. This leads us to make the following conjecture. However,
since we prove it in the next section we had better label it a theorem.
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Theorem 5.1. If you number an n-gon-in-n-gon graph clockwise around the in-
side then clockwise around the outside from the same starting side, then assign a
parameter to one of the edges joining nodes 1 and n+1, then

D(2, n + 3, 4, n + 5, ..., n− 1, 2n; n + 2, 3, n + 4, 5, ...,2n− 1, n)

is the coefficient of the quadratic term.

5.3. Proof of Theorem. This section outlines a recurence relation for the coeffi-
cients of a Linear Fractional Transformation which is equivalent to our terminating
continued fraction.

Chrystal’s book, [4], supplied the ideas for this section, but we have interpreted
the results in a new and interesting way. First, we write down our notation for
terminating continued fractions

(11)
pn

qn
= a1 +

b2

a2 +
b3

a3 +
b4

a4 +
b5

a5

.

Chrystal shows that pn and qn can be defined recursively by identical formulas;
pn and qn differ only because of their initial conditions: p0 = 1, p1 = a1; q1 = 1, q2 =
a2. The formulas are

pn = anpn−1 + bnpn−2 and,(12)
qn = anqn−1 + bnqn−2.(13)

These recurence relations are easy to prove by induction. First, the p0, p1, q1 and
q2 cases are trivial, then, if we assume we have pn−1 and qn−1 terms, we can find
the pn and qn by simply replacing the term an−1 by an−1 + bn

an
.

Consider

pn−1

qn−1
=

an−1pn−2 + bn−1pn−3

an−1qn−2 + bn−1qn−3
goes to

(an−1 + an

bn
)pn−2 + bn−1pn−3

(an−1 + an

bn
)qn−2 + bn−1qn−3

.

Now,

(an−1 + an

bn
)pn−2 + bn−1pn−3

(an−1 + an

bn
)qn−2 + bn−1qn−3

=
an(an−1pn−2 + bn−1pn−3) + bnpn−2

an(an−1qn−2 + bn−1qn−3) + bnqn−2
=

anpn−1 + bnpn−2

anqn−1 + bnqn−2
.

When we compare (11) and (12) we find that our α takes the place of the an.
Since an only appears in the pnth and qnth terms, and in equation (11) we have
pn

qn
= α we can write our terminating continued fraction in the form of a linear

fractional transformation (LFT). This LFT is

(14) α =
αpn−1 + bnpn−2

αqn−1 + bnqn−2
.

In this form we can easily write down the quadratic that corresponds to this LFT.
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(15) α2qn−1 + α(bnqn−2 − pn−1) − bnpn−2 = 0

Remarkably, the coefficient of α2 is simply qn−1. The discriminant, which we
will also want to examine is

(16) (bnqn−1 − pn−1)2 + 4bnpn−2qn−1.

We can also use the work outlined in Chrystal to equate pn and qn to certain
determinants. In fact, it is not hard to see how these recurence relations define cer-
tain subdeterminant of the response matrix. For an example consider the following
determinant.

∣∣∣∣∣∣

λ48 λ34 0
λ78 λ37 λ67

0 λ23 λ26

∣∣∣∣∣∣

This is the coeffecient of α2 for the square-in-square graph. This determinant,
because λ28 and λ64 are zero, corresponds to the connection (8, 3, 6; 4, 7, 2) which
can also be written as the connection (2,7,4;6,3,8). This connection can only be
made one way in the original graph, so this determinant is non-zero. This is the
same conclusion as we reached by hand and showed in equation (9), but at that
point it was just coincidence. Now we can write out the coefficient of α2 for an
arbitrarily n-gon in n-gon graph:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2,n+2 λ2,3 0 0 . . . 0 0
λn+2,n+3 λ3,n+3 . . . 0 0 0 0

...
. . . 0 . . . 0 0

0 0 . . . λi,n+i λi,i+1 0 0
0 0 λn+i,n+i+1 λi+1,n+i+1 . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . λn−1,2n−1 λn−1,n

0 0 . . . 0 0 0 λ2n−1,2n λn,2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This determinant corresponds to the connection

(2, n + 3, 4, n + 5, ..., n− 1, 2n; n + 2, 3, n + 4, 5, ..., 2n− 1, n),

which we know to be non-zero. We know this because this is the only permutation
of the nodes that allows for vertex disjoint paths through the interior from P to Q,
as in claim 4.1. This guarantees that we have a genuine quadratic term in every
case. It remains only to be shown that the discriminant is positive and not always
zero to show that we sometimes have two real, positive solutions.

A topic for future study, besides examining the discriminant, would be to take
the limit as n goes to infinity in the matrix above and see if you can come up
with a meaning associated with the result. This “circle-in-circle” graph may have
interesting properties.



APPLICATIONS OF THE STAR-K TOOL 13

6. Challenge: A Recoverable Flower

A recoverable flower may be found with the star-K tool. By flower, we mean to
say a graph with no boundary spikes, and no boundary to boundary connections. I
propose as a challenge that someone find a recoverable flower, or prove that no such
can exist. We once thought Figure 9 could be shown, using star-K transofrmations,
to be recoverable. Even though this no longer appears true, it is still pretty.

Figure 9. A Flower and Its Star-K Equivalent

7. The Genus of Graph

It is also possible to conclude, based on the connections that can not fit in the
plane, that certain response matrices must have come from graphs that can only
be embedded on more exotic surfaces. For example, consider a four node network
whose boundary nodes are on a circle numbered 1,2,3,4 in counterclockwise order.
Then, if the network is planar, it impossible to connect node 1 to node 3 and
simultaneously connect node 2 to node 4 via disjoint paths. Thus, given a response
matrix and a circular ordering of the boundary nodes, if detΛ(1, 2; 3, 4) 6= 0 then
the network is not planar! This easily generalizes through increasingly complex
“cross wirings” to conclusions about certain networks not fitting on the sphere.
Eventually it would ideal to pin down a definition of the genus of a network, and
determine the genus of the a network from its response matrix.

8. Some Other Cool Examples

8.1. Recovering the Tower of Hanoi Network With Star-K’s. We prove
that the Tower of Hanoi network shown in figure 10 is recoverable by examining
a sequence of pictures that represent star-K transformations of each interior node.
We note that each step is reversible using the quadrilateral relation, and we have
proven that this is so.

We are left with an interesting point to ponder. Is it possible to have a sequence
of star-K networks where one of the steps is not reversible, but the graph itself
remains recoverable?

Here is another interesting question to ponder. Is it possible to write down all
recoverable 5-boundary node graphs? What about 4-boundary node graphs?
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Tower of Hanoi Network

Apply Star−K to Center Interior Node

to two disjoint interior nodes
Apply Star−K (Y−Delta in this case)

The complete graph on five nodes
Note: There are edges with multiplicity

Figure 10. Recovering the Tower of Hanoi Graph

1 2

4 3

8 7

65

Figure 11. A Cube of Plus-Graphs and Its Star-K Equivalent

8.2. The Cube is 8 − 1.

Claim 8.1. The cube shown in figure 11 is 8 − 1.

This argument will follow from the square-in-square graph being 2− 1, and this
graph containing three functionally disjoint square-in-square graphs, thus making
it 23 − 1. However, before we can make such and argument we must first give some
explanation of the diagram.

The left diagram shows six plus-graphs embedded on the cube such that each
one takes up a side. The vertices of the cube are the boundary nodes. The Star-K
equivalent is drawn with all the diagonals supressed to make the picture compre-
henisble, the existance of these diagonals are however, essential.

8.3. The Race Track Graph. The race track graph also has an associated equa-
tion that looks quadratic, but more analysis is needed to show which terms do or do
not vanish. Many other seemingly 2− 1 graphs can be constructed by joining plus-
graphs together into various chains that loop back on themselves. The method of
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examining the terminating continued fraction form of the resultant quadratic equa-
tion may prove useful in these case as well. The difference is that in each case we
get a product of continued fractions, or some more complicated behavior.

2 9

4 7

3 8

1 10

5 6

α

Figure 12. The Race Track Graph and Its Star-K Equivalent

8.4. Circles and Rays. In this section the goal is to produce a straightforward
exposition of the network with two circles and three rays, and also the network with
two circles and four rays. We have drawn a sequence of Star-K transformations on
both graphs that could serve as a guide. The claim in [2] is the network with two
circles and three rays is not recoverable and the network with two circles and four
rays is recoverable. We should be able to prove or disprove this claim easily, but it
has not yet been done.
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Figure 13. The 2 Circle 3 Ray Graph and Its Star-K Equivalent
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Figure 14. The 2 Circle 4 Ray Graph and Its Star-K Equivalent


