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CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPICCONDUCTIVITY IN THE PLANEKARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAAbstra
t: We study inverse 
ondu
tivity problem for an anisotropi
 
ondu
tivity
σ ∈ L∞ in bounded and unbounded domains. Also, we give appli
ations of theresults in the 
ase when Diri
hlet-to-Neumann and Neumann-to-Diri
hlet maps aregiven only on a part of the boundary.1. INTRODUCTIONLet us 
onsider the anisotropi
 
ondu
tivity equation in two dimensions

∇· σ∇u =
2∑

j,k=1

∂

∂xj
σjk(x)

∂

∂xk
u = 0 in Ω,(1)

u|∂Ω = φ.Here Ω ⊂ R2 is a simply 
onne
ted domain. The 
ondu
tivity σ = [σjk]2j,k=1 is asymmetri
, positive de�nite matrix fun
tion, and φ ∈ H1/2(∂Ω) is the pres
ribedvoltage on the boundary. Then it is well known that equation (1) has a uniquesolution u ∈ H1(Ω).In the 
ase when σ and ∂Ω are smooth, we 
an de�ne the voltage-to-
urrent (orDiri
hlet-to-Neumann) map by
Λσ(φ) = Bu|∂Ω(2)where
Bu = ν· σ∇u,(3)

u ∈ H1(Ω) is the solution of (1), and ν is the unit normal ve
tor of ∂Ω. Applyingthe divergen
e theorem, we have
Qσ,Ω(φ) :=

∫

Ω

2∑

j,k=1

σjk(x)
∂u

∂xj

∂u

∂xk
dx =

∫

∂Ω

Λσ(φ)φ dS,(4)where dS denotes the ar
 lenght on ∂Ω. The quantity Qσ,Ω(φ) represents the powerneeded to maintain the potential φ on ∂Ω. By symmetry of Λσ, knowing Qσ,Ω isequivalent with knowing Λσ. For general Ω and σ ∈ L∞(Ω), the tra
e u|∂Ω is de�nedas the equivalen
e 
lass of u in H1(Ω)/H1
0 (Ω) (see [6℄) and formula (4) is used tode�ne the map Λσ. 1



2 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAIf F : Ω → Ω, F (x) = (F 1(x), F 2(x)), is a di�eomorphism with F |∂Ω = Identity,then by making the 
hange of variables y = F (x) and setting v = u ◦ F−1 in the�rst integral in (4), we obtain
∇· (F∗σ)∇v = 0 in Ω,where

(F∗σ)jk(y) =
1

det[∂F j

∂xk (x)]

2∑

p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

,(5)or
F∗σ(y) =

1

JF (x)
DF (x) σ(x)DF (x)t

∣∣∣∣
x=F−1(y)

,(6)is the push-forward of the 
ondu
tivity σ by F . Moreover, sin
e F is identity at ∂Ω,we obtain from (4) that
ΛF∗σ = Λσ.Thus, the 
hange of 
oordinates shows that there is a large 
lass of 
ondu
tivitieswhi
h give rise to the same ele
tri
al measurements at the boundary.We 
onsider here the 
onverse question, that if we have two 
ondu
tivities whi
hhave the same Diri
hlet-to-Neumann map, is it the 
ase that ea
h of them 
an beobtained by pushing forward the other.In applied terms, this inverse problem to determine σ (or its properties) from

Λσ is also known as Ele
tri
al Impedan
e Tomography. It has been proposed as avaluable diagnosti
, see [11℄.In the 
ase where σjk(x) = σ(x)δjk, σ(x) ∈ R+, the metri
 is said to be isotropi
.In 1980 it was proposed by A. Calderón [9℄ that in the isotropi
 
ase any bounded
ondu
tivity σ(x) might be determined solely from the boundary measurements, i.e.,from Λσ. Re
ently this has been 
on�rmed in the two dimensional 
ase (
.f. [6℄). Inthe 
ase when isotropi
 σ is smoother than just a L∞-fun
tion, the same 
on
lusionis known to hold also in higher dimensions.The �rst global uniqueness result was obtained for a C∞�smooth 
ondu
tivity indimension n ≥ 3 by J. Sylvester and G. Uhlmann in 1987 [36℄. In dimension twoA. Na
hman [29℄ produ
ed in 1995 a uniqueness result for 
ondu
tivities with twoderivatives. The 
orresponding algorithm has been su

essfully implemented andproven to work e�
iently even with real data [33, 27℄. The redu
tion of regularityassumptions has sin
e been under a
tive study. In dimension two the optimal L∞-regularity was obtained in [6℄. In dimension n ≥ 3 the uniqueness has presentlybeen shown for isotropi
 
ondu
tivities σ ∈ W 3/2,∞(Ω) in [31℄ and for globally
C1+ε�smooth isotropi
 
ondu
tivities having only 
o-normal singularities in [13℄.Also, the stability of re
onstru
tions of the inverse 
ondu
tivity problem have beenextensively studied. For these results, see [2, 3, 4℄ where stability results are based
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onstru
tion te
hniques of [8℄ in dimension two and those of [28℄ in dimensions
n ≥ 3.In anisotropi
 
ase, where σ is a matrix fun
tion and the problem is to re
over the
ondu
tivity σ up to the a
tion of a 
lass of di�eomorphisms, mu
h less is known. Indimensions n ≥ 3 it is generally known only that pie
ewise analyti
 
ondu
tivities
an be 
onstru
ted (see [18, 19℄). For Riemannian manifolds this kind of te
hniquehas been generalized in [22, 20, 21℄. In dimension n = 2 the inverse problem hasbeen 
onsidered by J. Sylvester [35℄ for C3 and Z. Sun and G. Uhlmann [34℄ for
W 1,p-
ondu
tivities. The idea of [35℄ and [34℄ is that under quasi
onformal 
hangeof 
oordinates (
f. [1, 17℄) any anisotropi
 
ondu
tivity 
an be 
hanged to isotropi
one, see also se
tion 3 below. The purpose of this paper is to 
arry this te
hniqueover to the L∞�smooth 
ase and then use the result of [6℄ to obtain uniqueness upto the group of di�eomorphisms.The advantage of the redu
tion of the smoothness assumptions up to L∞ doesnot lie solely on the fa
t that many 
ondu
tivities have jump-type singularitiesbut it also allows us to 
onsider mu
h more 
ompli
ated singular stru
tures su
h asporous ro
ks [10℄. Moreover it is important that this approa
h enables us to 
onsidergeneral di�eomorphisms. Thus anisotropi
 inverse problems in half-spa
e or exteriordomains 
an be solved simultaneously. This will be 
onsidered in Se
tion 2.If Ω ⊂ R2 is a bounded domain, it is 
onvenient to 
onsider the 
lass of matrixfun
tions σ = [σjk] su
h that

[σij] ∈ L∞(Ω; R2×2), [σij ]t = [σij], C−1
0 I ≤ [σij] ≤ C0I(7)where C0 > 0. In sequel, the minimal possible value of C0 is denoted by C0(σ). Weuse the notation

Σ(Ω) = {σ ∈ L∞(Ω; R2×2) | C0(σ) <∞}.Note that it is ne
essary to require C0(σ) < ∞ as otherwise there would be 
oun-terexamples showing that even the equivalen
e 
lass of the 
ondu
tivity 
an not bere
overed [14, 15℄.Our main goal in this paper is to show that an anisotropi
 L∞�
ondu
tivity 
anbe determined up to a W 1,2-di�eomorphism:Theorem 1. Let Ω ⊂ R2 be a simply 
onne
ted bounded domain and σ ∈ L∞(Ω; R2×2).Suppose that the assumptions (7) are valid. Then the Diri
hlet-to-Neumann map Λσdetermines the equivalen
e 
lass
Eσ = {σ1 ∈ Σ(Ω) | σ1 = F∗σ, F : Ω → Ω is W 1,2-di�eomorphism and

F |∂Ω = I}.We prove this result in Se
tion 3.Finally, note that the W 1,2�di�eomorphisms F preserving the 
lass Σ(Ω) are pre-
isely the quasi
onformal mappings. Namely, if σ0 ∈ Σ(Ω) and σ1 = F∗(σ0) ∈
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Σ(F (Ω)) then

1

C0
||DF (x)||2I ≤ DF (x) σ0(x)DF (x)t ≤ C1JF (x)I(8)where I = [δij] and we obtain

||DF (x)||2 ≤ KJF (x), for a.e. x ∈ Ω(9)where K = C1C0 <∞. Conversely, if (9) holds and F isW 1,2
loc -homeomorphism then

F∗σ ∈ Σ(F (Ω)) whenever σ ∈ Σ(Ω). Furhtermore, re
all that a map F : Ω → Ω̃is quasiregular if F ∈ W 1,2
loc (Ω) and the 
ondition (9) holds. Moreover, a map F isquasi
onformal if it is quasiregular and a W 1,2�homeomorphism.2. CONSEQUENCES AND APPLICATIONS OF THEOREM 1Here we 
onsider appli
ations of the di�eomorphism-te
hnique to various inverseproblem. The formulated results, Theorems 2.1�2.3 are proven in Se
tion 4.2.1. Inverse Problem in the Half Spa
e. Inverse problem in half spa
e is of 
ru-
ial importan
e in geophysi
al prospe
ting, seismologi
al imaging, non-destru
tivetesting et
. For instan
e, the imaging of soil was the original motivation of Calderón'sseminal paper [9℄. As we 
an use a di�eomorphism to map the open half spa
e tothe unit dis
, we 
an apply the previous result for the half spa
e 
ase. One shouldobserve that in this deformation even in�nitely smooth 
ondu
tivities 
an be
omenon-smooth at the boundary (e.g. 
ondu
tivity os
illating near in�nity produ
es anon-Lips
hitz 
ondu
tivity in push-forward) and thus the low-regularity result [6℄ isessential for the problem.Thus, for σ ∈ Σ(R2

−) let us 
onsider the problem
∇· σ∇u = 0 in R

2
− = {(x1, x2) | x2 < 0},(10)

u|∂R2

−

= φ,(11)
u ∈ L∞(R2

−).(12)Noti
e that here the radiation 
ondition at in�nity (12) is quite simple. We assumejust that the potential u does not blow up at in�nity. The equation (10�12) isuniquely solvable and as before we 
an de�ne
Λσ : H1/2

comp(∂R
2
−) → H−1/2(∂R

2
−), φ 7→ ν· σ∇u|∂R2

−

.Theorem 2.1. The map Λσ determines the equivalen
e 
lass
Eσ = {σ1 ∈ Σ(R2

−) | σ1 = F∗σ, F : R2
− → R2

− is W 1,2-di�eomorphism,
F |∂R2

−

= I}.Moreover, ea
h orbit Eσ 
ontains at most one isotropi
 
ondu
tivity, and 
onse-quently if σ is known to be isotropi
, it is determined uniquely by Λσ.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 5Note that the natural growth requirement lim|z|→∞ |F (z)| = ∞ follows automati-
ally from the above assumptions on F .2.2. Inverse Problem in the Exterior Domain. An inverse problem similar tothat of the half spa
e 
an be 
onsidered in an exterior domain where one wants to�nd the 
ondu
tivity in a 
omplement of a bounded simply 
onne
ted domain. Thistype of problem is en
ountered in 
ases where measurement devi
es are embeddedto an unknown domain.In the 
ase of S = R2 \D, where D is a bounded Jordan domain, we 
onsider theproblem
∇· σ∇u = 0 in S,(13)

u|∂S = φ ∈ H1/2(∂S),(14)
u ∈ L∞(S).(15)Again, the radiation 
ondition (15) of in�nity is only that the solution is uniformlybounded. For this equation we de�ne

Λσ : H1/2(∂S) → H−1/2(∂S), φ 7→ ν· σ∇u|∂S.Surprisingly, the result is di�erent from the half-spa
e 
ase. The reason for this isthe phenomenon that the group of di�eomorphisms preserving the data does not�x the point of the in�nity. More pre
isely, there are two points x0, x1 ∈ S ∪ {∞}su
h that F (x0) = ∞, F−1(x1) = ∞, and F : S \ {x0} → S \ {x1}. In parti
ular,this means that the uniqueness does not hold up to di�eomorphisms mapping theexterior domain to itself.For 
onvenien
e, we 
ompa
tify S by adding one in�nity point, denote S = S ∪
{∞}, and de�ne σ(∞) = 1. We say that F : S → S is a W 1,2-di�eomorphism if Fis homeomorphism and a W 1,2-di�eomorphism in spheri
al metri
 [1℄.Theorem 2.2. Let σ ∈ Σ(S). Then the map Λσ determines the equivalen
e 
lass

Eσ,S = {σ1 ∈ Σ(S) | σ1 = F∗σ, F : S → S is a W 1,2-di�eomorphism,
F |∂S = I }.Moreover, if σ is known to be isotropi
, it is determined uniquely by Λσ.2.3. Data on Part of the Boundary. In many inverse problems data is measuredonly on a part of the boundary. For the 
ondu
tivity equation in dimensions n ≥ 3it has been shown that if the measurements are done on a part of the boundary, thenthe integrals of the unknown 
ondu
tivity over 
ertain 2-planes 
an be determined[12℄. In one-dimensional inverse problems partial data is often 
onsidered with twodi�erent boundary 
onditions, see e.g. [24, 25℄. For instan
e, in the inverse spe
tralproblem for a one-dimensional S
hrödinger operator, it is known that measuringspe
tra 
orresponding to two di�erent boundary 
onditions determine the potential



6 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAuniquely. Here we 
onsider similar results for the 2-dimensional 
ondu
tivity equa-tion assuming that we know measurements on part of the boundary for two di�erentboundary 
onditions.Let us 
onsider the 
ondu
tivity equation with the Diri
hlet boundary 
ondition
∇· σ∇u = 0 in Ω,(16)

u|∂Ω = φand with the Neumann boundary 
ondition
∇· σ∇v = 0 in Ω,(17)

ν· σ∇v|∂Ω = ψ,normalized by ∫
∂Ω
v dS = 0. Let Γ ⊂ ∂Ω be open. We denote by Hs

0(Γ) thespa
e of fun
tions f ∈ Hs(∂Ω) that are supported on Γ and by Hs(Γ) the spa
e ofrestri
tions f |Γ of f ∈ Hs(∂Ω). We de�ne the Diri
hlet-to-Neumann map ΛΓ andNeumann-to-Diri
hlet map ΣΓ by
ΛΓ : H

1/2
0 (Γ) → H−1/2(Γ), φ 7→ (ν· σ∇u)|Γ,

ΣΓ : H
−1/2
0 (Γ) → H1/2(Γ), ψ 7→ v|Γ.Theorem 2.3. Let Γ ⊂ ∂Ω be open. Then knowing ∂Ω and both of the maps ΛΓand ΣΓ determine the equivalen
e 
lass

Eσ,Γ = {σ1 ∈ Σ(Ω) | σ1 = F∗σ, F : Ω → Ω is a W 1,2-di�eomorphism,
F |Γ = I}.Moreover, if σ is known to be isotropi
, it is determined uniquely by ΛΓ and ΣΓ.3. PROOF OF THEOREM 13.1. Preliminary Considerations. In the following we identify R2 and C by themap (x1, x2) 7→ x1 + ix2 and denote z = x1 + ix2. We use the standard notations

∂z =
1

2
(∂1 − i∂2), ∂z =

1

2
(∂1 + i∂2),where ∂j = ∂/∂xj . Below we 
onsider σ : Ω → R2×2 to be extended as a fun
tion

σ : C → R2×2 by de�ning σ(z) = I for z ∈ C\Ω. In following, we denote C0 = C0(σ).For the 
ondu
tivity σ = σjk we de�ne the 
orresponding Beltrami 
oe�
ient (see[35, 6, 17℄)
µ1(z) =

−σ11(z) + σ22(z) − 2i σ12(z)

σ11(z) + σ22(z) + 2
√

det(σ(z))
.(18)The 
oe�
ient µ1(z) satis�es |µ1(z)| ≤ κ < 1 and is 
ompa
tly supported.Next we introdu
e a W 1,2-di�eomorphism (not ne
essarily preserving the bound-ary) that transforms the 
ondu
tivity to an isotropi
 one.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 7Lemma 3.1. There is a quasi
onformal homeomorphism F : C → C su
h that
F (z) = z + O(

1

z
) as |z| → ∞(19)and su
h that F ∈W 1,p

loc (C; C), 2 < p < p(C0) = 2C0

C0−1
for whi
h

(F∗σ)(z) = σ̃(z) := det(σ(F−1(z)))
1

2 .(20)Proof. The proof 
an be found from [35℄ for C3-smooth 
ondu
tivities, see also[17℄. Be
ause of varying sign 
onventions, we sket
h here the proof for readers
onvenien
e. We need to �nd a quasi
onformal map F su
h that
DF σDF t =

√
det(σ)JF I(21)where JF = det(DF ) is the Ja
obian of F . Denoting by G = [gij ]

2
i,j=1 the inverse ofthe matrix σ/√det(σ) we see that the 
laim is equivalent to proving the following:For any symmetri
 matrix G with det(G) = 1 and 1

K
I ≤ G ≤ KI there exists aquasi
onformal map F su
h that

JFG = DF tDF.(22)Next, the non-linear equation (22) 
an be repla
ed in 
omplex notation by a linearone. Indeed, if F = u+ iv then (22) is equivalent to
∇v = JG−1∇u, where J =

(
0 −1
1 0

)
.(23)This follows readily from the identity

DF tJ = det(DF ) J (DF )−1 = JG−1DF twhere the latter equality uses (22). The matrix J 
orresponds to the multipli
ationwith the imaginary unit i in 
omplex notation. Denoting by R =

(
1 0
0 −1

) (thematrix 
orresponding to 
omplex 
onjugation) we see that (23) is equivalent to
∇u+ J∇v = (G− 1)(G+ 1)−1(∇u− J∇v).(24)But, ∇u+ J∇v = 2∂zF and R(∇u− J∇v) = 2∂zF in 
omplex notation and hen
e(24) be
omes

∂zF = µ1(z)∂zF(25)where
µ1 = (G− 1)(G+ 1)−1R = (

√
det σI − σ)(

√
det σI + σ)−1R.A dire
t 
al
ulation gives

µ1 =
1

2 + g11 + g22

(
g11 − g22 −2g12

2g12 g11 − g22

)



8 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAwhi
h shows that the matrix µ1 = (G−1)(G+1)−1R 
orresponds to a multipli
ationoperator (in 
omplex notation) by the fun
tion
µ1(z) =

g11(z) − g22(z) + 2ig12(z)

2 + g11(z) + g22(z)
.This gives (18) sin
e G−1 = σ/

√
det(σ). Sin
e |µ1(z)| ≤ κ < 1 for every z ∈ C it iswell known by [1, Thm. V.1, V.2℄ that the equation (25) with asymptoti
s

F (z) = z + O(
1

z
), as z → ∞has a unique (quasi
onformal) solution F . The fa
t that F ∈ W 1,p

loc (C; C), 2 < p <
2C0

C0−1
follows from [5℄. �In this se
tion we denote by F = Fσ the di�eomorphism determined by Lemma3.1. We also denote Ω̃ = F (Ω) where F is as in Lemma 3.1. Note that (19) impliesalso that

F−1(z) = z + O(
1

|z|) as |z| → ∞.(26)Later we will use the obvious fa
t that the knowledge of map Λσ is equivalent tothe knowledge of the Cau
hy data pairs
Cσ = {(u|∂Ω, ν· σ∇u|∂Ω) | u ∈ H1(Ω), ∇· σ∇u = 0}.In addition to the anisotropi
 
ondu
tivity equation (1) we 
onsider the 
orre-sponding 
ondu
tivity equation with isotropi
 
ondu
tivity. For these 
onsidera-tions, we observe that if u satis�es equation (1) and σ̃ is as in (20) then the fun
tion

w(x) = u(F−1(x)) ∈ H1(Ω̃)satis�es the isotropi
 
ondu
tivity equation
∇· σ̃∇w = 0 in Ω̃,(27)
w|∂Ω̃ = φ ◦ F−1.Thus, σ̃ 
an be 
onsidered as a s
alar, isotropi
 L∞�smooth 
ondu
tivity σ̃I. We
ontinue also the fun
tion σ̃ : Ω̃ → R+ to a fun
tion σ̃ : C → R+ by de�ning

σ̃(x) = 1 for x ∈ C \ Ω̃.3.2. Conjugate Fun
tions. While solving the isotropi
 inverse problem in [6℄, theinterplay of the s
alar 
ondu
tivities σ(x) and 1
σ(x)

played a 
ru
ial role. Motivatedby this, we de�ne
σ̂jk(x) =

1

det(σ(x))
σjk(x).Note that for a isotropi
 
ondu
tivity σ̂ = 1/σ.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 9Let now F be the quasi
onformal map de�ned in Lemma 3.1 and σ̃ = F∗σ as in(20). We say that ŵ ∈ H1(Ω̃) is a σ̃-harmoni
 
onjugate of w if
∂1ŵ(z) = −σ̃(z)∂2w(z),(28)
∂2ŵ(z) = σ̃(z)∂1w(z)for z = x1 + ix2 ∈ C. Using ŵ we de�ne the fun
tion û that we 
all the σ-harmoni

onjugate of u,
û(x) = ŵ(F (x)).To �nd the equation governing û, it easily follows that (
.f. [6℄)

∇· 1

σ̃
∇ŵ = 0 in Ω̃,(29)and by 
hanging 
oordinates to y = F (x) we see that 1/σ̃ = F∗σ̂. These fa
ts imply

∇· σ̂∇û = 0 in Ω.(30)Thus û is the σ̂-harmoni
 
onjugate fun
tion of u and we have
∇û = Jσ∇u, ∇u = Jσ̂∇û.(31)Sin
e u is a solution of the 
ondu
tivity equation if and only if u + c, c ∈ C, issolution, we see from (31) that the Cau
hy data pairs Cσ determine the pairs Cσ̂and vi
e versa. Thus we get, almost free, that Λσ determines Λσ̂, too.Let us next 
onsider the fun
tion

f(z) = w(z) + iŵ(z).(32)By [6℄, it satis�es the pseudo-analyti
 equation of se
ond type,
∂zf = µ̃2 ∂zf(33)where

µ̃2(z) =
1 − σ̃(z)

1 + σ̃(z)
, |µ̃2(z)| ≤

C0 − 1

C0 + 1
< 1.(34)Using this Beltrami 
oe�
ient, we de�ne µ2 = µ̃2 ◦ F .We will need the following:Lemma 3.2. Let g = f ◦ F where F : Ω → Ω̃ is a quasi
onformal homeomorphismand f is a quasiregular map satisfying

∂zf = µ̃2∂zf and ∂zF = µ1∂zF,(35)where µ̃2 = µ2 ◦ F−1 and µ1 satis�es |µj| ≤ κ < 1 and µ2 is real. Then g isquasiregular and satis�es
∂zg = ν1∂zg + ν2∂zg,(36)



10 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAwhere
ν1 = µ1

1 − µ2
2

1 − |µ1|2µ2
2

, and ν2 = µ2
1 − |µ1|2

1 − |µ1|2µ2
2

.(37)Conversely, if g satis�es (36) with ν2 real and |ν1| + |ν2| ≤ κ′ < 1 then there existsunique µ1 and µ2 su
h that (37) holds and f = g ◦ F−1 satis�es (35).Proof. We apply the 
hain rule
∂(f ◦ F ) = (∂f) ◦ F · ∂F + (∂f) ◦ F · ∂F ,
∂(f ◦ F ) = (∂f) ◦ F · ∂F + (∂f) ◦ F · ∂F ,and obtain

ν1∂zg + ν2∂zg = ∂f ◦ F · ∂F · (ν1 + ν2µ1µ2) + ∂f ◦ F · ∂F · (ν2 + ν1µ1µ2)and
∂zg = µ1· ∂f ◦ F · ∂F + µ2· ∂f ◦ F · ∂F .Hen
e, if µ1, µ2, ν1, and ν2 are related so that
µ1 = ν1 + ν1µ2, µ2 = ν2 + ν1µ2,we see that (36) and (37) are satis�ed.It is not di�
ult to see that for ea
h ν1 and ν2 (37) has a unique solution µ1, µ2with |µj| ≤ κ′ < 1, j = 1, 2. Again, the general theory of quasiregular maps [1℄implies that (35) has a solution and the fa
torization g = f ◦ F holds. �Note that (37) implies that

|ν1| + |ν2| =
|µ1| + |µ2|

1 + |µ1| |µ2|
≤ 2κ

1 + κ2
< 1.(38)Lemma 3.2 has the following important 
orollary, that is the main goal of thissubse
tion.Corollary 3.3. If u ∈ H1(Ω) is a real solution of the 
ondu
tivity equation (1),there exists û ∈ H1(Ω), unique up to a 
onstant, su
h that g = u+ iû satis�es (36)where

ν1 =
σ22 − σ11 − 2iσ12

1 + trσ + det(σ)
, and ν2 =

1 − det(σ)

1 + trσ + det(σ)
.(39)Conversely, if ν1 and ν2, |ν1| + |ν2| ≤ κ′ < 1 are as in Lemma 3.2 then there areunique σ and σ̂ su
h that for any solution g of (36) u = Re g and û = Im g satisfythe 
ondu
tivity equations

∇· σ∇u = 0, and ∇· σ̂∇û = 0.(40)
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e g = f ◦F where f = w+iŵ a

ording to (32), we obtain immediatelythe existen
e of û = ŵ ◦ F . Thus we need only to 
al
ulate ν1 and ν2 in terms of σ.Note that by (18),
|µ1|2 =

tr (σ) − 2 det(σ)1/2tr (σ) + 2 det(σ)1/2
.(41)We re
all that

µ2 =
1 − det(σ)1/2

1 + det(σ)1/2
(42)and thus

1 − |µ1|2µ2
2 =

4(det(σ)1/2tr (σ) + (1 + det(σ)) det(σ)1/2)

(1 + det(σ)1/2)2(tr (σ) + 2 det(σ)1/2)whi
h readily yields (39) from (37).Note that sin
e ν1 and ν2 uniquely determine µ1 and µ2, they by (41) and (42)also determine det(σ) and tr(σ). After observing this, it is 
lear from (39) that σ isuniquely determined by ν1 and ν2. �Now one 
an write equations (31) in more expli
it form
τ · ∇û|∂Ω = Λσ(u|∂Ω)(43)where τ = (−ν2, ν1) is a unit tangent ve
tor of ∂Ω. As Re g|∂Ω = u|∂Ω and Im g|∂Ω =

û|∂Ω, we see that Λσ determines the σ-Hilbert transform Hσ de�ned by
Hσ : H1/2(∂Ω) → H1/2(∂Ω)/C,(44) Re g|∂Ω 7→ Im g|∂Ω + C.Put yet in another terms, for u, û ∈ H1/2(∂Ω), û = Hσu if and only if the map

g(ξ) = (u+ iû)(ξ), ξ ∈ ∂Ω, extends to Ω so that (36) is satis�ed.Summarizing the previous results, we haveLemma 3.4. The Diri
hlet-to-Neumann map Λσ determines the maps Λσ̂ and Hσ.3.3. Solutions of Complex Geometri
al Opti
s. Next we 
onsider exponen-tially growing solutions, i.e., solutions of 
omplex geometri
al opti
s originated byCalderón for linearized inverse problems and by Sylvester and Uhlmann for non-linear inverse problems. In our 
ase, we seek solutions G(z, k), z ∈ C \ Ω, k ∈ Csatisfying
∂zG(z, k) = 0 for z ∈ C \ Ω,(45)
G(z, k) = eikz(1 + Ok(

1

z
)),(46) ImG(z, k)|z∈∂Ω = Hσ(ReG(z, k)|z∈∂Ω).(47)Here Ok(h(z)) means a fun
tion of (z, k) that satis�es |Ok(h(z))| ≤ C(k)|h(z)| forall z with some 
onstant C(k) depending only on k ∈ C. For the 
ondu
tivity σ̃ we
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onsider the 
orresponding exponentially growing solutions W (z, k), z ∈ C, k ∈ Cwhere
∂zW (z, k) = µ̃2(z)∂zW (z, k), for z ∈ C,(48)
W (z, k) = eikz(1 + Ok(

1

z
)).(49)Note that in this stage, z 7→ G(z, k) is de�ned only in the exterior domain C\Ω but

z 7→ W (z, k) in the whole 
omplex plane. These two solutions are 
losely related:Lemma 3.5. For all k ∈ C we have:i. The system (48) has a unique solution W (z, k) in C.ii. The system (45�47) has a unique solution G(z, k) in C \ Ω.iii. For z ∈ C \ Ω we have
G(z, k) = W (F (z), k).(50)Proof. For the 
laim i. we refer to [6, Theorem 4.2℄.Next we 
onsider ii. and iii. simultaneously. Assume that G(z, k) is a solution of(45�47). By Lemma 3.2 and boundary 
ondition (47) we see that equation

∂h(z, k) = ν1∂zh+ ν2∂zh, in Ω,

h(· , k)|∂Ω = G(· , k)|∂Ωhas a unique solution where ν1 and ν2 are given in (39).Let
H(z, k) =

{
G(z, k) for z ∈ C \ Ω

h(z, k) for z ∈ Ω
(51)and H̃(z, k) = H(F−1(z), k). Then H̃(z, k) satis�es equations

∂zH̃(z, k) = 0, for z ∈ C \ Ω̃,

∂zH̃(z, k) = µ̃2(z)∂zH̃(z, k), for z ∈ Ω̃,and tra
es from both sides of ∂Ω̃ 
oin
ide. Thus H̃(z, k) satis�es equation in (48).Now (26) and (46) yield that
H̃(z, k) = H(F−1(z), k)(52)

= exp(ikF−1(z))(1 + Ok(
1

1 + |F−1(z)|))

= exp(ikz)(1 + Ok(
1

1 + |z|))showing that H̃ satis�es (48�49). Thus by i., H̃(z, k) = W (z, k). This proves bothii. and iii. �



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE133.4. Proof of Theorem 1. As G(z, k) is the unique solution of (45�47) and theoperator appearing in boundary 
ondition (47) is known, Lemmata 3.4 and 3.5 implythe following:Lemma 3.6. The Diri
hlet-to-Neumann map Λσ determines G(z, k), z ∈ C \ Ω,
k ∈ C.Next we use this to �nd the di�eomorphism Fσ outside Ω.Lemma 3.7. The Diri
hlet-to-Neumann map Λσ determines the values the restri
-tion Fσ|C\Ω.Proof. By (50), G(z, k) = W (F (z), k), whereW (z, k) is the exponentially growingsolution 
orresponding to the isotropi
 
ondu
tivity σ̃. Thus by applying the sub-exponential growth results for su
h solutions, [6, Lemma 7.1 and Thm. 7.2℄, we haverepresentation

W (z, k) = exp(ikϕ(z, k))(53)where
lim
k→∞

sup
z∈C

|ϕ(z, k) − z| = 0.(54)As F (z) = z + O(1/z), and G(z, k) = W (F (z), k) we have
lim
k→∞

logG(z, k)

ik
= lim

k→∞
ϕ(F (z), k) = F (z).(55)By Lemma 3.6 we know the values of limit (55) for any z ∈ C \ Ω. Thus the 
laimis proven. �We are ready to prove Theorem 1.Proof. As we know F |C\Ω ∈ W 1,p, 2 < p < p(C0), we in parti
ular know Ω̃ =

C \ (F (C \ Ω)). When u is the solution of 
ondu
tivity equation (1) with Diri
hletboundary value φ and w is the solution of (27) with Diri
hlet boundary value φ̃ =
φ ◦ h, where h = F−1|∂Ω̃ we see that

∫

∂Ω̃

φ̃Λσ̃φ̃ dS = Qσ̃,Ω̃(w) = Qσ,Ω(u) =

∫

∂Ω

φΛσφ dS.(56)Here, the se
ond identity is justi�ed by the fa
t that F is quasi
onformal and hen
esatis�es (9). Sin
e Λσ and Λσ̃ are symmetri
, this implies
∫

∂Ω̃

ψ̃Λσ̃φ̃ dS =

∫

∂Ω

ψΛσφ dS(57)for any ψ̃, φ̃ ∈ H1/2(∂Ω̃) and ψ, φ ∈ H1/2(∂Ω) are related by ψ̃ = ψ◦h and ψ̃ = ψ◦h.Note that φ ∈ H1/2(∂Ω) if and only if φ̃ = φ ◦ h ∈ H1/2(∂Ω̃). To see this, extend
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φ to a H1(Ω) fun
tion and after that de�ne φ̃ in the interior of Ω̃ by φ̃ = φ ◦ F−1.Now

||∇φ||2L2(Ω) ∼
∫

Ω

∇φ· σ∇φdx ∼
∫

Ω̃

∇φ̃· σ̃∇φ̃ dx ∼ ||∇φ̃||2
L2(Ω̃)and hen
e

||φ||2H1/2(∂Ω) ∼ ||φ||2H1(Ω) ∼ ||φ̃||2
H1(Ω̃)

∼ ||φ̃||2
H1/2(∂Ω̃)

.As we know F |C\Ω and Λσ, we 
an �nd Λσ̃ using formula (57). By [6℄, the map
Λσ̃ determines uniquely the 
ondu
tivity σ̃ on Ω̃ in a 
onstru
tive manner.Knowing Ω, Ω̃, and the boundary value f = F |∂Ω of the map F : Ω → Ω̃, we next
onstru
t a su�
iently smooth di�eomorphism H : Ω̃ → Ω. First, by the Riemannmapping theorem we 
an map Ω and Ω̃ to the unit dis
 D by the 
onformal maps
R and R̃, respe
tively. Now

G = R̃ ◦ F ◦R−1 : D → Dis a quasi
onformal map and sin
e we know R and R̃, we know the fun
tion g = G|∂Dmapping ∂D onto itself. The map g is quasisymmetri
 (
f. [1℄) and by Ahlfors-Beurling extension theorem [1, Thm. IV.2℄ it has a quasi
onformal extension AB(g)mapping D onto itself. Note that one 
an obtain AB(g) from g 
onstru
tively byan expli
it formula [1, p. 69℄. Thus we may �nd a quasi
onformal di�eomorphism
H = R−1 ◦ [AB(g)]−1 ◦ R̃, H : Ω̃ → Ω satisfying H|∂Ω̃ = F−1|∂Ω̃.Combining the above results, we 
an �nd H∗σ̃ that is a representative of theequivalen
e 
lass Eσ. �In the above proof the Riemann mappings 
an not be found as expli
itly as theAhlfors-Beurling extension. However, there are numeri
al pa
kages for approxima-tive 
onstru
tion of Riemann mappings, see e.g. [26℄.4. PROOFS OF CONSEQUENCES OF MAIN RESULTHere we give proofs of Theorems 2.1�2.3.Proof of Theorem 2.1. Let F : R2

− = R + iR− → D be the Möbius transform
F (z) =

z + i

z − i
.Sin
e this map is 
onformal, we see that C0(F∗σ) = C0(σ). Let σ̃ = F∗σ be the
ondu
tivity in D. Then Λσ̃φ is determined as in (57) for all φ ∈ C∞

0 (∂D \ {1}).Sin
e Λσ̃1 = 0 and fun
tions C ⊕C∞
0 (∂D \ {1}) are dense in the spa
e H1/2(∂D),we see that Λσ determines the Diri
hlet-to-Neumann map Λσ̃ on ∂D. Thus we 
an�nd the equivalen
e 
lass of the 
ondu
tivity on D. Pushing these 
ondu
tivitiesforward with F−1 to R

2
−, we obtain the 
laim. �
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onformal map su
h that
lim
z→∞

F (z) = 0.Again, sin
e this map is 
onformal we have for σ̃ = F∗σ the equality C0(σ) =
C0(F∗σ). Moreover, if u is a solution of (13), we have that w = u◦F−1 is solution of

∇· σ̃∇w = 0 in D \ {0},(58)
w|∂D = φ ◦ F−1,

w ∈ L∞(D).Sin
e set {0} has 
apa
itan
e zero in D, we see that w = W |D\{0} where
∇· σ̃∇W = 0 in D,(59)

W |∂D = φ ◦ F−1.Sin
e F 
an be 
onstru
ted via the Riemann mapping theorem, we see that Λσdetermines Λσ̃ on ∂D and thus the equivalen
e 
lass Eσ̃. When F̃ : D → D is aboundary preserving di�eomorphism, we see that F−1 ◦ F̃ ◦ F de�nes a di�eomor-phism S → S. Sin
e we have determined the 
ondu
tivity σ̃ up to a boundarypreserving di�eomorphism, the 
laim follows easily. �Proof of Theorem 2.3. Let D ⊂ C be the unit dis
 and D+ = {z ∈ D | Re z >
0}. Let F : Ω → D+ be a Riemann mapping su
h that

D+ ⊂ R × R+, F (Γ) = ∂D+ \ (R × {0}), F (∂Ω \ Γ) = ∂D+ ∩ (R × {0}).Let η : (x1, x2) 7→ (x1,−x2) and de�ne D− = η(D+), and σ̃ = F∗σ. Let
σ̂(x) =

{
σ(x) for x ∈ D+,

(η∗σ)(x) for x ∈ D−.Consider equation
∇· σ̂∇w = 0 in D.(60)Using formula (57) we see that F and ΛΓ determine the 
orresponding map ΛF (Γ)for σ̂. Similarly, we 
an �nd ΣF (Γ) for σ̂.Then ΛF (Γ) determines the Cau
hy data on the boundary for the solutions of (60)for whi
h w ∈ H1(D), w = −w◦η. On the other hand, ΣF (Γ) determines the Cau
hydata on the boundary of the solutions of (60) for whi
h w ∈ H1(D) and w = w ◦ η.Now ea
h solution w of (60) 
an be written as a linear 
ombination

w(x) =
1

2
(w(x) + w(η(x))) +

1

2
(w(x) − w(η(x))).Thus the maps ΛF (Γ) and ΣF (Γ) together determine Cσ̂, and hen
e we 
an �nd σ̂ upto a di�eomorphism. We 
an 
hoose a representative σ̂0 of the equivalen
e 
lass Eσ̂su
h that σ̂0 = σ̂0 ◦ η. In fa
t, 
hoosing a symmetri
 Ahlfors-Beurling extension in
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onstru
tion given in the proof of Theorem 1, we obtain su
h a 
ondu
tivity.Pushing the 
ondu
tivity σ̂0 from D+ to Ω with F−1, we obtain the 
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