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CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPICCONDUCTIVITY IN THE PLANEKARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAAbstrat: We study inverse ondutivity problem for an anisotropi ondutivity
σ ∈ L∞ in bounded and unbounded domains. Also, we give appliations of theresults in the ase when Dirihlet-to-Neumann and Neumann-to-Dirihlet maps aregiven only on a part of the boundary.1. INTRODUCTIONLet us onsider the anisotropi ondutivity equation in two dimensions

∇· σ∇u =
2∑

j,k=1

∂

∂xj
σjk(x)

∂

∂xk
u = 0 in Ω,(1)

u|∂Ω = φ.Here Ω ⊂ R2 is a simply onneted domain. The ondutivity σ = [σjk]2j,k=1 is asymmetri, positive de�nite matrix funtion, and φ ∈ H1/2(∂Ω) is the presribedvoltage on the boundary. Then it is well known that equation (1) has a uniquesolution u ∈ H1(Ω).In the ase when σ and ∂Ω are smooth, we an de�ne the voltage-to-urrent (orDirihlet-to-Neumann) map by
Λσ(φ) = Bu|∂Ω(2)where
Bu = ν· σ∇u,(3)

u ∈ H1(Ω) is the solution of (1), and ν is the unit normal vetor of ∂Ω. Applyingthe divergene theorem, we have
Qσ,Ω(φ) :=

∫

Ω

2∑

j,k=1

σjk(x)
∂u

∂xj

∂u

∂xk
dx =

∫

∂Ω

Λσ(φ)φ dS,(4)where dS denotes the ar lenght on ∂Ω. The quantity Qσ,Ω(φ) represents the powerneeded to maintain the potential φ on ∂Ω. By symmetry of Λσ, knowing Qσ,Ω isequivalent with knowing Λσ. For general Ω and σ ∈ L∞(Ω), the trae u|∂Ω is de�nedas the equivalene lass of u in H1(Ω)/H1
0 (Ω) (see [6℄) and formula (4) is used tode�ne the map Λσ. 1



2 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAIf F : Ω → Ω, F (x) = (F 1(x), F 2(x)), is a di�eomorphism with F |∂Ω = Identity,then by making the hange of variables y = F (x) and setting v = u ◦ F−1 in the�rst integral in (4), we obtain
∇· (F∗σ)∇v = 0 in Ω,where

(F∗σ)jk(y) =
1

det[∂F j

∂xk (x)]

2∑

p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

,(5)or
F∗σ(y) =

1

JF (x)
DF (x) σ(x)DF (x)t

∣∣∣∣
x=F−1(y)

,(6)is the push-forward of the ondutivity σ by F . Moreover, sine F is identity at ∂Ω,we obtain from (4) that
ΛF∗σ = Λσ.Thus, the hange of oordinates shows that there is a large lass of ondutivitieswhih give rise to the same eletrial measurements at the boundary.We onsider here the onverse question, that if we have two ondutivities whihhave the same Dirihlet-to-Neumann map, is it the ase that eah of them an beobtained by pushing forward the other.In applied terms, this inverse problem to determine σ (or its properties) from

Λσ is also known as Eletrial Impedane Tomography. It has been proposed as avaluable diagnosti, see [11℄.In the ase where σjk(x) = σ(x)δjk, σ(x) ∈ R+, the metri is said to be isotropi.In 1980 it was proposed by A. Calderón [9℄ that in the isotropi ase any boundedondutivity σ(x) might be determined solely from the boundary measurements, i.e.,from Λσ. Reently this has been on�rmed in the two dimensional ase (.f. [6℄). Inthe ase when isotropi σ is smoother than just a L∞-funtion, the same onlusionis known to hold also in higher dimensions.The �rst global uniqueness result was obtained for a C∞�smooth ondutivity indimension n ≥ 3 by J. Sylvester and G. Uhlmann in 1987 [36℄. In dimension twoA. Nahman [29℄ produed in 1995 a uniqueness result for ondutivities with twoderivatives. The orresponding algorithm has been suessfully implemented andproven to work e�iently even with real data [33, 27℄. The redution of regularityassumptions has sine been under ative study. In dimension two the optimal L∞-regularity was obtained in [6℄. In dimension n ≥ 3 the uniqueness has presentlybeen shown for isotropi ondutivities σ ∈ W 3/2,∞(Ω) in [31℄ and for globally
C1+ε�smooth isotropi ondutivities having only o-normal singularities in [13℄.Also, the stability of reonstrutions of the inverse ondutivity problem have beenextensively studied. For these results, see [2, 3, 4℄ where stability results are based



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 3on reonstrution tehniques of [8℄ in dimension two and those of [28℄ in dimensions
n ≥ 3.In anisotropi ase, where σ is a matrix funtion and the problem is to reover theondutivity σ up to the ation of a lass of di�eomorphisms, muh less is known. Indimensions n ≥ 3 it is generally known only that pieewise analyti ondutivitiesan be onstruted (see [18, 19℄). For Riemannian manifolds this kind of tehniquehas been generalized in [22, 20, 21℄. In dimension n = 2 the inverse problem hasbeen onsidered by J. Sylvester [35℄ for C3 and Z. Sun and G. Uhlmann [34℄ for
W 1,p-ondutivities. The idea of [35℄ and [34℄ is that under quasionformal hangeof oordinates (f. [1, 17℄) any anisotropi ondutivity an be hanged to isotropione, see also setion 3 below. The purpose of this paper is to arry this tehniqueover to the L∞�smooth ase and then use the result of [6℄ to obtain uniqueness upto the group of di�eomorphisms.The advantage of the redution of the smoothness assumptions up to L∞ doesnot lie solely on the fat that many ondutivities have jump-type singularitiesbut it also allows us to onsider muh more ompliated singular strutures suh asporous roks [10℄. Moreover it is important that this approah enables us to onsidergeneral di�eomorphisms. Thus anisotropi inverse problems in half-spae or exteriordomains an be solved simultaneously. This will be onsidered in Setion 2.If Ω ⊂ R2 is a bounded domain, it is onvenient to onsider the lass of matrixfuntions σ = [σjk] suh that

[σij] ∈ L∞(Ω; R2×2), [σij ]t = [σij], C−1
0 I ≤ [σij] ≤ C0I(7)where C0 > 0. In sequel, the minimal possible value of C0 is denoted by C0(σ). Weuse the notation

Σ(Ω) = {σ ∈ L∞(Ω; R2×2) | C0(σ) <∞}.Note that it is neessary to require C0(σ) < ∞ as otherwise there would be oun-terexamples showing that even the equivalene lass of the ondutivity an not bereovered [14, 15℄.Our main goal in this paper is to show that an anisotropi L∞�ondutivity anbe determined up to a W 1,2-di�eomorphism:Theorem 1. Let Ω ⊂ R2 be a simply onneted bounded domain and σ ∈ L∞(Ω; R2×2).Suppose that the assumptions (7) are valid. Then the Dirihlet-to-Neumann map Λσdetermines the equivalene lass
Eσ = {σ1 ∈ Σ(Ω) | σ1 = F∗σ, F : Ω → Ω is W 1,2-di�eomorphism and

F |∂Ω = I}.We prove this result in Setion 3.Finally, note that the W 1,2�di�eomorphisms F preserving the lass Σ(Ω) are pre-isely the quasionformal mappings. Namely, if σ0 ∈ Σ(Ω) and σ1 = F∗(σ0) ∈



4 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTA
Σ(F (Ω)) then

1

C0
||DF (x)||2I ≤ DF (x) σ0(x)DF (x)t ≤ C1JF (x)I(8)where I = [δij] and we obtain

||DF (x)||2 ≤ KJF (x), for a.e. x ∈ Ω(9)where K = C1C0 <∞. Conversely, if (9) holds and F isW 1,2
loc -homeomorphism then

F∗σ ∈ Σ(F (Ω)) whenever σ ∈ Σ(Ω). Furhtermore, reall that a map F : Ω → Ω̃is quasiregular if F ∈ W 1,2
loc (Ω) and the ondition (9) holds. Moreover, a map F isquasionformal if it is quasiregular and a W 1,2�homeomorphism.2. CONSEQUENCES AND APPLICATIONS OF THEOREM 1Here we onsider appliations of the di�eomorphism-tehnique to various inverseproblem. The formulated results, Theorems 2.1�2.3 are proven in Setion 4.2.1. Inverse Problem in the Half Spae. Inverse problem in half spae is of ru-ial importane in geophysial prospeting, seismologial imaging, non-destrutivetesting et. For instane, the imaging of soil was the original motivation of Calderón'sseminal paper [9℄. As we an use a di�eomorphism to map the open half spae tothe unit dis, we an apply the previous result for the half spae ase. One shouldobserve that in this deformation even in�nitely smooth ondutivities an beomenon-smooth at the boundary (e.g. ondutivity osillating near in�nity produes anon-Lipshitz ondutivity in push-forward) and thus the low-regularity result [6℄ isessential for the problem.Thus, for σ ∈ Σ(R2

−) let us onsider the problem
∇· σ∇u = 0 in R

2
− = {(x1, x2) | x2 < 0},(10)

u|∂R2

−

= φ,(11)
u ∈ L∞(R2

−).(12)Notie that here the radiation ondition at in�nity (12) is quite simple. We assumejust that the potential u does not blow up at in�nity. The equation (10�12) isuniquely solvable and as before we an de�ne
Λσ : H1/2

comp(∂R
2
−) → H−1/2(∂R

2
−), φ 7→ ν· σ∇u|∂R2

−

.Theorem 2.1. The map Λσ determines the equivalene lass
Eσ = {σ1 ∈ Σ(R2

−) | σ1 = F∗σ, F : R2
− → R2

− is W 1,2-di�eomorphism,
F |∂R2

−

= I}.Moreover, eah orbit Eσ ontains at most one isotropi ondutivity, and onse-quently if σ is known to be isotropi, it is determined uniquely by Λσ.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 5Note that the natural growth requirement lim|z|→∞ |F (z)| = ∞ follows automati-ally from the above assumptions on F .2.2. Inverse Problem in the Exterior Domain. An inverse problem similar tothat of the half spae an be onsidered in an exterior domain where one wants to�nd the ondutivity in a omplement of a bounded simply onneted domain. Thistype of problem is enountered in ases where measurement devies are embeddedto an unknown domain.In the ase of S = R2 \D, where D is a bounded Jordan domain, we onsider theproblem
∇· σ∇u = 0 in S,(13)

u|∂S = φ ∈ H1/2(∂S),(14)
u ∈ L∞(S).(15)Again, the radiation ondition (15) of in�nity is only that the solution is uniformlybounded. For this equation we de�ne

Λσ : H1/2(∂S) → H−1/2(∂S), φ 7→ ν· σ∇u|∂S.Surprisingly, the result is di�erent from the half-spae ase. The reason for this isthe phenomenon that the group of di�eomorphisms preserving the data does not�x the point of the in�nity. More preisely, there are two points x0, x1 ∈ S ∪ {∞}suh that F (x0) = ∞, F−1(x1) = ∞, and F : S \ {x0} → S \ {x1}. In partiular,this means that the uniqueness does not hold up to di�eomorphisms mapping theexterior domain to itself.For onveniene, we ompatify S by adding one in�nity point, denote S = S ∪
{∞}, and de�ne σ(∞) = 1. We say that F : S → S is a W 1,2-di�eomorphism if Fis homeomorphism and a W 1,2-di�eomorphism in spherial metri [1℄.Theorem 2.2. Let σ ∈ Σ(S). Then the map Λσ determines the equivalene lass

Eσ,S = {σ1 ∈ Σ(S) | σ1 = F∗σ, F : S → S is a W 1,2-di�eomorphism,
F |∂S = I }.Moreover, if σ is known to be isotropi, it is determined uniquely by Λσ.2.3. Data on Part of the Boundary. In many inverse problems data is measuredonly on a part of the boundary. For the ondutivity equation in dimensions n ≥ 3it has been shown that if the measurements are done on a part of the boundary, thenthe integrals of the unknown ondutivity over ertain 2-planes an be determined[12℄. In one-dimensional inverse problems partial data is often onsidered with twodi�erent boundary onditions, see e.g. [24, 25℄. For instane, in the inverse spetralproblem for a one-dimensional Shrödinger operator, it is known that measuringspetra orresponding to two di�erent boundary onditions determine the potential



6 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAuniquely. Here we onsider similar results for the 2-dimensional ondutivity equa-tion assuming that we know measurements on part of the boundary for two di�erentboundary onditions.Let us onsider the ondutivity equation with the Dirihlet boundary ondition
∇· σ∇u = 0 in Ω,(16)

u|∂Ω = φand with the Neumann boundary ondition
∇· σ∇v = 0 in Ω,(17)

ν· σ∇v|∂Ω = ψ,normalized by ∫
∂Ω
v dS = 0. Let Γ ⊂ ∂Ω be open. We denote by Hs

0(Γ) thespae of funtions f ∈ Hs(∂Ω) that are supported on Γ and by Hs(Γ) the spae ofrestritions f |Γ of f ∈ Hs(∂Ω). We de�ne the Dirihlet-to-Neumann map ΛΓ andNeumann-to-Dirihlet map ΣΓ by
ΛΓ : H

1/2
0 (Γ) → H−1/2(Γ), φ 7→ (ν· σ∇u)|Γ,

ΣΓ : H
−1/2
0 (Γ) → H1/2(Γ), ψ 7→ v|Γ.Theorem 2.3. Let Γ ⊂ ∂Ω be open. Then knowing ∂Ω and both of the maps ΛΓand ΣΓ determine the equivalene lass

Eσ,Γ = {σ1 ∈ Σ(Ω) | σ1 = F∗σ, F : Ω → Ω is a W 1,2-di�eomorphism,
F |Γ = I}.Moreover, if σ is known to be isotropi, it is determined uniquely by ΛΓ and ΣΓ.3. PROOF OF THEOREM 13.1. Preliminary Considerations. In the following we identify R2 and C by themap (x1, x2) 7→ x1 + ix2 and denote z = x1 + ix2. We use the standard notations

∂z =
1

2
(∂1 − i∂2), ∂z =

1

2
(∂1 + i∂2),where ∂j = ∂/∂xj . Below we onsider σ : Ω → R2×2 to be extended as a funtion

σ : C → R2×2 by de�ning σ(z) = I for z ∈ C\Ω. In following, we denote C0 = C0(σ).For the ondutivity σ = σjk we de�ne the orresponding Beltrami oe�ient (see[35, 6, 17℄)
µ1(z) =

−σ11(z) + σ22(z) − 2i σ12(z)

σ11(z) + σ22(z) + 2
√

det(σ(z))
.(18)The oe�ient µ1(z) satis�es |µ1(z)| ≤ κ < 1 and is ompatly supported.Next we introdue a W 1,2-di�eomorphism (not neessarily preserving the bound-ary) that transforms the ondutivity to an isotropi one.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 7Lemma 3.1. There is a quasionformal homeomorphism F : C → C suh that
F (z) = z + O(

1

z
) as |z| → ∞(19)and suh that F ∈W 1,p

loc (C; C), 2 < p < p(C0) = 2C0

C0−1
for whih

(F∗σ)(z) = σ̃(z) := det(σ(F−1(z)))
1

2 .(20)Proof. The proof an be found from [35℄ for C3-smooth ondutivities, see also[17℄. Beause of varying sign onventions, we sketh here the proof for readersonveniene. We need to �nd a quasionformal map F suh that
DF σDF t =

√
det(σ)JF I(21)where JF = det(DF ) is the Jaobian of F . Denoting by G = [gij ]

2
i,j=1 the inverse ofthe matrix σ/√det(σ) we see that the laim is equivalent to proving the following:For any symmetri matrix G with det(G) = 1 and 1

K
I ≤ G ≤ KI there exists aquasionformal map F suh that

JFG = DF tDF.(22)Next, the non-linear equation (22) an be replaed in omplex notation by a linearone. Indeed, if F = u+ iv then (22) is equivalent to
∇v = JG−1∇u, where J =

(
0 −1
1 0

)
.(23)This follows readily from the identity

DF tJ = det(DF ) J (DF )−1 = JG−1DF twhere the latter equality uses (22). The matrix J orresponds to the multipliationwith the imaginary unit i in omplex notation. Denoting by R =

(
1 0
0 −1

) (thematrix orresponding to omplex onjugation) we see that (23) is equivalent to
∇u+ J∇v = (G− 1)(G+ 1)−1(∇u− J∇v).(24)But, ∇u+ J∇v = 2∂zF and R(∇u− J∇v) = 2∂zF in omplex notation and hene(24) beomes

∂zF = µ1(z)∂zF(25)where
µ1 = (G− 1)(G+ 1)−1R = (

√
det σI − σ)(

√
det σI + σ)−1R.A diret alulation gives

µ1 =
1

2 + g11 + g22

(
g11 − g22 −2g12

2g12 g11 − g22

)



8 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAwhih shows that the matrix µ1 = (G−1)(G+1)−1R orresponds to a multipliationoperator (in omplex notation) by the funtion
µ1(z) =

g11(z) − g22(z) + 2ig12(z)

2 + g11(z) + g22(z)
.This gives (18) sine G−1 = σ/

√
det(σ). Sine |µ1(z)| ≤ κ < 1 for every z ∈ C it iswell known by [1, Thm. V.1, V.2℄ that the equation (25) with asymptotis

F (z) = z + O(
1

z
), as z → ∞has a unique (quasionformal) solution F . The fat that F ∈ W 1,p

loc (C; C), 2 < p <
2C0

C0−1
follows from [5℄. �In this setion we denote by F = Fσ the di�eomorphism determined by Lemma3.1. We also denote Ω̃ = F (Ω) where F is as in Lemma 3.1. Note that (19) impliesalso that

F−1(z) = z + O(
1

|z|) as |z| → ∞.(26)Later we will use the obvious fat that the knowledge of map Λσ is equivalent tothe knowledge of the Cauhy data pairs
Cσ = {(u|∂Ω, ν· σ∇u|∂Ω) | u ∈ H1(Ω), ∇· σ∇u = 0}.In addition to the anisotropi ondutivity equation (1) we onsider the orre-sponding ondutivity equation with isotropi ondutivity. For these onsidera-tions, we observe that if u satis�es equation (1) and σ̃ is as in (20) then the funtion

w(x) = u(F−1(x)) ∈ H1(Ω̃)satis�es the isotropi ondutivity equation
∇· σ̃∇w = 0 in Ω̃,(27)
w|∂Ω̃ = φ ◦ F−1.Thus, σ̃ an be onsidered as a salar, isotropi L∞�smooth ondutivity σ̃I. Weontinue also the funtion σ̃ : Ω̃ → R+ to a funtion σ̃ : C → R+ by de�ning

σ̃(x) = 1 for x ∈ C \ Ω̃.3.2. Conjugate Funtions. While solving the isotropi inverse problem in [6℄, theinterplay of the salar ondutivities σ(x) and 1
σ(x)

played a ruial role. Motivatedby this, we de�ne
σ̂jk(x) =

1

det(σ(x))
σjk(x).Note that for a isotropi ondutivity σ̂ = 1/σ.



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE 9Let now F be the quasionformal map de�ned in Lemma 3.1 and σ̃ = F∗σ as in(20). We say that ŵ ∈ H1(Ω̃) is a σ̃-harmoni onjugate of w if
∂1ŵ(z) = −σ̃(z)∂2w(z),(28)
∂2ŵ(z) = σ̃(z)∂1w(z)for z = x1 + ix2 ∈ C. Using ŵ we de�ne the funtion û that we all the σ-harmonionjugate of u,
û(x) = ŵ(F (x)).To �nd the equation governing û, it easily follows that (.f. [6℄)

∇· 1

σ̃
∇ŵ = 0 in Ω̃,(29)and by hanging oordinates to y = F (x) we see that 1/σ̃ = F∗σ̂. These fats imply

∇· σ̂∇û = 0 in Ω.(30)Thus û is the σ̂-harmoni onjugate funtion of u and we have
∇û = Jσ∇u, ∇u = Jσ̂∇û.(31)Sine u is a solution of the ondutivity equation if and only if u + c, c ∈ C, issolution, we see from (31) that the Cauhy data pairs Cσ determine the pairs Cσ̂and vie versa. Thus we get, almost free, that Λσ determines Λσ̂, too.Let us next onsider the funtion

f(z) = w(z) + iŵ(z).(32)By [6℄, it satis�es the pseudo-analyti equation of seond type,
∂zf = µ̃2 ∂zf(33)where

µ̃2(z) =
1 − σ̃(z)

1 + σ̃(z)
, |µ̃2(z)| ≤

C0 − 1

C0 + 1
< 1.(34)Using this Beltrami oe�ient, we de�ne µ2 = µ̃2 ◦ F .We will need the following:Lemma 3.2. Let g = f ◦ F where F : Ω → Ω̃ is a quasionformal homeomorphismand f is a quasiregular map satisfying

∂zf = µ̃2∂zf and ∂zF = µ1∂zF,(35)where µ̃2 = µ2 ◦ F−1 and µ1 satis�es |µj| ≤ κ < 1 and µ2 is real. Then g isquasiregular and satis�es
∂zg = ν1∂zg + ν2∂zg,(36)



10 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAwhere
ν1 = µ1

1 − µ2
2

1 − |µ1|2µ2
2

, and ν2 = µ2
1 − |µ1|2

1 − |µ1|2µ2
2

.(37)Conversely, if g satis�es (36) with ν2 real and |ν1| + |ν2| ≤ κ′ < 1 then there existsunique µ1 and µ2 suh that (37) holds and f = g ◦ F−1 satis�es (35).Proof. We apply the hain rule
∂(f ◦ F ) = (∂f) ◦ F · ∂F + (∂f) ◦ F · ∂F ,
∂(f ◦ F ) = (∂f) ◦ F · ∂F + (∂f) ◦ F · ∂F ,and obtain

ν1∂zg + ν2∂zg = ∂f ◦ F · ∂F · (ν1 + ν2µ1µ2) + ∂f ◦ F · ∂F · (ν2 + ν1µ1µ2)and
∂zg = µ1· ∂f ◦ F · ∂F + µ2· ∂f ◦ F · ∂F .Hene, if µ1, µ2, ν1, and ν2 are related so that
µ1 = ν1 + ν1µ2, µ2 = ν2 + ν1µ2,we see that (36) and (37) are satis�ed.It is not di�ult to see that for eah ν1 and ν2 (37) has a unique solution µ1, µ2with |µj| ≤ κ′ < 1, j = 1, 2. Again, the general theory of quasiregular maps [1℄implies that (35) has a solution and the fatorization g = f ◦ F holds. �Note that (37) implies that

|ν1| + |ν2| =
|µ1| + |µ2|

1 + |µ1| |µ2|
≤ 2κ

1 + κ2
< 1.(38)Lemma 3.2 has the following important orollary, that is the main goal of thissubsetion.Corollary 3.3. If u ∈ H1(Ω) is a real solution of the ondutivity equation (1),there exists û ∈ H1(Ω), unique up to a onstant, suh that g = u+ iû satis�es (36)where

ν1 =
σ22 − σ11 − 2iσ12

1 + trσ + det(σ)
, and ν2 =

1 − det(σ)

1 + trσ + det(σ)
.(39)Conversely, if ν1 and ν2, |ν1| + |ν2| ≤ κ′ < 1 are as in Lemma 3.2 then there areunique σ and σ̂ suh that for any solution g of (36) u = Re g and û = Im g satisfythe ondutivity equations

∇· σ∇u = 0, and ∇· σ̂∇û = 0.(40)



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE11Proof. Sine g = f ◦F where f = w+iŵ aording to (32), we obtain immediatelythe existene of û = ŵ ◦ F . Thus we need only to alulate ν1 and ν2 in terms of σ.Note that by (18),
|µ1|2 =

tr (σ) − 2 det(σ)1/2tr (σ) + 2 det(σ)1/2
.(41)We reall that

µ2 =
1 − det(σ)1/2

1 + det(σ)1/2
(42)and thus

1 − |µ1|2µ2
2 =

4(det(σ)1/2tr (σ) + (1 + det(σ)) det(σ)1/2)

(1 + det(σ)1/2)2(tr (σ) + 2 det(σ)1/2)whih readily yields (39) from (37).Note that sine ν1 and ν2 uniquely determine µ1 and µ2, they by (41) and (42)also determine det(σ) and tr(σ). After observing this, it is lear from (39) that σ isuniquely determined by ν1 and ν2. �Now one an write equations (31) in more expliit form
τ · ∇û|∂Ω = Λσ(u|∂Ω)(43)where τ = (−ν2, ν1) is a unit tangent vetor of ∂Ω. As Re g|∂Ω = u|∂Ω and Im g|∂Ω =

û|∂Ω, we see that Λσ determines the σ-Hilbert transform Hσ de�ned by
Hσ : H1/2(∂Ω) → H1/2(∂Ω)/C,(44) Re g|∂Ω 7→ Im g|∂Ω + C.Put yet in another terms, for u, û ∈ H1/2(∂Ω), û = Hσu if and only if the map

g(ξ) = (u+ iû)(ξ), ξ ∈ ∂Ω, extends to Ω so that (36) is satis�ed.Summarizing the previous results, we haveLemma 3.4. The Dirihlet-to-Neumann map Λσ determines the maps Λσ̂ and Hσ.3.3. Solutions of Complex Geometrial Optis. Next we onsider exponen-tially growing solutions, i.e., solutions of omplex geometrial optis originated byCalderón for linearized inverse problems and by Sylvester and Uhlmann for non-linear inverse problems. In our ase, we seek solutions G(z, k), z ∈ C \ Ω, k ∈ Csatisfying
∂zG(z, k) = 0 for z ∈ C \ Ω,(45)
G(z, k) = eikz(1 + Ok(

1

z
)),(46) ImG(z, k)|z∈∂Ω = Hσ(ReG(z, k)|z∈∂Ω).(47)Here Ok(h(z)) means a funtion of (z, k) that satis�es |Ok(h(z))| ≤ C(k)|h(z)| forall z with some onstant C(k) depending only on k ∈ C. For the ondutivity σ̃ we



12 KARI ASTALA, MATTI LASSAS, AND LASSI PÄIVÄRINTAonsider the orresponding exponentially growing solutions W (z, k), z ∈ C, k ∈ Cwhere
∂zW (z, k) = µ̃2(z)∂zW (z, k), for z ∈ C,(48)
W (z, k) = eikz(1 + Ok(

1

z
)).(49)Note that in this stage, z 7→ G(z, k) is de�ned only in the exterior domain C\Ω but

z 7→ W (z, k) in the whole omplex plane. These two solutions are losely related:Lemma 3.5. For all k ∈ C we have:i. The system (48) has a unique solution W (z, k) in C.ii. The system (45�47) has a unique solution G(z, k) in C \ Ω.iii. For z ∈ C \ Ω we have
G(z, k) = W (F (z), k).(50)Proof. For the laim i. we refer to [6, Theorem 4.2℄.Next we onsider ii. and iii. simultaneously. Assume that G(z, k) is a solution of(45�47). By Lemma 3.2 and boundary ondition (47) we see that equation

∂h(z, k) = ν1∂zh+ ν2∂zh, in Ω,

h(· , k)|∂Ω = G(· , k)|∂Ωhas a unique solution where ν1 and ν2 are given in (39).Let
H(z, k) =

{
G(z, k) for z ∈ C \ Ω

h(z, k) for z ∈ Ω
(51)and H̃(z, k) = H(F−1(z), k). Then H̃(z, k) satis�es equations

∂zH̃(z, k) = 0, for z ∈ C \ Ω̃,

∂zH̃(z, k) = µ̃2(z)∂zH̃(z, k), for z ∈ Ω̃,and traes from both sides of ∂Ω̃ oinide. Thus H̃(z, k) satis�es equation in (48).Now (26) and (46) yield that
H̃(z, k) = H(F−1(z), k)(52)

= exp(ikF−1(z))(1 + Ok(
1

1 + |F−1(z)|))

= exp(ikz)(1 + Ok(
1

1 + |z|))showing that H̃ satis�es (48�49). Thus by i., H̃(z, k) = W (z, k). This proves bothii. and iii. �



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE133.4. Proof of Theorem 1. As G(z, k) is the unique solution of (45�47) and theoperator appearing in boundary ondition (47) is known, Lemmata 3.4 and 3.5 implythe following:Lemma 3.6. The Dirihlet-to-Neumann map Λσ determines G(z, k), z ∈ C \ Ω,
k ∈ C.Next we use this to �nd the di�eomorphism Fσ outside Ω.Lemma 3.7. The Dirihlet-to-Neumann map Λσ determines the values the restri-tion Fσ|C\Ω.Proof. By (50), G(z, k) = W (F (z), k), whereW (z, k) is the exponentially growingsolution orresponding to the isotropi ondutivity σ̃. Thus by applying the sub-exponential growth results for suh solutions, [6, Lemma 7.1 and Thm. 7.2℄, we haverepresentation

W (z, k) = exp(ikϕ(z, k))(53)where
lim
k→∞

sup
z∈C

|ϕ(z, k) − z| = 0.(54)As F (z) = z + O(1/z), and G(z, k) = W (F (z), k) we have
lim
k→∞

logG(z, k)

ik
= lim

k→∞
ϕ(F (z), k) = F (z).(55)By Lemma 3.6 we know the values of limit (55) for any z ∈ C \ Ω. Thus the laimis proven. �We are ready to prove Theorem 1.Proof. As we know F |C\Ω ∈ W 1,p, 2 < p < p(C0), we in partiular know Ω̃ =

C \ (F (C \ Ω)). When u is the solution of ondutivity equation (1) with Dirihletboundary value φ and w is the solution of (27) with Dirihlet boundary value φ̃ =
φ ◦ h, where h = F−1|∂Ω̃ we see that

∫

∂Ω̃

φ̃Λσ̃φ̃ dS = Qσ̃,Ω̃(w) = Qσ,Ω(u) =

∫

∂Ω

φΛσφ dS.(56)Here, the seond identity is justi�ed by the fat that F is quasionformal and henesatis�es (9). Sine Λσ and Λσ̃ are symmetri, this implies
∫

∂Ω̃

ψ̃Λσ̃φ̃ dS =

∫

∂Ω

ψΛσφ dS(57)for any ψ̃, φ̃ ∈ H1/2(∂Ω̃) and ψ, φ ∈ H1/2(∂Ω) are related by ψ̃ = ψ◦h and ψ̃ = ψ◦h.Note that φ ∈ H1/2(∂Ω) if and only if φ̃ = φ ◦ h ∈ H1/2(∂Ω̃). To see this, extend
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φ to a H1(Ω) funtion and after that de�ne φ̃ in the interior of Ω̃ by φ̃ = φ ◦ F−1.Now

||∇φ||2L2(Ω) ∼
∫

Ω

∇φ· σ∇φdx ∼
∫

Ω̃

∇φ̃· σ̃∇φ̃ dx ∼ ||∇φ̃||2
L2(Ω̃)and hene

||φ||2H1/2(∂Ω) ∼ ||φ||2H1(Ω) ∼ ||φ̃||2
H1(Ω̃)

∼ ||φ̃||2
H1/2(∂Ω̃)

.As we know F |C\Ω and Λσ, we an �nd Λσ̃ using formula (57). By [6℄, the map
Λσ̃ determines uniquely the ondutivity σ̃ on Ω̃ in a onstrutive manner.Knowing Ω, Ω̃, and the boundary value f = F |∂Ω of the map F : Ω → Ω̃, we nextonstrut a su�iently smooth di�eomorphism H : Ω̃ → Ω. First, by the Riemannmapping theorem we an map Ω and Ω̃ to the unit dis D by the onformal maps
R and R̃, respetively. Now

G = R̃ ◦ F ◦R−1 : D → Dis a quasionformal map and sine we know R and R̃, we know the funtion g = G|∂Dmapping ∂D onto itself. The map g is quasisymmetri (f. [1℄) and by Ahlfors-Beurling extension theorem [1, Thm. IV.2℄ it has a quasionformal extension AB(g)mapping D onto itself. Note that one an obtain AB(g) from g onstrutively byan expliit formula [1, p. 69℄. Thus we may �nd a quasionformal di�eomorphism
H = R−1 ◦ [AB(g)]−1 ◦ R̃, H : Ω̃ → Ω satisfying H|∂Ω̃ = F−1|∂Ω̃.Combining the above results, we an �nd H∗σ̃ that is a representative of theequivalene lass Eσ. �In the above proof the Riemann mappings an not be found as expliitly as theAhlfors-Beurling extension. However, there are numerial pakages for approxima-tive onstrution of Riemann mappings, see e.g. [26℄.4. PROOFS OF CONSEQUENCES OF MAIN RESULTHere we give proofs of Theorems 2.1�2.3.Proof of Theorem 2.1. Let F : R2

− = R + iR− → D be the Möbius transform
F (z) =

z + i

z − i
.Sine this map is onformal, we see that C0(F∗σ) = C0(σ). Let σ̃ = F∗σ be theondutivity in D. Then Λσ̃φ is determined as in (57) for all φ ∈ C∞

0 (∂D \ {1}).Sine Λσ̃1 = 0 and funtions C ⊕C∞
0 (∂D \ {1}) are dense in the spae H1/2(∂D),we see that Λσ determines the Dirihlet-to-Neumann map Λσ̃ on ∂D. Thus we an�nd the equivalene lass of the ondutivity on D. Pushing these ondutivitiesforward with F−1 to R

2
−, we obtain the laim. �



CALDERÓN'S INVERSE PROBLEM FOR ANISOTROPIC CONDUCTIVITY IN THE PLANE15Proof of Theorem 2.2. Let F : S → D \ {0} be the onformal map suh that
lim
z→∞

F (z) = 0.Again, sine this map is onformal we have for σ̃ = F∗σ the equality C0(σ) =
C0(F∗σ). Moreover, if u is a solution of (13), we have that w = u◦F−1 is solution of

∇· σ̃∇w = 0 in D \ {0},(58)
w|∂D = φ ◦ F−1,

w ∈ L∞(D).Sine set {0} has apaitane zero in D, we see that w = W |D\{0} where
∇· σ̃∇W = 0 in D,(59)

W |∂D = φ ◦ F−1.Sine F an be onstruted via the Riemann mapping theorem, we see that Λσdetermines Λσ̃ on ∂D and thus the equivalene lass Eσ̃. When F̃ : D → D is aboundary preserving di�eomorphism, we see that F−1 ◦ F̃ ◦ F de�nes a di�eomor-phism S → S. Sine we have determined the ondutivity σ̃ up to a boundarypreserving di�eomorphism, the laim follows easily. �Proof of Theorem 2.3. Let D ⊂ C be the unit dis and D+ = {z ∈ D | Re z >
0}. Let F : Ω → D+ be a Riemann mapping suh that

D+ ⊂ R × R+, F (Γ) = ∂D+ \ (R × {0}), F (∂Ω \ Γ) = ∂D+ ∩ (R × {0}).Let η : (x1, x2) 7→ (x1,−x2) and de�ne D− = η(D+), and σ̃ = F∗σ. Let
σ̂(x) =

{
σ(x) for x ∈ D+,

(η∗σ)(x) for x ∈ D−.Consider equation
∇· σ̂∇w = 0 in D.(60)Using formula (57) we see that F and ΛΓ determine the orresponding map ΛF (Γ)for σ̂. Similarly, we an �nd ΣF (Γ) for σ̂.Then ΛF (Γ) determines the Cauhy data on the boundary for the solutions of (60)for whih w ∈ H1(D), w = −w◦η. On the other hand, ΣF (Γ) determines the Cauhydata on the boundary of the solutions of (60) for whih w ∈ H1(D) and w = w ◦ η.Now eah solution w of (60) an be written as a linear ombination

w(x) =
1

2
(w(x) + w(η(x))) +

1

2
(w(x) − w(η(x))).Thus the maps ΛF (Γ) and ΣF (Γ) together determine Cσ̂, and hene we an �nd σ̂ upto a di�eomorphism. We an hoose a representative σ̂0 of the equivalene lass Eσ̂suh that σ̂0 = σ̂0 ◦ η. In fat, hoosing a symmetri Ahlfors-Beurling extension in
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