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1 Introduction

Disclaimer: This is a first draft of notes intended for a talk. I haven’t read over
everything, so there may be (grave) mistakes. The results are also not original enough
to warrant much circulation, either (they were realized in the span of a single day)-
just to sketch a program for finding applications of real algebraic geometry and o-
minimality to n− 1 graphs.

Much of the recent work on inverse problems in electrical networks has been focused on painstak-
ingly constructing families of graphs and specific response matrices A such that the fiber under the
Dirichlet-to-Neumann map Λ : (R+)|E| → M`R (given by taking the Schur complement of the
Kirchoff matrix of the network) satisfies |Λ−1(A)| = n for a given n. This approach is primarily
constructive, leaving open many questions about how the fibers of the Dirichlet-to-Neumann map
in a general n − 1 graphs behave and what restrictions are there, in general, on the cardinality of
these fibers.

In this note I will sketch a program, rooted in real algebraic geometry and its modern incarnation
o-minimality, to understand generic features of n− 1 graphs. Among the results proved are:

• Let X = Λ((R+)|E|) be the image of the Dirichlet-to-Neumann map. Then we can partition
X = X1 ∪ · · · ∪ Xm into a finite union of nice subsets such that Λ : Λ−1(Xm) → Xm is a
fiber bundle with definable bijection hm : Λ−1(Xm) → Xm × Fm . In particular, since this
decomposition is finite, we get that the Dirichlet-to-Neumann map for a graph G admits only
finitely many cardinalities of fibers.

• The only cardinals κ such that |Λ−1(A)| = κ are natural numbers κ = n and the cardinality
of the continuum κ = |R| = c.

Both of these results are straightforward applications of two black boxes in the theory of o-
minimal structures: the cell-decomposition theorem and the local triviality theorem. However, the
proofs of these black-box theorems are highly non-constructive and merely show the existence of
certain sets and maps. It would be great to find a suitably large family of graphs for which the
fibers of the Dirichlet-to-Neumann map are very nicely behaved so that we can actually produce
this partition X = X1 ∪ · · · ∪Xm.

Furthermore, these results were gotten almost purely by using the fact that taking the Schur
complement of a matrix is given by a finite family of polynomial equations so that our Dirichlet-to-
Neumann map Λ was in fact definable in the o-minimal structure (R,+,×, <, {c}c∈R). It is a hope
of mine that we can somehow use the framework of o-minimality applied to some other o-minimal
structure to talk about n−1 recovery of functions (and not just conductances) in certain nonlinear
networks.

2 Languages and Structures

To talk about o-minimality, we must first refresh ourselves on the basics objects of model theory.
In a nutshell, model theory is concerned with studying the fine structure of the definability of
mathematical objects within other ones. The notion of a formal language (and its corresponding
interpretation) are needed so that we can precisely state what we mean by definability and also to
make it clear that mathematical objects mean nothing a language to probe them.

Definition 1 (Marker). A language L = 〈C,R,F〉 is a set given by the following data:
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1. All logical symbols and variables; e.g., ∧ for conjunction, ∨ for disjunction, ¬ for negation, =
for equality, ∀ and ∃ for quantifiers, and tuples x = (x1, · · · , xn) for tuples of variables.

2. A set of constant symbols C consisting of elements c, giving us the parameters of our language

3. A set of relation symbols R consisting of pairs (R,nR) where nR is the arity of R.

4. A set of function symbols F consisting of pairs (f, nf ) where nf is the arity of f .

Remark 1. It suffices to take only countably many variables since we’ll be working exclusively
with first-order sentences, which by definition only involve finitely many variables.

There are many, many examples of languages that arise in mathematics. A key examples of
languages include the language of rings Lring = 〈{0, 1},∅, {(+, 2), (·, 2), (−, 2)}〉. We will work
under the convention that, since all of our languages will come from some natural mathematical
object, that we’ll omit the stratification of L into classes and omit the arities of function symbols
and relations. For instance, we would write Lring as 〈0, 1,+,−, ·〉. Note that the definition of a
language is purely formal; it is simply a triple of sets, existing independently of any semantics.
The definition of interpretations and structures below is what allow us to bootstrap semantics onto
syntax.

Definition 2 (Marker). An L structure M is given by a set M (also written |M|), the ”universe”
of M, together with interpretations of the language L:

1. A constant cM ∈M for every symbol c ∈ C

2. A function fM : Mnf →M for every symbol f ∈ F

3. A set RM ⊆MnR for every relation symbol R ∈ R

4. For every logical symbol, the relativization of it to M; for instance =M is just set theoretic
equality.

Notation-wise we will write M for M and drop the superscripts as long as it doesn’t cause
confusion. In the definition, note that the only natural assignment we force is that of the logical
symbols; the constants, relations, and function symbols can be assigned to any constants, relations,
and functions you want. To illustrate this, consider Lring and the two following Lring structures Z1

and Z2. Let |Z1| = |Z2| = Z. In Z1 let all of the symbols be interpreted in the regular way, but in
Z2 set 0Z2 = 1Z2 = 43479397 and +Z2 = −Z2 = ·Z2 be the zero function. Then both Z1 and Z2 are
Lring structures; Z1 is the standard interpretation of Lring for Z while Z2 is something ridiculous.
To better restrict the type of interpretations we care about, we define the notions of satisfaction,
theory, and model.

To do this we’ll also need the notion of a well-formed formula (just called a formula) of a
language L, but defining it technically is a mess. Essentially, a well-formed formula is a string
of symbols that actually makes sense. To get the jist of it, consider the following examples in a
language L = 〈3, f〉:
∨ ∨ ∨(∃(x)f(x) = 3) is not a formula while ∃(x)∀(y)(f(y) = x) is.
See [Marker] for a more detailed discussion. A variable xi in a formula φ(x) is free if at least

one occurence of xi does not occur in the scope of some quantifier, otherwise it is a bound variable.
For example, with φ(x, y) := ∃x(x = y), x is bound while y is free. A formula is a sentence if it has
no free variables.
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Definition 3. An L-theory T is set of L-sentences.
Given a sentence φ, we say that M � φ just in case φM is a true statement in M . In this case

M satisfies φ
We say that M is a model of T , written M � T , if for all φ ∈ T , M � φ.

For example, consider Lring and let T be the set of axioms of a ring (it’s trivial to verify that
these are all first order sentences). Then with M = Q, giving Q the standard interpretation, then
M � T . Note also that if M � T then M is a ring.

3 Definability and Tame Geometry

We now turn to extensively considering issues of semantics tied to what kind of sets we can define
in a given structure.

Definition 4. Let M be an L structure. A set X ⊆Mn is definable (without parameters) if there
is a formula φ(x) such that

X = {b ∈Mn | M � φ(b)}

Note here that we don’t suppose that b is a tuple of constants in our language; b are just elements
of Mn, while constants are elements of Mn that can appear in φ. Note also that if we want to look
at things definable from some element a ∈M (that is, by taking formulas φ(x, y) and substituting
a in for x), then we can simply add {a} to our language L.

In general, the structure of definable sets can be incredibly wild or quite tame. For example, with
N equipped with the standard interpretations of 〈0, 1,+, ·〉, it can be shown that many subsets are
uncomputable (by turning a halting problem into an arithmetical statement), so that the definable
sets are very hard to describe. On the polar opposite, though, it turns out that in Lring, the
definable sets of C are simply boolean combinations of Zariski closed sets, which are relatively easy
to write down.

We also wish to consider how definable sets of the same structure can be morphed into each
other; for instance, in 〈Z,+,−, 0, 1,≥〉 (under the standard interpretations) we have that the sets
A = {a ∈ Z | a ≥ 0} and B = {b ∈ Z | b ≥ 1} have a bijection given by the mapping f : A → B
sending x 7→ x+1. That this function was expressible within the language is important- if we allow
any old bijection to make two sets “equivalent” relative to M then we lose all of our model-theoretic
structure. Indeed, this leads to the definition of a definable function:

Definition 5. Let X ⊆ Mn, Y ⊆ Mm be definable sets. Then a function f : X → Y is said to
be definable if the graph Γ(f) ⊆ Mn+m is definable. If f is a bijection then we call f a definable
bijection.

In the motivating case above, Γ(f) = {(a, b) | (a ≥ 0) ∧ (b ≥ 1) ∧ (b = a+ 1)} ⊆ Z2 is clearly
definable, so that f is a definable bijection.

One of the main obstructions to understanding the structure of definable sets is the presence
of quantifiers. In the case of N above, the sets definable without quantifiers are solution sets of
multivariate diophantine polynomials, which by Matiyasevich’s theorem [Matiyasevich] implies that
they are computable. But as mentioned above, general definable subsets of N in the language of
monoids can be uncomputable, so that the extra complexity comes precisely from the fact that we
can’t force every formula ψ ∈ Lmonoid to be equivalent to a quantifier free formula φ, assuming
Th(N,Lmonoid). This gives rise to the following definition:
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Definition 6. An L theory T eliminates quantifiers if for every formula ψ ∈ L there exists a
formula φ ∈ L with no quantifiers such that for all models M � T , M � ψ ↔ φ. Equivalently,
T admits elimination of quantifiers if for every ψ ∈ L there exists a quantifier-free φ such that in
every model M of T , φ and ψ define the same set.

Quantifier elimination of the theory of the real ordered field (R,+,×, <, {c}c∈R) was a very big
deal when it was proven:

Theorem 1 (Tarski-Seidenberg). The theory of (R,+,×, <, {c}c∈R) admits quantifier elimination.

In particular, this means that every formula with quantifiers φ is equivalent to a formula ψ
without quantifiers; hence every formula “is” after putting it in a standard form a formula that is
a boolean combination of solution sets of polynomials and polynomial inequalities. In particular,
every subset of R itself is a finite union of points (gotten from solutions of a univariate polynomial)
and intervals (given by the inequalities). It turns out that this condition: having every subset of
1-dimensional space be a finite union of points and intervals guarantees an incredibly rich structure
theory for general definable subsets.

Definition 7. A structure M in a language expanding {<} is o-minimal if <M is a total order
and every definable subset of M is a finite union of points and intervals. A theory T is o-minimal
if every M � T is o-minimal.

As such, the Tarski-Seidenberg result has the following corollary:

Corollary 1. The theory of (R,+,×, <, {c}c∈R) is o-minimal.

With this result in mind, it’s time to investigate the consequences of o-minimality. The first
that we will try to understand is the statement of cell-decomposition, which shows that definable
subsets of Rn are particularly nicely behaved. To have a cell decomposition, of course, we need a
definition of a cell!

Definition 8 (vdD 2.2.3). We define an m-cell in R` inductively.

• A 0-cell in R is a point ∗ ∈ R

• A 1-cell in R is in interval (a, b) ⊆ R

• Given an i-cell C ⊆ R`, we can construct cells in R`+1 as follows:

- If f : C → R is a definable function then the graph Γ(f) = {(x, f(x)) ⊆ R` × R |x ∈ C} is
an i-cell

- If f, g : C → R are definable functions (or f = ±∞) with f < g then the set {(x, s) |x ∈
C, f(x) < s < g(x)}

Now we can define a cell decomposition as follows:

Definition 9 (vdD 2.2.10). A cell decomposition of Rn is a partition of Rn = C1 ∪ · · · ∪Cn where
the Ci disjoint cells satisfying the following inductive definition:

• A cell decomposition of R is a partition R = C1 ∪ · · · ∪Cn where the Ci are disjoint intervals
or points.
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• A cell decomposition of Rn = C1 ∪ · · · ∪ Cn into cells such that π(C1) ∪ · · · ∪ π(Cn) (where
π : Rn → Rn−1) is projection) is a cell decomposition.

A cell decomposition subordinate to a definable S ⊆ Rn is a cell decomposition of Rn such that
each cell Ci occuring in the decomposition is such that either Ci ⊆ S or Ci ⊆ Rn \ S.

We’re now in the position to state the cell decomposition theorem (which holds generally for an
o-minimal theory or structure)

Theorem 2. Given a definable S ⊆ Rn, there is a cell decomposition of Rn subordinate to S.

We’ll see an application of the cell decomposition theorem shortly. It is also one of the key
technical theorems used to prove refined uniformity results about families of definable sets. A key
example of this, useful to our consideration of n− 1 graphs, is the so-called trivialization theorem.
It states roughly that given a surjective definable map f : S → T we can partition T into definable
subsets Ti such that we can definably parametrize the fibers.

We begin with the definition of a trivial definable map.

Definition 10. Let f : S → T be a definable map. f is said to be definably trivial if the following
diagram commutes

S
(f,λ)

∼
//

f

��

T × F

πT

||
T

Where F ⊆ R` and λ : S → F are definable.

Note, in particular, that λ : S → F is a surjective definable map, meaning that λ gives us a
formula for generating the fibers To see this, let f−1(t) be a fiber. Then as the diagram commutes,
we have that π−1

T (t) = {t} × F and so we get a definable bijection f−1(a)→ f−1(t). As such, this
definable map λ encodes a great deal of information about the fibers of f and indeed is (part of a)
parametrization of the fibers as we vary over the elements of T .

Theorem 3 (vdD 9.1.2). Suppose that S ⊆ Rn, T ⊆ Rm are definable sets and f : S → T is a
continuous definable map. Then there is a partition T = T1 ∪ · · · ∪ T` such that f : f−1(Ti) → Ti
is a definably trivial map.

4 Applications to n− 1 Graphs

We now state and prove our results above:

Theorem 4. The only cardinals κ such that |Λ−1(A)| = κ are natural numbers κ = n and the
cardinality of the continuum κ = |R| = c.

Proof. The set F = Λ−1(A) ⊆ (R+)|E| is definable, being the solution set of a polynomial map.
Hence we can decompose F = F1 ∪ · · · ∪ Fn into finitely many disjoint cells. If dimFi > 0 for any
i then by the inductive criterion for cells, Fi has cardinality c. If dimFi = 0 for all i then F is the
finite union of points. Hence |F | is either finite or c.
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Theorem 5. Let X = Λ((R+)|E|) be the image of the Dirichlet-to-Neumann map. Then we can
partition X = X1 ∪ · · · ∪Xm into a finite union of definable subsets such that Λ : Λ−1(Xm)→ Xm

is a fiber bundle with a bijective semialgebraic map hm = (Λ, h) : Λ−1(Xm)→ Xm × Fm.

Proof. As Λ is definable, the local triviality theorem guarantees that we can partition T = T1 ∪
· · · ∪ Tn such that, with Fi being a representative fiber of Ti, the following diagram commutes:

Λ−1Ti
(Λ,h)

∼
//

Λ

��

Ti × Fi

πT

zz
Ti

This fiber bundle result immediately implies the following corollary:

Corollary 2. For every graph G, the set {n | ∃A ∈M`R |Λ−1(A)| = n} is finite.

Proof. Since X = Λ((R+)|E|) can be decomposed into finitely many definable subsets over which Λ
is a fiber map, and since the cardinality of a fiber bundle is constant, there must be finitely many
definable subsets

5 Further Directions

This section lists a few problems that I think would be very interesting to consider. It’s also possible
that none of these avenues will pan out at all, but that’d be good to know too!

• The proof of cell decomposition is long, nonconstructive, and horribly technical. (It took
about 3 lectures for me to prove it to Jim last year!) Because of this, I’m led to the following
probably ill-posed question: What conditions on the graph G (or on the Dirichlet-to-Neumann
map Λ) would ensure that the cell decomposition can be done in a suitably algorithmic way?

• The proof of the trivialization theorem (the local fiber-bundle theorem) depends on the cell-
decomposition theorem, and beyond that it’s unclear to me how the actual definable bijection
hm : Λ−1(Xm) → Xm × Fm is defined in the proof (the argument is really detailed and it’s
hard to see the forest through the trees). If we can see how to define this definable hm given a
computable cell decomposition, that’d be great because then we’d have an algorithmic method
of parametrizing conductances that give rise to |Fm| − 1 graphs.

• Can the (cell decomposition of) X admit isolated points?

• Can we use o-minimality to get good upper bounds for the cardinality of a fiber based on
some numerical invariant attached to the graph G ”detectable” by the o-minimal structure?

• o-minimality is not unique to the real field R. In fact, any real closed field is o-minimal, and
this includes certain spaces of functions such as the Puiseux series field. It’s conceivable that
under certain circumstances the Dirichlet-to-Neumann map of a nonlinear electrical network
is definable with respect to an o-minimal structure and we would get the same results as
above.
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To attack any of these problems, it would be a good idea to take a look at van den Dries’
book “Tame Topology and o-minimal Structures.” (Please don’t recall it from the library though-
I currently have it and don’t want it recalled while I’m in LA!) I’ll be gone to LA for three weeks
and can meet via Skype and email if you want to talk with me more about this project.
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