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Topology of Series-Parallel Networks* 

R. J. DUFFIN 

Carnegie Institute of Technology, Pittsburgh, Pennsylvania 

1. INTR~OUCTI~N 

There is a simple type of electric network termed a series-parallel connection 
which occurs frequently in both theoretical and applied electrical engineering. 
One reason for the importance of series-parallel connection stems from the 
fact that the joint resistance is easily evaluated by the following two rules due 
to Ohm: 

0 s. Resistance is additive for resistors in series. 

0 P. Reciprocal resistance is additive for resistors in parallel. 

For example, consider Fig. 1 which is a graph diagram of an electrical 
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FIG. 1 

network with branches a, b, e, d, f, k. Let r, denote the resistance of branch a. 
Thus R, is the joint resistance of the network as measured by a battery 
inserted in branch a. Then by repeated application of rules OS and On it is 
readily found that 

R, = ra + rk + {r;’ - [r, + (r;l + r,‘)-‘I-‘}-’ (1) 
* Prepared under Research Grant DA-ARO(D)-31-124-G78 U.S. Army Research 
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This example is an instance of the following general definition. A branch (I 
in a finite network is said to be in series-parallel connection if the joint resis- 
tance R2, through branch a can be evaluated by Ohm’s two rules. A network 
in which every branch is in series-parallel connection shall be termed a 
series-parallel network. 

If the resistors of a network have a nonlinear characteristic then it is 
difficult to evaluate the current flow. However, if the network has the series- 
parallel topology then a great simplification results. This is shown in Section 5. 

Series parallel connections play a prominent role in Shannon’s well known 
application of Boolean algebra to switching circuits [l]. Riordan and 
Shannon [2] extended some early work of Macmahon [3] on the enumeration 
of series-parallel networks. Riordan and Shannon proposed two definitions of 
series-parallel networks. One of these is similar to that given above. Their 
other definition corresponds to the definition of a conjluent network given 
below. 

Some time ago Raoul Bott and the writer gave a method for the synthesis 
of a given impedance by use of a series-parallel connection of resistors, 
inductors, and capacitors [4]. The material in this note was developed at that 
time with the thought that it might throw light on the synthesis problem. 
Thus it appeared desirable to relate three alternative characterizations of 
series-parallel networks: 

(i) Direct construction by the series operation and the parallel operation. 

(ii) The confluence property. 

(iii) The absence of an embedded Wheatstone bridge. 

The proof that these characterizations are equivalent is not very deep but it 
seems desirable to have a unified formal treatment such as given here. 

Consider the network shown in Fig. 2. Note that this network has a planar 

FIG. 2 
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graph and that all the nodes are on the boundary. Thus it is a direct conse- 
quence of Corollary 1 to follow that every branch of this network is in series- 
parallel connection. 

On the other hand it follows from Theorem 1 that no branch of the 
Wheatstone bridge network shown in Fig. 3 is in series-parallel connection. 

a 

e 

FIG. 3 

2. CONFLUENT NETWORKS 

It is desirable to express the series-parallel connection as a topological 
property. To do this familiar geometric terminology and concepts will be 
employed to study the graph diagram of a network. Thus a branch of a net- 
work is depicted in the graph as an edge. An edge is a simple curve and its two 
endpoints are termed nodes. Then a graph G is defined in this paper as a 
finite set of edges arbitrarily interconnected at their nodes. A circuit is a 
sequence of edges forming a closed curve such that no more than two ends 
meet at each node. A loop is a circuit with only one edge. Each of the edges 
of a graph is given a direction. Each of the circuits of a graph is given a direc- 
tion of circulation. 

We say that two edges a and b are confluent if there do not exist two circuits 
C, and C, such that C, meets a and b in the same sense but C, meets a and b 
in opposite sense. We term a graph conjluent if every pair of edges is confluent. 
A tree is an example of a confluent graph because there are no circuits. 

The Wheatstone bridge (also called the complete four-graph) is shown in 
Fig. 3 as a square (a, k, b, e) with diagonals d andf. The edges a and b are 
taken to be opposite sides of the square. Suppose that the directions of a and b 
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are choosen so that they have the same sense relative to the circuit of the 
square (n, K, b, e). However, it then results that a and b have opposite sense 
relative to the circuit (n, d, 6, f) f ormed with the diagonals. Thus a and b 
are not confluent edges. This property is seen to be connected with the well 
known fact that if a battery is inserted in branch a of the Wheatstone bridge 
network then the current in branch b is in one direction if rfr, r,,r,,, and 

in the other direction if rfrd < TJ,,. If rfrd =- rpr,: the bridge is said to be 
balanced. This suggests the following theorem. 

THEOREM 0. Let a and b be branches of a network of resistors. Let a battery 
be inserted in branch a. Then the direction of the current frow through branch h 
is independent of the resistance values of the branches of the network if and 
only if a and b are confluent branches. 

PROOF. If a and b are not confluent let the resistances of all branches be 
infinite except those in C, Then the current flow will be confined to C, and 
so will flow through b in a certain direction. Now consider the case when the 
resistances of all branches are infinite except those in C, Then the current 
flow through b will be opposite to that in the first case. This proves that if a 
and b are not confluent the direction of current depends on the resistance 
values. 

Now suppose a and b are confluent and consider the current flow resulting. 
Let v1 , u2 , ... denote the nodes and let u1 , u2 , ... denote the electric poten- 
tials of the nodes. Let v1 and v2 be the nodes of a and let Us and c4 be the 
nodes of b. It may be assumed that u1 > u2 and ug > uq . Thus current is 
flowing in b from ~1~ to zjq so Kirchhoff’s first law states that current must 
leave v4 by at least one of the connecting branches. Let such a branch have 
nodes voq and ni Then u4 > ui because each branch is assumed to have some 
resistance. Again some of the current must leave ni and flow to a neighboring 
node, say vi . Continuing this process leads to a chain of neighboring nodes 

v4 3 vi , vj 9 ... such that 

u* > ui > uj > .‘. 

Similar reasoning shows that there is a chain of neighboring nodes v3 , v, , 

VO ... such that 

us < u, < up ..’ 

But there are only a finite number of nodes and these inequalities are strict 
so it follows that these chains must terminate at vl and vu2 . Thus 

u1 > ” .:a u, > us > IA4 > u, > “. > I.+ 

The nodes v1 , ..., v, , v3 , v4, ..., v2 are distinct because of the strict inequa- 
lities. Hence the corresponding edges form a circuit containing a and 6. 
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Suppose that some other choice of the resistance values would lead to a 
reverse flow in branch b so that u4 > ua . Then similar reasoning would show 
the existence of a circuit with an ordered sequence of nodes ‘ur , ..., v4, va , ‘.., 
v2 . This contradicts the confluence property and so the theorem follows. 

A subgruph is the graph obtained by performing the operation Q any num- 
ber of times. 

Q. Delete an edge. 

As an example of a subgraph consider all the edges of a graph which are on 
circuits going through a given edge a. All edges except these circuits are 
deleted. This subgraph is designated as G, and is termed the closure of edge a. 
If there are no circuits G, is empty. 

LEMMA 0. The joint resistance R, through branch a of a network is a 
function of I,, , the resistance of branch b, if and only if b is in the closuregraph G,. 

PROOF. The proof of this lemma can be given on the same lines as the 
proof of Theorem 0. The details are omitted. 

3. EMBEDDED WHEATSTONE BRIDGE 

We define an embedded graph as the graph obtained by performing any 
number of the operations Q and S. 

S. Delete a node between two edges in series. 

The node deleted is where exactly two edges join. These two edges are 
then identified. 

LEMMA 1. An embedded graph of a conj?uent graph is a conjluent graph. 

PROOF. Let G be an arbitrary graph, and let G’ be the graph obtained by 
operation S (or Q). If G’ is not confluent then certainly G is not confluent. 
Repeating this argument a sufficient number of times completes the proof. 

THEOREM 1. A necessary and sufficient condition that a graph be a con- 
$uent graph is that no embedded graph be a Wheatstone bridge. 

PROOF Let the given graph G be confluent. Then by Lemma 1 an em- 
bedded graph cannot be a Wheatstone bridge, because a Wheatstone bridge 
is not confluent. 

Next suppose that G is not a confluent graph. Then according to the 
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definition there exist two circuits C, and C, which both share two edges (I 
and b. Moreover it may be supposed that C, meets a and b in the positive 
direction and that C, meets a in the positive direction and b in the negative 
direction. Hence if all edges of G are deleted except those of C, and C, , there 
results a subgraph G’ which is also not confluent. In the graph G’ suppose 
that C, has a node which is not a node of C, Then that node may be deleted 
by operation S, and it is seen that the resultant embedded graph is also not 
confluent. Thus we are led to consider an embedded graph G” in which the 
nodes of C, are also nodes of C, . Let (ni , n2 , ..., v,) denote the nodes of 
C, ordered in the direction of circulation. Let nr, and z+ be the nodes of a, 
and let zli and ~~+r be the nodes of b. The circuit C, may be drawn as a circle 
as shown in Fig. 4. Then the edges of C, which are not edges of C, may be 
drawn as chords of this circle. The nodes of C, are divided into the set M 
containing (z’i , z’a , ..., vi) and the set M’ containing (q+r , ..., v,). Leaving 
point q on C, there is a first edge of C, which has a node in M’. Let this be 
edge x with node v, in M and node vq in M’. Since C, meets b in the negative 
direction, it follows that x is not b. Thus x is a chord of the circle which 
divides the circle into two parts: C,, containing a and C,, containing b. 
We continue on C, through vitl to ci After leaving v? on C, , there is a 
first edge y which connects Clb and C,, Let v,. and v,? be the nodes of y. 
Note that vp , vQ , v,. , v, is a set of ordered nodes of C, , and since C, is a 
simple closed curve, these nodes are distinct. This implies that v, is an inte- 
rior node of C,, and that v, is an interior node of C,, . Thus y is a chord 
which crosses the chord X, as is indicated in Fig. 4. Delete all edges of C, 

FIG. 4 
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not in C, except x and y. Then delete all nodes of C, except v, , v, , v, , vu, . 
This leaves an embedded graph which is a Wheatstone bridge. 

COROLLARY 1. If a graph G has a planar map with all nodes on the bound- 
ary, then G is a confluent graph. 

PROOF. Consider any embedded graph of G with exactly four nodes. The 
map of this embedded graph will also have all its nodes on the boundary. It is 
obvious that a planar map of the Wheatstone bridge cannot have all nodes on 
the boundary, so G is confluent. 

It is seen that the graph shown in Fig. 2 has all its nodes on the boundary. 
Thus it follows from Corollary 1 that it is a confluent graph. 

4. CONSTRUCTION OF SERIES-PARALLEL NETWORKS 

From the point of view of network theory the most interesting graphs are 
those in which all edges are connected by circuits. Thus of especial concern 
here are closed confluent graphs, defined to be confluent graphs in which any 
two edges are common to at least one circuit. If there is only one edge, the 
graph is a loop. The following lemma is well known. 

LEMMA 2. Suppose that the circuits through a certain edge a of a graph 
go through all other edges. Then any other edge b has the same property. 

PROOF. Let C, be a circuit containing a and 6, and let C, be a circuit 
containing a and some other edge x. First suppose x is not on C, . Leaving 
edge x in one direction on C, there is a first node vr which is common to C, 
and C,; leaving in the other direction, let va be the first common node. It is 
seen that vr and v2 are different because a separates them. Delete all edges 
except C, and the part of C, from cur to v2 containing X. The resulting figure 
is equivalent to a circle with a diameter, and so it is apparent that x and b 
are on a simple closed curve. If x is on C, this is also true so the proof is 
complete. 

A consequence of this lemma is that any confluent graph can be “decom- 
posed” into closed confluent graphs and to single edges. These graphs may 
or may not be connected. 

THEOREM 2. Starting from a loop, apply a sequence of the following 
operations : 

S*. Replace an edge by two edges in series. 

P*. Replace an edge by two edges in parallel. 
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This leads to a closed conjkent graph. AIoreooer, an arbitrary closed confluent 
graph may be constructed in this way. 

PROOF. Operation P* is understood to involve two distinct nodes. A loop 
has only one node; thereforeP*must not be the first operation.Thefirstpartof 
Theorem 2 is a consequence of Lemma 2 and Theorem 1, as it is easy to see 
that operation S* or P* could not develop a Wheatstone bridge where one 
did not exist before. 

To treat the second part of the theorem, suppose that graphs with no more 
than n edges can be so constructed. Then consider a closed confluent 
graph G with n - 1 edges. Let a and b be edges with a common node, and 
consider the graph G’ composed of all circuits having both a and b as elements. 
The graph G’ is a subgraph of G, and so Lemma 1 states that G’ is a confluent 
graph. It then follows from Lemma 2 that G’ is a closed confluent graph. 
By S operations delete all nodes of G’ where exactly two edges of G’ meet. 
This gives an embedded graph G” which is also a closed confluent graph. 

It may be assumed that at least three edges meet at every node of G, for 
otherwise G could be constructed out of a network of n edges by operation S *. 
However in G’ the node where a and b join has only the edges a and b. Thus 
G’ and G” have no more than n edges. By the inductive hypothesis G’ and 
G” can be constructed through operations S* and P*. Moreover G’ can be 
derived from G” by repeated application of operation S* alone. If G” is not a 
loop, then it must have two of its edges, say K and d, in parallel. This is a 
consequence of operation P* in the construction of G”. 

We first suppose that G” is not a loop. Then a, 6, and d are on a circuit 
C, and k and d are in parallel. This part of G” is indicated by the solid lines 
in Fig. 5. The nodes of k and dare designated as ni and ~a . Suppose that there 

a 

FIG. 5 
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are no suppressed nodes of G on k or d. Let k be deleted from G; then it is 
seen that replacing K constructs G by operation P* from an n edge closed 
confluent graph. 

The problem has now been reduced to the case that there is a suppressed 
node, say us , on edge K. Since G is a closed graph, there is a circuit C,, through 
edge a and an edge e at n3 . The circuit C’s is indicated as a dotted line in 
Fig. 5. Starting from us on CO there is a first node a4 where CO touches C, . 
This node w4 must actually be the same as oi or z1a , for otherwise there would 
be a Wheatstone bridge embedded graph with nodes vi , u2 , vg , and another 
node on K. From o3 on CO in the reverse direction there is a first node ~1~ 
where CO first meets C, Again vj is the same as vi or va . Now w4 and ~1~ 
are not identical since they are nodes on the circuit C,, which are separated 
by z’s and a node of a. Thus vq = o2 (or zll) and v5 = vi (or ~a). However 
this implies that there is a composite circuit C,, made up of C, and CO and 
going through vi , va , va , a, b, and e. From the definition of G’ this means 
that e is in G’. This is a contradiction. 

The question is now reduced to the case that G” is a loop. Thus G’ con- 
sists of a single circuit C, . Let b, , b, , ..., denote the edges at one node of a 
and let hi , h, , .. denote the edges at the other node of a. By applying the 
argument given above to the pair of edges (a, bi) it follows that there is exactly 
one circuit, say C, , through the edges a and bi . Likewise the pair of edges 
(hi , u) defines a circuit C,*. It may be assumed that circuits C, and Ci* 
are in correspondence. Thus the circuit Ci is defined by the triple (hi , a, bi). 
Let ~a be a node on the circuit C, which is not a node of a. Then there is 
another circuit, say C, , which goes through vO because every node of G has 
at least three edges. In Fig. 6 the circuit C, is shown in full lines. The circuit 

FIG. 6 
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C, is shown in dotted lines. Let q be the node joining a and h, Let a, be the 
first node of C, encountered when leaving v:‘l along C, and going through h, 
Let C,, be the composite circuit made up of the part of C, traversed above and 
the part of C, between o1 and o2 which contains n and 6, But the circuit 
C,, is not identical with C, because it contains h, . This contradicts the 
assumption that there was only one circuit containing both edge a and edge b, . 
This completes the proof of Theorem 2. 

COROLLARY 2. Every conjluent graph is planar, and the resulting map can 
be colored in three colors. 

PROOF. It is sufficient to consider a closed graph. Assume that the corol- 
lary is true for all graphs with n edges. The planar map of such a graph is 
shown in Fig. 7(a). An edge is shown separating two regions of colors x and y. 
Then operation P* applied to this edge gives a planar map as shown 
in Fig. 7(b). The new region is colored z. The operation S* does not intro- 

FIG. 7a FIG. 7b 

duce any new region. Hence the graphs with n + 1 edges are planar and can 
be colored in three colors x, y, and z. 

COROLLARY 3. The dual graph of a closed con$uent graph with two or more 
edges is also a closed conjIuent graph. 

PROOF. The nodes of a dual graph are located in the regions of the primal 
graph, and there is a one-to-one correspondence between the edges of the 
two graphs determined by their crossing. The dual of a graph with two edges 
in parallel also is a graph with two edges in parallel. 

Now proceed by induction as in the proof of Corollary 2. The dotted line 
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in Fig. 7(a) is an edge of the dual graph connecting the region colored x with 
the region colored y. In Fig. 7(b) this edge has been divided and a new node 
has been inserted in the region colored z. This operation P* on the primal 
graph induces an operation S* on the dual graph. Likewise the operation S* 
on the primal graph induces an operation P* on the dual graph. Thus the 
induction argument is complete. 

COROLLARY 4. A graph is a closed confluent graph tf and only zf it can be 
reduced to a loop by a suitable sequence of the following operations: 

S. Delete a node between two edges in series. 

P. Delete an edge parallel to another edge. 

Moreover the sequence of operations can be choosen so that a given edge a is not 
involved except for the last operation of the sequence. 

PROOF. The operations S and P are the inverse of the operations SC and 
P*. Then a sequence of the operations S and P may .be choosen to undo the 
construction of the graph by the operations S* and P*. This proves the first 
part of Corollary 4. 

Suppose the last statement of Corollary 4 is true for graphs with n edges 
and consider a graph G with n + 1 edges. It may be supposed that n > 3. 
If a is the given edge suppose that edge b is in series with a (or in parallel 
with a). Then applying operation S (or P) in which edges a and b are replaced 
by a single edge a’. This gives a graph G’ with n edges. Thus there is a 
sequence of operations which reduce G’ to a graph which is a circuit with two 
edges, a’ and x. Now a’ is replaced by a and 6 in series (or a and b in parallel). 
Then S (or P) is applied to x and b. Finally apply S and the graph is reduced 
to a loop. 

THEOREM 3. A network is of series-parallel type if and only zf it is con- 
fluent. 

PROOF. Let us consider the joint resistance R, as determined by a battery 
inserted in branch a of resistance ra . According to Lemma 0 it is sufficient 
to consider the closed subnetwork G, of which a is a part. Of course if a is not 
part of a closed network, then the joint resistance is infinite. 

First suppose that edge a is in a closed confluent network G, . The opera- 
tions S and P of Corollary 4 are to be carried out so as to reduce G, to a loop. 
S uppose operation S is carried out on two edges d and k which are in series. 
Then the new edge may be termed d’, and it is given the resistance 
rdl = Ye $~ rR . This procedure would be followed even if d were a. In any 
case R, has the same value for the reduced network. 

6 
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If the operation P is carried out on two edges d and k which are in parallel, 
then the new edge d’ is given the resistance Y,~I = (7-7;’ -~ r,‘) -I, If d or k is 
not a, then R, has the same value for the reduced network. This would not be 
true if d were a. However according to the last statement of Corollary 4 (1 is 
involved only in the last operation. This can be operation S. This proves 
that a confluent network is series-parallel. 

Conversely suppose that branch a is in series-parallel connection. Then the 
operations S and P are defined by the process of evaluating R, These opera- 
tions reduce G,, to a loop and the proof is completed by Corollary 4. 

(The writer is indebted to A. F. Taupe and to the referee for pointing out 
a relationship of the present investigation with work of Dirac [5, 61 on 
chromatic graphs. In particular Theorem 14.3.7 quoted in the book by 
Ore [7] would furnish an alternative proof to some of the questions treated 
here. This theorem, when translated into the terminology of this paper, 
states that a closed graph without series or parallel edges must have an em- 
bedded Wheatstone Bridge.) 

5. XONLINEAR NETWORKS 

In a theory of nonlinear networks developed by the writer [8] the linear 
relation of Ohm y = rx between current x and voltage y is replaced by the 
relation y = p(x) where the function p(x) satisfies the conditions: (1) P(X) 
is continuous and increasing, (2) p( ) x is unbounded for x = & co, and 
(3) p(O) q := 0. The function p(x) may he termed the resistance function. If 
x = p-l(y) the function p---‘(y) may be termed the conductance function. 
Resistors with these properties are termed monotone resistors. The uniqueness 
and existence theorems for a network of monotone resistors were found to 
be essentially the same as for a network of Ohmic resistors. 

It was proved that the joint resistance function R,(x) is also a monotone 
increasing function. However, to evaluate R,(x) is usually a very difficult 
problem, see [9-l 11. It is to be brought out here that there is a great simplifica- 
tion in the special case of series-parallel networks. (These results are a joint 
work of Raoul Bott and the writer.) 

Shown in Fig. 8 are the resistance functions ,c+,(x) and P&X) of monotone 
resistors h and d. Let P,~(x) be the resistance function of b and d in series. 
Then 

P,(X) z= P&) + h(X). 

The function p8(x) is determined graphicaIZy by adding ordinates as shown in 
Fig. 4. Let p,(x) be the resistance function for b and d in parallel. Thus 

P,YY) = Pxv) + PXJ’) and so PI)(X) = (p;l + p;l)-l (x). 
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The function pP(x) is determined graphically by adding abcissas as shown in 
Fig. 4. Thus we may say that the resistance function for two resistors (in 
series or in parallel) is given by an explicit formula involving only the opera- 
tion of addition and the operation of inversion. 

FIG. 8 

THEOREM 4. Given a confluent network of monotone resistors. Let a gene- 
rator of voltage e be inserted in branch a of the network. Then for each node vi 
of the network there is an explicit formula ui = Uia(e) giving the node potential 
ui as a function of the generator voltage. Also for each branch b there is an explicit 
formula xb = X,,Je) giving the branch current xb as a function of the generator 
voltage. These formulas are constructed using only the operations of inversion 
and the operation of addition (subtraction and multiplication are not used). 

PROOF. If the generator voltage e is held constant then effective values of 
resistance can be defined as the ratio of potential drop to current flow. These 
effective values will be positive. Thus the same arguments can be applied as 
were used for networks of ohmic resistance. In particular it follows from 
Lemma 0 that no current will flow in a branch not on a circuit with a. 

To make the potential definite one node of branch a is assigned zero 
potential. If the network is not connected all nodes not connected to a are 
assigned zero potential. 

Now proceed by induction. The theorem is true if there is only one branch 
so suppose it to be true for all networks with n branches and consider a 
network N with n + 1 branches. Let N, be the subnetwork of N consisting 
of all branches on circuits through a. If N, is empty all nodes of N are given 
the potential e or the potential zero depending on which node of a they are 
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connected. If a is a loop then all nodes are given the potential zero and 

.‘L,, = p,‘(e). 
Xow we consider the case that A’, has at least two branches. Then the 

corresponding graph G,, is a closed confluent graph. It follows that edges can 
be given a direction such that if a and b are in a circuit then a and b have the 
same sense relative to the circuit. By virtue of Corollary 4 there are either 
two edges of G,, in series or else there are two edges in parallel. 

First suppose edges b and d are in series and that b has nodes (vi , UJ 
and that d has nodes (~a , ZQ and pa(x) = &x) + Pi. This gives a network 
JY’ with n branches. Let the currents and potentials be determined for A-‘. 
Let the current flow through s be .z’~ in the direction 1 to 3. Let the potentials 
at z’r and ~a be ui and uQ Iiow let the old branches be restored the current 
flow through b and d is taken to be xS also. The potentials ui and ua are 
unchanged. The potential at ~a is determined by the formula 

With these choices it is clear that Kirchhoff’s laws are satisfied for the 
network N. 

Xow suppose branches b and d are in parallel in the network N and that 
they have nodes (vi , ~a). These branches are replaced by a single branch p 
and p;’ = p;;‘(y) + p;‘(y). For this new network the currents and potentials 
are determined. Let xI, be the current through p directed from 2rr to v, 
iXow the old branches are restored. Then the potentials ui and ua are unchang- 
ed so the currents xb and xd must satisfy 

f&P) = P&d = PdhJ 

Hence xb and xd are determined by the formulas 

Again KirchhofI’s laws are seen to be satisfied. Moreover the new formulas 
involve only operations of addition and inversion so this proof is complete. 

Attention has been confined here to monotone resistors because in this 
case a mathematical solution exists and is unique. It is apparent however 
from the method of proof that arbitrary nonlinearity in series-parallel net- 
works can be treated by use of multiple-valued functions. 

To give an example of Theorem 4 suppose that Fig. 1 now represents a 
nonlinear network. Let R,(x) be the joint resistance function of branch a. 
Thus if a generator of voltage e is inserted in this branch, giving rise to a 
current x = R;;‘(e) in this branch, then the explicit formula asserted by 
Theorem 4 is 
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The proof of formula (2) and the corresponding linear formula (1) follows 
from the proof of Theorem 3. It is worth noting that formula (2) can be 
evaluated graphically on a single (xy) plot. It is simply necessary to plot the 
six functions pa(x), pb(x), &x), p,(x), pk(x), p/(x) and to add ordinates or 
abscissas as is indicated in relation (2). 

6. DUALITY 

George Minty has recently introduced a postulational structure termed 
a gruphoid [ 121 in which prime emphasis is placed on the duality properties of 
matroids, graphs, and electrical networks. Minty makes the following 
definitions: 

MD ’ Two edges are in parallel if they form a circuit. 
M, . Two edges are in series if they form a cocircuit. 

In the case of a graph a cocircuit is also called a cut and is defined to be a 
minimal set of edges which separates two nodes. In particular two edges of a 
closed graph are in series according to definition MS if they have a common 
node which is not a node for any other edge. It is worth noting that only 
this particular case was concerned in operations S and S*. 

The definitions M, and M,Y are dual in the sense of Corollary 3. Thus if 
edges b and e are in parallel (series) in the primal graph, then the correspond- 
ing edges b’ and e’ are in series (parallel) in the dual graph. This follows 
because the circuits in the primal graph correspond to cocircuits in the dual 
graph. 

The duality principle then suggests the following definitions: We say that 
edge a and edge b are equipollent if there do not exist two cocircuits D, and D, 
such that D, meets a and b in the same sense but that D, meets a and b in 
opposite sense. We term a graph equipollent if every pair of edges is equipol- 
lent. This last definition gives another characterization of a series-parallel 
network because of the following theorem. 

THEOREM 5. Two edges are equipollent if and only if they are conjkent. 
This theorem is true for graphoids as well as graphs. The proof is omitted. 
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