ACYCLIC ORIENTATIONS OF GRAPHS*

Richard P. STANLEY

Department of Mathematics, University of California, Berkeley, Calif. 94720, USA

Received 1 June 1972

Abstract. Let G be a finite graph with p vertices and χ its chromatic polynomial. A combinatorial interpretation is given to the positive integer $(-1)^p \chi(-\lambda)$, where λ is a positive integer, in terms of acyclic orientations of G. In particular, $(-1)^p \chi(-1)$ is the number of acyclic orientations of G. An application is given to the enumeration of labeled acyclic digraphs. An algebra of full binomial type, in the sense of Doubilet-Rota-Stanley, is constructed which yields the generating functions which occur in the above context.

1. The chromatic polynomial with negative arguments

Let G be a finite graph, which we assume to be without loops or multiple edges. Let V = V(G) denote the set of vertices of G and X = X(G)the set of edges. An edge $e \in X$ is thought of as an unordered pair $\{u, v\}$ of two distinct vertices. The integers p and q denote the cardinalities of V and X, respectively. An *orientation* of G is an assignment of a direction to each edge $\{u, v\}$, denoted by $u \rightarrow v$ or $v \rightarrow u$, as the case may be. An orientation of G is said to be *acyclic* if it has no directed cycles.

Let $\chi(\lambda) = \chi(G, \lambda)$ denote the chromatic polynomial of G evaluated at $\lambda \in C$. If λ is a non-negative integer, then $\chi(\lambda)$ has the following rather unorthodox interpretation.

Proposition 1.1. $\chi(\lambda)$ is equal to the number of pairs $(\sigma, 0)$, where σ is any map $\sigma : V \rightarrow \{1, 2, ..., \lambda\}$ and 0 is an orientation of G, subject to the two conditions:

(a) The orientation 0 is acyclic.

(b) If $u \rightarrow v$ in the orientation 0, then $\sigma(u) > \sigma(v)$.

* The research was supported by a Miller Research Fellowship.

Proof. Condition (b) forces the map σ to be a proper coloring (i.e., if $\{u, v\} \in X$, then $\sigma(u) \neq \sigma(v)$). From (b), condition (a) follows automatically. Conversely, if σ is proper, then (b) defines a unique acyclic orientation of G. Hence, the number of allowed σ is just the number of proper colorings of G with the colors 1, 2, ..., λ , which by definition is $\chi(\lambda)$.

Proposition 1.1 suggests the following modification of $\chi(\lambda)$. If λ is a non-negative integer, define $\overline{\chi}(\lambda)$ to be the number of pairs (σ , 0), where σ is any map $\sigma: V \rightarrow \{1, 2, ..., \lambda\}$ and 0 is an orientation of G, subject to the two conditions:

(a') The orientation 0 is acyclic,

(b') If $u \to v$ in the orientation 0, then $\sigma(u) \ge \sigma(v)$. We then say that σ is compatible with 0.

The relationship between χ and $\overline{\chi}$ is somewhat analogous to the relationship between combinations of *n* things taken *k* at a time without repetition, enumerate 1 by $\binom{n}{k}$, and with repetition, enumerated by $\binom{n+k-1}{k} = (-1)^k \binom{-n}{k}$.

Theorem 1.2. For all non-negative integers λ ,

 $\overline{\chi}(\lambda) = (-1)^p \chi(-\lambda).$

Proof. Recall the well-known fact that the chromatic polynomial $\chi(G, \lambda)$ is uniquely determined by the three conditions:

(i) $\chi(G_0, \lambda) = \lambda$, where G_0 is the one-vertex graph.

(ii) $\chi(G + H, \lambda) = \chi(G, \lambda) \chi(H, \lambda)$, where G + H is the disjoint union of G and H,

(iii) for all $e \in X$, $\chi(G, \lambda) = \chi(G \setminus e, \lambda) - \chi(G/e, \lambda)$, where $G \setminus e$ denotes G with the edge e deleted and G/e denotes G with the edge e contracted to a point.

Hence, it suffices to prove the following three properties of $\overline{\mathbf{x}}$:

(i') $\overline{\chi}(G_0, \lambda) = \lambda$, where G_0 is the one-vertex graph,

(ii') $\overline{\chi}(G + H, \lambda) = \overline{\chi}(G, \lambda) \overline{\chi}(H, \lambda),$

(iii') $\overline{\chi}(G, \lambda) = \overline{\chi}(G \setminus e, \lambda) + \overline{\chi}(G/e, \lambda).$

Properties (i') and (ii') are obvious, so we need only prove (iii'). Let $\sigma: V(G \setminus e) \rightarrow \{1, 2, ..., \lambda\}$ and let 0 be an acyclic orientation of $G \setminus e$ compatible with σ , where $e = \{u, v\} \in X$. Let O_1 be the orientation of G obtained by adjoining $u \rightarrow v$ to 0, and O_2 that obtained by adjoining $v \rightarrow u$. Observe that σ is defined on V(G) since $V(G) = V(G \setminus e)$. We will

172

show that for each pair (σ, \mathcal{O}) , exactly one of \mathcal{O}_1 and \mathcal{O}_2 is an acyclic orientation compatible with σ , except for $\overline{\chi}(G/e, \lambda)$ of these pairs, in which case both \mathcal{O}_1 and \mathcal{O}_2 are acyclic orientations compatible with σ . It then follows that $\overline{\chi}(G, \lambda) = \overline{\chi}(G \setminus e, \lambda) + \overline{\chi}(G/e, \lambda)$, so proving the theorem.

For each pair $(\sigma, 0)$, where $\sigma: G \setminus e \to \{1, 2, ..., \lambda\}$ and 0 is an acyclic orientation of $G \setminus e$ compatible with σ , one of the following three possibilities must hold.

Case 1: $\sigma(u) > \sigma(v)$. Clearly \mathcal{O}_2 is not compatible with σ while \mathcal{O}_1 is compatible. Moreover, \mathcal{O}_1 is acyclic, since if $u \to v \to w_1 \to w_2 \to \dots \to u$ were a directed cycle in \mathcal{O}_1 , we would have $\sigma(u) > \sigma(v) \ge \sigma(w_1) \ge \sigma(w_2) \ge \dots \ge \sigma(u)$, which is impossible.

Case 2: $\sigma(u) < \sigma(v)$. Then symmetrically to Case 1, O_2 is acyclic and compatible with σ , while O_1 is not compatible.

Case 3: $\sigma(u) = \sigma(v)$. Both \mathcal{O}_1 and \mathcal{O}_2 are compatible with σ . We claim that at least one of them is acyclic. Suppose not. Then \mathcal{O}_1 contains a directed cycle $u \rightarrow v \rightarrow w_1 \rightarrow w_2 \rightarrow \dots \rightarrow u$ while \mathcal{O}_2 contains a directed cycle $v \rightarrow u \rightarrow w'_1 \rightarrow w'_2 \rightarrow \dots \rightarrow v$. Hence, \mathcal{O} contains the directed cycle

$$u \rightarrow w'_1 \rightarrow w'_2 \rightarrow \dots \rightarrow v \rightarrow w_1 \rightarrow w_2 \rightarrow \dots \rightarrow u_s$$

contradicting the assumption that O is acyclic.

It remains to prove that both \mathcal{O}_1 and \mathcal{O}_2 are acyclic for exactly $\overline{\chi}(G/e, \lambda)$ pairs $(\sigma, 0)$, with $\sigma(u) = \sigma(v)$. To do this we define a bijection $\Phi(\sigma, 0) = (\sigma', 0')$ between those pairs $(\sigma, 0)$ such that both \mathcal{O}_1 and \mathcal{O}_2 are acyclic (with $\sigma(u) = \sigma(v)$) and those pairs $(\sigma', 0')$ such that $\sigma' : G/e \to \{1, 2, ..., \lambda\}$ and \mathcal{O}' is an acyclic orientation of G/e compatible with σ' . Let z be the vertex of G/e obtained by identifying u and v, so

$$V(G/e) = V(G \setminus e) - \{u, v\} \cup \{z\}$$

and $X(G/e) = X(G \setminus e)$. Given $(\sigma, 0)$, define σ' by $\sigma'(w) = \sigma(w)$ for all $w \in V(G \setminus e) - \{z\}$ and $\sigma'(z) = \sigma(u) = \sigma(z)$. Define 0' by $w_1 \to w_2$ in 0' if and only if $w_1 \to w_2$ in 0. It is easily seen that the map $\Phi(\sigma, 0) = (\sigma', 0')$ establishes the desired bijection, and we are through.

Theorem 1.2 provides a combinatorial interpretation of the positive integer $(-1)^p \chi(G, -\lambda)$, where λ is a positive integer. In particular, when $\lambda = 1$ every orientation of G is automatically compatible with every map $\sigma: G \rightarrow \{1\}$. We thus obtain the following corollary.

Corollary 1.3. If G is a graph with p vertices, then $(-1)^p \chi(G, -1)$ is equal to the number of acyclic orientations of G.

In [5], the following question was raised (for a special class of graphs). Let G be a p-vertex graph and let ω be a *labeling* of G, i.e., a bijection $\omega: V(G) \rightarrow \{1, 2, ..., p\}$. Define an equivalence relation ~ on the set of all p! labelings ω of G by the condition that $\omega \sim \omega'$ if whenever $\{u, v\} \in X(G)$, then $\omega(u) < \omega(v) \Leftrightarrow \omega'(u) < \omega'(v)$. How many equivalence classes of labelings of G are there? Clearly two labelings ω and ω' are equivalent if and only if the unique orientations 0 and 0' compatible with ω and ω' , respectively, are equal. Moreover, the orientations 0 which arise in this way are precisely the acyclic ones. Hence, by Corollary 1.3, the number of equivalence classes is $(-1)^p \chi(G, -1)$.

We conclude this section by discussing the relationship between the chromatic polynomial of a graph and the order polynomial [4;5;6] of a partially ordered set. If P is a p-element partially ordered set, define the order polynomial $\Omega(P, \lambda)$ (evaluated at the non-negative integer λ) to be the number of order-preserving maps $\sigma: P \rightarrow \{1, 2, ..., \lambda\}$. Define the strict order polynomial $\overline{\Omega}(P, \lambda)$ to be the number of strict order-preserving maps $\sigma: P \rightarrow \{1, 2, ..., \lambda\}$. Define the strict order polynomial $\overline{\Omega}(P, \lambda)$ to be the number of strict order-preserving maps $\sigma: P \rightarrow \{1, 2, ..., \lambda\}$, i.e., if x < y in P, then $\sigma(x) < \sigma(y)$. In [5], it was shown that Ω and $\overline{\Omega}$ are polynomials in λ related by $\overline{\Omega}(P, \lambda) = (-1)^{p} \Omega(P, -\lambda)$. This is the precise analogue of Theorem 1.2. We shall now clashly this analogy.

If \emptyset is an orientation of a graph G, regard \emptyset as a binary relation \ge on V(G) defined by $u \ge v$ if $u \Rightarrow v$. If \emptyset is acyclic, then the transitive and reflexive closure $\overline{\emptyset}$ of \emptyset is a partial ordering of V(G). Moreover, a map $\sigma: V(G) \Rightarrow \{1, 2, ..., \lambda\}$ is compatible with \emptyset if and only if σ is orderpreserving when considered as a map from $\overline{\emptyset}$. Hence the number of σ compatible with \emptyset is just $\Omega(\overline{\emptyset}, \lambda)$ and we conclude that

$$\bar{\chi}(G,\lambda)=\sum_{0}\Omega(\overline{0},\lambda),$$

where the sum is over all acyclic orientations O of G. In the same way, using Proposition 1.1, we deduce

(1)
$$\chi(G, \lambda) = \sum_{0} \overline{\Omega}(\overline{0}, \lambda).$$

Hence, Theorem 1.2 follows from the known result $\overline{\Omega}(P, \lambda) = (-1)^{p} \Omega(P, -\lambda)$, but we thought a direct proof to be more illuminating. Equation (1) strengthens the claim made in [4] that the strict order polynomial $\overline{\Omega}$ is a partially-ordered set analogue of the chromatic polynomial χ .

2. Enumeration of labeled acyclic digraphs

Corollary 1.3, when combined with a result of Read (also obtained by Bender and Goldman), yields an immediate solution to the problem of enumerating labeled acyclic digraphs with n vertices. The same result was obtained by R.W. Robinson (to be published), who applies it to the unlabeled case.

Proposition 2.1. Let f(n) be the number of labeled acyclic digraphs with n vertices. Then

$$\sum_{n=0}^{\infty} f(n) x^n/n! \ 2^{\binom{n}{2}} = \left(\sum_{n=0}^{\infty} (-1)^n x^n/n! \ 2^{\binom{n}{2}}\right)^{-1}.$$

Proof. By Corollary 1.3,

(2)
$$f(n) = (-1)^n \sum_G \chi(G, -1),$$

where the sum is over all labeled graphs G with n vertices. Now, Read [3] (see also [1]) has shown that if

$$M_n(k) = \sum_G \chi(G, k)$$

(where the sum has the same range as in (2)), then

(3)
$$\sum_{n=0}^{\infty} M_n(k) x^n/n! 2^{\binom{n}{2}} = \left(\sum_{n=0}^{\infty} x^n/n! 2^{\binom{n}{2}}\right)^k.$$

Actually, the above papers have $2^{n^2/2}$ where we have $2^{\binom{n}{2}}$ this amounts to the transformation $x' = 2^{\frac{1}{2}}x$. One advantage of our 'normalization' is

that the numbers $n! 2^{\binom{n}{2}}$ are integers, a second is that the function

$$F(x) = \sum_{n=0}^{\infty} x^n/n! 2^{\binom{n}{2}}$$

satisfies the functional relation $F'(x) = F(\frac{1}{2}x)$. A third advantage is mentioned in the next section. Thus setting k = -1 and changing x to -x in (3) yields the desired result.

By analyzing the behavior of the function $F(x) = \sum_{n=0}^{\infty} x^n/n! 2^{\binom{n}{2}}$, we obtain estimates for f(n). For instance, Rouché's theorem can be used to show that F(x) has a unique zero $\alpha \approx -1.488$ satisfying $|\alpha| \leq 2$. Standard techniques yield the asymptot'c formula

$$f(n) \sim C2^{\binom{n}{2}} n! (-\alpha)^{-n},$$

where α is as above and $1.741 \approx C = 1/\alpha F(\frac{1}{2}\alpha)$. A more careful analysis of F(x) will yield more precise estimates for f(n).

3. An algebra of binomial type

The existence of a combinatorial interpretation of the coefficients $M_n(k)$ in the expansion

$$\left(\sum_{n=0}^{\infty} x^n/2^{\binom{n}{2}} n!\right)^k = \sum_{n=0}^{\infty} M_n(k) x^n/2^{\binom{n}{2}} n!$$

suggests the existence of an algebra of full binomial type with structure constants $B(n) = 2^{\binom{n}{2}} n!$ in the sense of [2]. This is equivalent to finding a locally finite partially ordered set P (said to be of *full binomial type*), satisfying the following conditions:

(a) In any segment $[x, y] = \{z \mid x \le z \le y\}$ of P (where $x \le y$ in P), every maximal chain has the same length n. We call [x, y] an *n*-segment.

(b) There exists an *n*-segment for every integer $n \ge 0$ and the number of maximal chains in any *n*-segment is $B(n) = 2^{\binom{n}{2}}n!$, (In particular, B(1) must equal 1, further explaining the normalization $x' = 2^{\frac{1}{2}}x$ of Section 2.)

3. An algebra of binomial type

If such a partially ordered set P exists, then by [2] the value of $\zeta^k(x, y)$, where ζ is the zeta function of P, k is any integer and [x, y] is any *n*-segment, depends only on k and n. We write $\zeta^k(x, y) = \zeta^k(n)$. Then again from [2],

$$\sum_{n=0}^{\infty} \zeta^k(n) x^n / B(n) = \left(\sum_{n=0}^{\infty} x^n / B(n)\right)^k.$$

Hence $\zeta^k(n) = M_n(k)$. In particular, the cardinality of any *n*-segment [x, y] is $M_n(2)$, the number of labeled two-colored graphs with *n* vertices; while $\mu(x, y) = (-1)^n f(n)$, where μ is the Möbius function of *P* and f(n) is the number of labeled acyclic digraphs with *n* vertices. The general theory developed in [2] provides a combinatorial interpretation of the coefficients of various other generating functions, such as $(\sum_{n=1}^{\infty} x^n/B(n))^k$ and $(2 - \sum_{n=0}^{\infty} x^n/B(n))^{-1}$.

Since $M_n(2)$ is the cardinality of an *n*-segment, this suggests taking elements of *P* to be properly two-colored graphs. We consider a somewhat more general situation.

Proposition 3.1. Let V be an infinite vertex set, let q be a positive integer and let P_q be the set of all pairs (G, σ) , where G is a function from all 2-sets $\{u, v\} \subseteq V$ $(u \neq v)$ into $\{0, 1, ..., q-1\}$ such that all but finitely many values of G are 0, and where $\sigma: V \rightarrow \{0, 1\}$ is a map satisfying the condition that if $G(\{u, v\}) > 0$ then $\sigma(u) \neq \sigma(v)$ and that $\sum_{u \in v} \sigma(u) < \infty$.

If (G, σ) and (H, τ) are in P_q , define $(G, \sigma) \leq (H, \tau)$ if:

(a) $\sigma(u) \leq \tau(u)$ for all $u \in V$, and

(b) If $\sigma(u) = \tau(u)$ and $\sigma(v) = \tau(v)$, then $G(\lbrace u, v \rbrace) = H(\lbrace u, v \rbrace)$.

Then P_q is a partially ordered set of full binomial type with structure 'constants $B(n) = n! q^{\binom{n}{2}}$.

Proof. If (H, τ) covers (G, σ) in P (i.e., if $(H, \tau) > (G, \sigma)$ and no (G', σ') satisfies $(H, \tau) > (G', \sigma') > (G, \sigma)$), then

$$\sum_{u \in V} \tau(u) = 1 + \sum_{u \in V} \sigma(u)$$

From this it follows that in every segment of P, all maximal chains have the same length.

In order to prove that an *n*-segment $S = [(G, \sigma), (H, \tau)]$ has $n! q^{\binom{n}{2}}$ maximal chains, it suffices to prove that (H, τ) covers exactly nq^{n-1} elements of S, for then the number of maximal chains in S will be $(nq^{n-1})((n-1)q^{n-2})...(2q^1) \cdot 1 = n!q^{\binom{n}{2}}$. Since S is an *n*-segment, there are precisely *n* vertices $v_1, v_2, ..., v_n \in V$ such that $\sigma(v_i) = 0 < 1 =$ $\tau(v_i)$. Suppose (H, τ) covers $(H', \tau') \in S$. Then τ' and τ agree on every $v \in V$ except for one v_i , say v_1 , so $\tau'(v_1) = 0$, $\tau(v_1) = 1$. Suppose now $H'(\{u, v\}) > 0$, where we can assume $\tau'(u) = 0, \tau'(v) = 1$. If v is not some v_i , then $\sigma(u) = 0, \sigma(v) = 1$, so $H'(\{u, v\}) = G(\{u, v\})$. If $v = v_i$ $(2 \le i \le n)$ and u is not v_1 , then $\tau(u) = 0, \tau(v) = 1$, so $H'(\{u, v\}) =$ $H(\{u, v\})$. Hence $H'(\{u, v\})$ is completely determined unless $u = v_1$ and $v = v_i, 2 \le i \le n$. In this case, each $H'(\{v_1, v_i\})$ can have any one of qvalues. Thus, there are *n* choices of v_1 and *q* choices for each $H'(\{v_1, v_i\})$, $2 \le i \le n$, giving a total of nq^{n-1} elements $(H', \tau') \in S$ covered by (H, τ) .

Observe that when q = 1, condition (b) is vacuous, so P_1 is isomorphic to the lattice of finite subsets of V. When q = 2, we may think of $G(\{u, v\}) = 0$ or 1 depending on whether $\{u, v\}$ is not or is an edge of a graph on the vertex set V. Then σ is just a proper two-coloring of v with the colors 0 and 1, and the elements of P_2 consist of all properly twocolored graphs with vertex set V, finitely many edges and finitely many vertices colored 1. We remark that P_q is not a lattice unless q = 1.

References

- E.A. Bender and J. Goldman, Enumerative uses of generating twictions, Indiana Univ. Math. J. 20 (1971) 753-755.
- [2] P. Doubilet, G.-C. Rota and R. Stanley, On the foundations of combinatorial theory: The idea of generating function, in: Sixth Berkeley symposium on mathematical statistics and probability (1972) 267-318.
- [3] R. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math. 12 (1960) 410-414.
- [4] R. Stanley, A chromatic-like polynomial for ordered sets, in: Proc. second Chapel Hill conference on combinatorial mathematics and its applications (1970) 421-427.
- [5] R. Stanley, Ordered structures and partitions, Mem. Am. Math. Soc. 119 (1972).
- [6] R. Stanley, A Brylawski decomposition for finite ordered sets, Discrete Math. 4 (1973) 77-82.