© DISCRETE MATHEMATICS 5 (1973) 171-178. North-Holland Publishing Company

ACYCLIC ORIENTATIONS OF GRAPHS*

Richard P. STANLEY

Departmeht of Mathematics, University of California,
Berkeley, Calif. 94720, USA

Received 1 June 1972

Abstract. Let G be a finite graph with p vertices and x its chromatic polynomial. A combinato-
rial interpretation is given to the positive integer (—1)P x(—A), where A is a positive integer, in
terms of acyclic orientations of G. In particular, (—1)P x(—1) is the number of acyclic orienta-
tions of G. An application is given to the enumeration of labeled acyclic digraphs. An algebra
of full binomial type, in the sense of Doubilet—-Rota—Stanley, is constructed which yields the
generating functions which occur in the above context.

1. The chromatic polynomial with negative arguments

Let & be a finite graph, which we assume to be without loops or mul-
tipie edges. Let V' = V(G) denote the set of vertices of G and X = X(G)
the set of edges. An edge e € X is thought of as an unordered pair {u, v}
of two distinct vertices. The integers p and g denote the cardinalities of
V and X, respectively. An orientation of G is an assignment of a direc-
tion to each edge {u, v}, denoted by u » v or v = u, as the case may be.
An orientaticn of G is said to be acyclic if it has nc directed cycles.

Let x (A) = x(G, \) denote the chromatic polynomial of G evaluated
at A € C. If A is a non-negative integer, then x(A) has the following
rather unorthodox interpretation.

Proposition 1.1. x () is equal to the number of pairs (o, 0), where o is
any map o: V> {1,2,..., A} and O is an orientation of G, subject to the
two conditions: '

(a) The orientation Q is acyclic.

(b) If u - v in the orientction 0, then a(u) > a(v).
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Proof. Condition (b) forces the map v to be a proper colormg (i.e., if

{u, v} € X, then o(u) # 6(v)). From (b), condition (a) follows automa-
tically. Conversely, if g is proper, then (b) defines a unique acyelic
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orientation of G. Hence, the number of allowed o is just the number of
proper colorings of G with the colors 1, 2, ..., A, which by definition is x(A).

Proposition 1.1 suggests the following modification of x(A). If Ais a
non-negative integer, define X(A\) to be the number of pairs (o, 0), where
gisanymapo: V- {1,2,...,A} and 0 is an orientation of G, subject
to the two conditions:

(a') The orientation Q is acyclic,

(b') If u - v in the orientaticn 0, then (1) > ¢(v). We then say that
o is compatible with (.

The relationship between x and X is somewhat analogous to the rela-
tionship between combinations of » things taken & at a time without
repetition, enumerate 1 by ( k) and with repetition, enumerated by

"Ry = (-DECH.

Theorem 1.2. For all non-negaiive integers \,
X(A) = (=1)2 x(=]).

Proof. Recall the well-known fact that the chromatic polynomial
x(G, \) is uniquely determined by the three conditions:

(i) Xx(Gg, A) = N, where G, is the one-vertex graph.

(ii) x{G + H, 1) = x(G, \) X (H, N), where & + H is the disjoint union
of G and H,

(iii} for all e € X, x(G, \) = x(G\2, \) - x(G/e, \), where G\e denotes
G with the edge e deleted and G/e denotes G with the edge e contlracted
to a point.

Hence, it suifices to prove the following three properties of X:

(i') X(Ggy, N} = \, where G is the one-vertex graph,
(i) X(G + H M) =X(G, M) X(H, M),

tiil) X(G, N) =X(G\e, \) + X(G/e, N).

Properties (i) and (ii') are obvious, so we need only prove (iii'). Let
g:V(G\e)~ {1,2,..., A} and let 0 be an acyclic orientation of G\e
compatible with o, where e = {1, v} € X. Let 0, be the orientation of
G obtained by adjoining # > v to (, and (, that obtained by adjoining
v - u. Observe that ¢ is defined on V(G) since V(G) = V(G\e). We will



1. The chron atic polynomial with nezative arguments 173

show that for each pair (o, (), exactly one of (, and 0, is an acyclic
orientation compatible with o, except for X(G/ e, ) of these pairs, in
which case both 0, and 0, are acyclic orientations compatii:.e with o.
It then follows that X(G, A) = X(G\e, A) + X(G/e, \), so prcving the
theorem.

For each pair (o, 0), where 0: G\e = {1, 2, ..., A} and 0 is au acyclic
orientation of G\e compatible with o, one of the following three possi-
bilities must hold.

Case 1: o(u) > a(v). Clearly 0, is not compatible with o while 0, is
compatible. Moreover, () is acyciic, since if u = v>w, >w,~> ... >u
were a directed cycle in 0, we would have o(u) > v (V) = o (w;) >
o(w,) = ... = o(u), which is impossible.

Case 2: a(u) < o(v). Then symmetrically to Case 1, 0, is acyclic and
compatible with o, while 0, is not compatible.

Case 3: o(1) = o(v). Both 0, and 0, are compatible with 0. We claim
that at least one of them is acyclic. Suppose not. Then (), contains a
directed cycle u > v > w; > wy~> ... > u while 0, contains a directed
cyclev—->u-~- W'1 - wh = ... ->v. Hence, () contains the directed cycle

U>W] Wy > V>W > Wy > U,

contradicting the assumption that Q is acyclic.

It remains to prove that both 0, and 0, are acyclic for exactly
X(G/e, \) pairs (0, 0), with o(u) = a(v). To do this we define a bijection
®(a, 0) = (¢', 0') between those pairs (o, 0) such that both 0, and 0,
are acyclic (with a(u) = 0(v)) and those pairs (¢’, 0') such that
¢':Gle~ {1,2,...,\} and (' is an acyclic orientation of G/e compatible
with ¢'. Let z be the vertex of G/e obtained by identifying 4 and v, so

V(G/e)=V(G\e) — {u,v} Uz}

and X(G/e) = X(G\e). Given (o, 0), define ¢’ by o'(w) = o(w) for all
wE V(G\e)—{z} and 0'(z) = a(u) = 0 (). Define ¢’ by w; > w, in 0’
if and only if w; > w, in (. It is easily seen that the map ® (o, 0) =
(o', ') estabiishes the desired bijection, and we are through.

Theorem 1.2 provides a combinatorial interpretation of the positive
integer (—1)? x(G, —X\), where A\ is a positive integer. In particular,
when A = | evary orientation of G is automatically compatible with
every map o: G - {1}. We thus obtain the following corollary.
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kCoécl!,a;zy' 1.3.IfGis a graph with p vertices, then (=1)2 x(G, —1) is
equai! to the number of acyclic orientations of G. '

In [5], the following question was raised (for a special class of graphs).
Let G be a p-vertex graph and let w be a labeling of G, i.e., a bijection
w:V(G)-{1,2,..., p}l. Define an equivalence relation ~ on the set of
all p! labelings w of G by the condition that w ~ «’ if whenever
{u, v} € X(G), then w(u) < W) ¢ w'(¥) < w'(v). How many equiv-
alence classes of labelings of G are there? Clearly two labelings w and
w' are equivalent if and only if the unique orientations 0 and 0' compa-
tible with w and w’, respectively, are equal. Moreover, the orientations
0 which arise in this way are precisely the acyclic ones. Hence, by
Corollary 1.3, the number of equivalence classes is (—1)? x(G, —1).

We conclude this section by discussing the relationship between the

- chromatic polynomial of a graph and the order polynomial [4;5;6] of
a partially ordered set. If P is a p-element pa:tially ordered set, define
the order polynomial S2(P, \) (evaluated at the non-negative integer A)
to be the number of order-preserving maps ¢: P -> {1, Z, ..., A}. Define
the strici order polynomial §2(P, \) to be the number of strict order-
preserving maps 0: P~ {1,2,...,A},ie,ifx < y in P, then o(x) < a(»).
In [5], it was shown that § and § are polvnomials in A related by
(P, N) = (—1)7 D(P, —)). This is the precise analogue of Theorem 1.2.
We shail now clz:ary ihis analogy.

If ¢ is an orientation of a graph G, regard 0 as a binary relation >
on V(G) defined by u > v if u > v. If Qis acyclic, then the transitive and
reflexive closure @ of 0 is a partial ordering of ¥(G). Moreover, a map
o:V(G)~{1,2, ..., A} is coinpatible with 0 if and only i o is order-
preserving when considered as a map from 0. Hence the number of ¢
compatible with ( is just $2(0, \) and we conclude that

G A = %7 Q@, N,

where the sum s over all acyclic orientations (0 of G. In the same way,
using Proposition 1.1, we deduce

(1) x(G,\) = %’) @0, N.
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Hence, Theorem 1.2 follows from the known result Q (P, \) =
{(—~1DP & (P, —\), but we thought a direct proof to be more illuminating.
Equation (1) strengthens the claim made in [4] that the strict order

polynomial £ is a partially-ordered set analogue of the chromatic poly-
nomial x.

2. Enumeration of labeled acyclic digraphs

Corollary 1.2, when combined with a result of Read (also obtained
by Bender and Goldman), yields an immediate solution to the preblem
of enumerating labeled acyclic digraphs with n vertices. The same re-
«ult was obtained by R.W. Robinson (to be published), who applies it
to the unlabeled case.

Proposition 2.1. Let f(n) be the number of labeled acyclic digraphs
with n vertices. Then

> finyxnnt 282 = ( ) (—1)"x"/n!2('2'))“.
n=0 n=0
Proof. By Corollary 1.3,

() ) =(=1)n ? x(G, 1),

where the sum is over all labeled graphs G with » vertices. Now, Read
[3] (see also [1]) has shown that if

M, (k) = %} x(G, k)

(where the sum has the same range as in (2)), then

o0

hai ny n k
3) 5 M, (k) x"/n! 2‘2-"=(Z) x"/n!2(2)) .

n=u n=0

n
Actually, the above papers have 2712 where we have 2(2)— this amounts
‘to the transformation x' = 2%2x. One advantage of our ‘normalization’ is
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Ny

that the numbers n! are integers. 4 second is that the function

o0

Foy= 3 xnjmt 22

n=0

satisfics the functional relation F'(x) = F(+x). A third advantage is
mentioned in the next section. Thus setting k = —1 and changing x to
—x in (3) yields the desired result.

n
By analyzing the behavior of the function F(x) = Z>_, x"/n! 2(2) ,
we obtain estimates for f(n). For instance, Rouché’s theorem can be
used to show that F(x) has a unique zero a =~ --1.488 satisfying |a] < 2.
Standard technigues yield the asymptotic formula

fon~ 2@ nt(—a),

where a is as above and 1.741 = C= /o F (%m). A more careful analysis
of F{x) will yield more precise estimates for f(n).

3. An algebra of binomial type

The existence of a combinatorial interpretation of the coefficients
M, (k) in the expansion

o0 n k oo n
( ¥ xn2@ n!) = ¥ M, K)xn2() nt
n=0 n=90

stggests the existence of an algzbra of full binomial type with structure
constants B(n) = 2(2) n! in the sense of [2]. This is equivalent to finding
a locally finite partially ordered set P (said to be of fuil binoriial type),
satisfying the following conditions:

(a) In any segment [x, ¥] = {z|x <z <y} of P(where x < y in P),
every maximal chain has the same length n. We call [x, y] an n-segment.
(b) There exists an n-segment for every integer n = 0 and the num-
ber of maximal chains in any n-segment is B(n) = 2 2 n!, (In particular,
B(1) must equal 1, further explaining the normalization x' = 2%x of

Section 2.)
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~ If such a partializ ordered set /> exists, then by [2] the value of
¢k (x, ), where ¢ is the zeta function of P, k is any integer and [x, y] is
any n-segment, depends only on k and n. We write £ (x, y) = ¢5(n).
Then again from [2],

o o0 k
‘_4_70 tk(n)yxn/B(n) = ( 2 x"/B(n)) .

n=0

Hence {* (n) = M, (k). In particular, the cardinality of any n-segment
[x, ¥] is M,,(2), the number of labeled two-colored graphs with n ver-
tices; while u(x, y) = (—1)" f(n), where u is the Mébius function of P
and f(n) is the number of labeled acyclic digraphs with »n vertices. The
general theory developed in [2] provides a combinatorial interpretation
of the coefficients of various other generating functions, such as
(2= x"/B(n))k and (2 - Zho xn/B(n))7L.

Since M, (2) is the cardinality of an n-segment, this suggests taking
elements of P to be properly two-colored graphs. We consider a some-
what more general situation.

Proposition 3.1. Let V be an infinite vertex set, let q be a positive in-
teger and let Pq be the set of all pairs (G, 0), where G is a function from
all 2-sets {u, v} CV (u#v)into {0, 1, ..., q — 1} such that all but finitely
many values of° G are 0, and where o:V - {0, 1} is a map satisfving the
condition that if G({u, v}) > 0 then a(u) # o(v) and that Z,,, 0(u) < .
If (G, 0) and (H, 7) are in P, define (G,o)<(H 7)if:
@ o<t forallucV, and
(b) If o (u) = 7(u) and o (v) = T(W), then G({u, v}) = H{u, v}).
“Then P, is a partially ordered set of full binomial type with structure
‘constants B(n) = n! q(ﬁ).

Proof. If (H, 1) covers (G, 0) in P (i.e., if (H, ) > (G, 0) and no (G', o)
satisfies (H, 1) > (G', ¢') > (G, 0)), then

Y rw)=1+ 2, o).

ucvVv uev

From this it follows that in every segment of P, all maximal chains have
the same length.
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n

In order to prove that an n-segment S = [(G, 0), (H,7)] has n!q (2)
maximal chains, it suiTices to prove that (H, 7) covers exactly nq" 1
elements of S, for then the number of maxlmal chains i in S will be
(ng"~D(r—1)q""2)..(2q1)- 1= n'q(z) Since S is an n-segment,
there are precisely n vertices v, v,, ..., U, € V such that e(v;)) = 0< 1 =
7(v;). Suppose (H, 7) covers (H', ') € S. Then 7' and 7 agree on every
v € V except for one v;, say vy, so 7' (v;) = 0, 7(v,) = 1. Suppose now
H'({u, v}) > 0, where we can assume 7'(¢) =0, 7'(v) = 1. If vis not
some v;, then o(u) =0, a(v) = 1, so H'({u, v}) = G({u, v}). If v =y;
(2<i<n)anduisnotvy, thent@)=0,7(W)=1,s0c H'({u,v}) =
H(%u, v}). Hence H'({u, v}) is completely determined unless # = v; and
v =v;, 2< i < n. In this case, each H'({v, v;}) can have any one of ¢
values. Thus, there are n choices of v; and ¢ choices for each H'({v,, v;1),
2 < i< n, giving a total of ng"-! elements (H',7') € S covered by
(H, 7).

Otserve that when g = 1, condition (b) is vacuous, so P, is isomorphic
to the lattice of finite subsets of V. When q = 2, we may think of
G{{u, v} = 0 or 1 depending on whether {%, v} is not or is an edge of a
graph on the vertex set V. Then o is just a proper two-coloring of v with
the colors 0 and 1, and the elements of P, consist of all properly two-
colorad graphs with vertex set V, finitely many edges and finitely many
vertices colored 1. We remark that P, is not a lattice unless¢ = 1.
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