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Remarks

For the most part, past research has focused on electrical networks with pos-
itive linear conductances, which model simple circuits with Ohmic resistors.
These electrical networks were an analogue to the continuous model for elec-
trical plates, and were used for electrical tomography. On the mathematical
side, their combinatorial properties have been connected with graph theory and
random walks on graphs. Several REU students have also considered networks
with signed and nonlinear conductance or resistance functions. Although non-
linear networks should provide a more accurate model for real-world resistor
networks, signed resistors do not have physical applications, at least not to
real-world electrical networks.

However, “electrical networks” in this paper are considered as mathemat-
ical, not physical, objects and defined in sufficient generality to allow signed
and nonlinear resistors. Although this generality is not physically motivated,
it is mathematically justified by the interesting results which are true about
signed and nonlinear networks. And it takes nothing away from the physical
applications of special types of “electrical networks.”

For the most part, I develop the theory from the ground up, assuming only
undergraduate real analysis, linear algebra, and familiarity with the concepts
of groups and manifolds. Sometimes, I refer the reader to outside sources for
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standard results, or to Curtis and Morrow’s Inverse Problems for Electrical Net-
works [1] for results on positive linear electrical networks. Familiarity with [1]
is also useful for understanding the motivations and proofs of several theorems
in this paper.

I will cite student papers from the UW math REU in order to give credit
where credit is due, with the caution that these papers are not polished and
may contain errors.
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1 Introduction

1.1 Graphs with Boundary

A graph G consists of two sets V (or V (G)) and E (or E(G)), a function
ι : E → V , and a function ¯ : E → E with e 6= e and e = e. For e ∈ E,
ι(e) is the initial vertex of e and τ(e) = ι(e) is the terminal vertex. Let E′ be
the set formed by identifying each e with e. An edge is an element of E′ and
an oriented edge is an element of E. This definition allows multiple edges with
the same endpoints.

The valence of a vertex p is the cardinality of {e : ι(e) = p}. Two vertices
p and q are adjacent if there is an oriented edge e with ι(e) = p and τ(e) = q.
An edge e and a vertex p are incident if p is an endpoint of e. Two edges are
incident if they share an endpoint.

A graph with boundary consists of a graph together with a subset B ⊂
V . Vertices in B are called boundary vertices and vertices in I = V \ B are
called interior vertices. In this paper, I will use “graph” to mean “graph with
boundary” and assume that the graphs have no self-loops, that is, for each
oriented edge ι(e) 6= τ(e). We will also assume V and E are finite.1

A graph G′ (without boundary) is a subgraph of G if V (G′) ⊂ V (G), E(G′) ⊂
E(G), and for e ∈ E(G′), ι(e) and e ∈ E(G′), and the ι and¯functions for G′

are the restrictions of the ι and¯functions for G. We say a graph with boundary
G′ is a subgraph of G if

• V (G′) ⊂ V (G), E(G′) ⊂ E(G), I(G′) ⊂ I(G).

• If e ∈ E(G′), then ι(e) ∈ V (S) and e ∈ E(G′), and they are defined the
same for H as for G.

• If p ∈ I(G′) and e ∈ E(G′) with ι(e) = p, then e ∈ E(G′).

For a graph G, a path is a sequence of vertices p0, . . . , pK and oriented edges
e1, . . . , eK such that ι(ek) = pk−1 and τ(ek) = pk. We allow a “trivial” path with
one vertex and no edges. A path is an embedded path if the vertices p0, . . . , pK
are distinct and the non-oriented edges in the path are distinct. A boundary-to-
boundary path is an embedded path such that p0 and pK are boundary vertices
and the other vertices are interior. A cycle is a non-trivial path such that the
edges are distinct, and the vertices p0, . . . , pK−1 are distinct with pK = p0.

A graph is connected if for any two vertices p and q, there exists a path
from p to q. For any graph, there exist connected subgraphs G1, . . . , GN ,
called components, such that V (G1), . . . , V (GN ) are a partition of V (G), and
E(G1), . . . , E(GN ) are a partition of E(G), and B(G1), . . . , B(GN ) are a parti-
tion of B(G).

1Infinite electrical networks have been considered, and many of the techniques in this paper
generalize to infinite networks.
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1.2 Electrical Networks

An electrical network Γ = (G,R) is a graph with boundary together with a
function R : E → P(R2), which assigns to each edge e, a set Re ⊂ R2, called
the potential-current relationship (PCR), such that Re = −Re.

Often, the relationship Re will be given in terms of a conductance function
γe : R→ R, by setting

Re = {(x, γe(x)) : x ∈ R}.

For example, we could use a linear conductance function γe(x) = aex for some
ae ∈ R. If Re is given by the conductance function γe, then Re is given by the
conductance function γe(x) = −γe(−x). We can also define Re in terms of a
resistance function ρe : R→ R, by setting

Re = {(ρe(y), y) : y ∈ R},

and then we must set ρe(x) = −ρe(−x). Using a relationship Re rather than
a function allows us to consider both “conductance networks,” “resistance net-
works,” some combination of the two, or something even more general.

A potential is a function u : V → R, or equivalently, a vector u ∈ RV . The
potential at a vertex p will be denoted u(p) or up. A current function is a
function c : E → R such that ce = −ce and∑

e:ι(e)=p

ce = 0 for each p ∈ I.

A potential u and current function c are compatible if for each edge e,

(uι(e) − uτ(e), ce) ∈ Re.

If this holds for an edge e, then it automatically holds for e because

(uι(e) − uτ(e), ce) = −(uι(e) − uτ(e), ce) ∈ −Re = Re.

A harmonic function on G is a compatible pair (u, c).
For a current function c, the net current at a vertex p is

∑
e:ι(e)=p ce. The

net current an interior vertex must be zero by the above definition. For each c,
there is a function ψc : B → R mapping each vertex to its net current. For any
current function, the net currents on the boundary vertices must sum to zero
because ∑

p∈B

∑
e:ι(e)=p

ce =
∑
p∈V

∑
e:ι(e)=p

ce =
∑
e∈E

ce =
1

2

∑
e∈E

(ce + ce) = 0.

For an electrical network Γ, the set of boundary data is

L = {(φ, ψ) ∈ RB×RB : there exist compatible u and c with φ = u|B , ψ = ψc}.

Our primary concern will be the relationship betweenG, R, and L. In particular,
we consider the following questions:
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• The Dirichlet Problem: Given φ ∈ RB , does there exist a harmonic
(u, c) with u|B = φ? Is it unique?

• The Neumann Problem: Given ψ ∈ RB , does there exist a harmonic
(u, c) with ψ = ψc? Is it unique?

• Regularity: What conditions on Re (or γe or ρe) and on G will guarantee
that L is a smooth manifold? Does L depend “nicely” on Re?

• Mixed Problems: Does there exist a harmonic function which has given
potentials and given currents on a given subset of B? How does this relate
to the structure of the given graph?

• The Inverse Problem: For a network (G,R), is R uniquely determined
by G and L?

If we allow arbitrary PCR’s, the inverse problem usually cannot be solved.
Thus, we will generally restrict our attention to a certain set R of R’s. (One
example would be the set of R’s where each Re is given by a bijective conduc-
tance function, but the best set of R’s to consider depends on the situation.)
We say a network (G,R) is recoverable over R ⊂ P(R2)E if R ∈ R and there is
no other R′ ∈ R such that L(G,R′) = L(G,R). We say the graph G is recoverable
over R if this holds for any R ∈ R, that is, if the map R 7→ L is injective on R.

It will become clear that, although the Dirichlet and Neumann problems
require more analysis than graph theory, the inverse problem, mixed problems,
and to some extent regularity depend crucially on the structure of the graph.

2 Subgraphs and Subnetworks

A subgraph partition of G is a collection of subgraphs G1, . . . , GN such that

• V (G) =
⋃N
n=1 V (Gα).

• E(G) =
⋃N
n=1E(Gα).

• E(Gi) ∩ E(Gj) = ∅ for i 6= j.

• I(Gi) ∩ V (Gj) = ∅ for i 6= j.

If S is a subgraph of G, then we define G \ S by

• V (G \ S) = V (G) \ I(S).

• E(G \ S) = E(G) \ E(S).

• I(G \ S) = I(G) \ V (S).
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Then G \ S is a subgraph of G. S and G \ S form a subgraph partition of G,
and S is a subgraph of G \ (G \ S); however, they may not be equal, so this is
not a complement in the set-theoretic sense.

A subnetwork of an electrical network Γ = (G,R) is a network Σ on a
subgraph S of G, such that the PCR of an edge in Σ is the same as its PCR in Γ;
that is, Σ = (S,R|E(S)). A subnetwork partition of Γ is a family of subnetworks
Σ1, . . . ,Σn such that the underlying graphs form a subnetwork partition of G.
If (u, c) is harmonic on Γ, then (u|V (S), c|E(S)) is harmonic on Σ.

The following results generalize principles which have often been observed
(see [3]):

Proposition 2.1. Let Σ1, . . . ,ΣN be a subnetwork partition of a network Γ.
Let L be the boundary data of Γ and Ln be the boundary data of Σn. Then L is
uniquely determined by L1, . . . , LN .

Proof. LetB′ =
⋃N
n=1B(Sn). Let T ⊂

∏N
n=1 Ln consist of all points

∏
n1

(φn, ψn)
such that

1. If p ∈ B(Sj) ∩B(Sk), then (φj)p = (φk)p.

2. If p ∈ B′ ∩ I(G), then ∑
n:p∈B(Sn)

(ψn)p = 0.

Define F : T → RB × RB by
∏N
n=1(φn, ψn) 7→ (φ, ψ), where

• φp = (φn)p whenever p ∈ B(G) ∩ B(Sn). This makes sense because

B(G) ⊂
⋃N
n=1B(Sn), and it is well-defined by our definition of T .

• ψp =
∑
n:p∈B(Gn)(ψn)p. Again, this works because the sum has finitely

many nonzero terms.

I claim that L = F (T ). If (φ, ψ) ∈ L, then there exists a harmonic (u, c)
with u|B = φ and ψc = ψ. Then (u|V (Sn), c|E(Sn)) is harmonic on Σn, and its
boundary data (φn, ψn) is in Ln. Also, the (φn, ψn)’s will satisfy conditions (1)

and (2), so that
∏N
n=1(φn, ψn) ∈ T . Thus, (φ, ψ) = F (

∏N
n=1(φn, ψn)) ∈ F (T ).

Conversely, if (un, cn) is harmonic on Σn with boundary data (φn, ψn) and∏N
n=1(φα, ψα) ∈ T , then conditions (1) and (2) will guarantee that they can be

glued together to a harmonic function (u, c) on Γ, so that F (
∏N
n=1(φn, ψn)) ∈ L.

Since T and F only depend on L1, . . . , LN , the proof is complete.

Definition. Two networks Γ and Γ′ are electrically equivalent if B(G) = B(G′)
and LΓ = LΓ′ .

Corollary 2.2 (Subnetwork Splicing). Let Σ1, . . . ,ΣN and Σ′1, . . . ,Σ
′
N be sub-

network partitions of Γ and Γ′ respectively. If B(G) = B(G′) and Σn is electri-
cally equivalent to Σ′n, then Γ and Γ′ are electrically equivalent.
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Definition. If S is a subgraph of G, and R ⊂ P(R2)E(G), then let R|E(S) =
{R|E(S) : R ∈ R}.

Corollary 2.3 (Recoverability of Subgraphs). Suppose S is a subgraph of G and
R ⊂ P(R2)E(G). If R ∈ R and (G,R) is recoverable over R, then (S,R|E(S))
is recoverable over R|E(S). If the graph G is recoverable over R, then S is
recoverable over R|E(S)

Proof. Assume R 6= ∅. Suppose Σ = (S,RS) and Σ′ = (S,R′S) with RS 6= R′S ∈
R|E(S), and that Σ and Σ′ are electrically equivalent. We can extend RS and
R′S to functions R and R′ on E(G) such that Re = R′e for e ∈ E(G)\E(S). Let
S∗ = G \ S, and Σ∗ be the subnetwork on S∗ with PCR’s given by Re. Then
Σ and Σ∗ are a partition of (G,R), and Σ′ and Σ∗ are a partition of (G,R′), so
(G,R) and (G,R′) are electrically equivalent.

3 Signed Linear Conductances

3.1 The Kirchhoff Matrix

Let Γ be an electrical network where

Re = {(x, y) : y = aex},

for some ae ∈ R, ae 6= 0. Since Re = −Re, we must have ae = ae. This Re is
given by conductance function γe(x) = aex or equivalently, resistance function
ρe(y) = y/ae. Assume the vertices have been indexed by integers 1, 2, . . . , |V |.
Define the Kirchhoff matrix K ∈ RV×V by setting

κpq = −
∑

e:ι(e)=p,
τ(p)=q

ae, for p 6= q.

and
κpp = −

∑
q 6=p

κpq.

Then K is symmetric and has row sums zero. For u ∈ RV , p ∈ V ,

(Ku)p = up
∑
q 6=p

κpq −
∑
q 6=p

uq
∑

e:ι(e)=p,
τ(p)=q

ae =
∑

e:ι(e)=p

ae(up − uτ(e)).

Thus, if u has a compatible current function, (Ku)p gives the net current on
vertex p. Thus, u is a harmonic potential if and only if (Ku)p = 0 for p ∈ I. By
dividing the vertices into boundary and interior, we can write K in block form
as

K =

(
KB,V

KI,V

)
=

(
KB,B KB,I

KI,B KI,I

)
So u is a harmonic potential if and only if u ∈ kerKI,V .
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The Dirichlet and Neumann problems have an interpretation in terms of
linear algebra. In the following, we will assume G is connected. There is no
real loss of generality, since a harmonic function on G restricts to a harmonic
function on any connected component, and harmonic functions on the connected
components combine to form a harmonic function on G. And components with
no boundary vertices are of little interest. If G has multiple connected compo-
nents G1, . . . , GN and we reorder the vertices of G so that the vertices of G1

are first, then V (G2), and so on, then the Kirchhoff matrix will decompose into
blocks

K =


K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · KN

 ,

so the behavior of the whole can easily be understood from the behavior of the
smaller blocks.

Consider the Dirichlet problem. For φ ∈ RB , we want to find a harmonic
potential u with u|B = φ. This is the same as letting u = (φ,w), where w
satisfies

KI,Bφ+KI,Iw = 0.

This will have a unique solution if and only if KI,I is invertible. As we will
see, this does not always happen. But suppose KI,I is invertible. Then w =
−K−1

I,IKI,Bφ. The current on each edge can be computed from the conductance
functions. The net current on the boundary vertices is

ψ = KB,Bφ+KB,Iw = (KB,B −KB,IK
−1
I,IKI,B)φ.

The matrix Λ = KB,B −KB,IK
−1
I,IKI,B is the Schur complement K/KI,I . Λ is

called the response matrix and it acts as a Dirichlet-to-Neumann map RB → RB
sending boundary potentials to the boundary net currents of the corresponding
harmonic function. Then L = {(φ,Λφ) : φ ∈ RB}.

The Neumann problem has a similar interpretation. For ψ ∈ RB , we want
to find a potential u such that

Ku =

(
ψ
0

)
.

Of course, if ψ came from a valid current function, its entries must sum to zero as
mentioned in the Introduction. We cannot expect the solution to the Neumann
problem to be unique either. Indeed, if we take a harmonic function and raise
the potentials on all the vertices by some constant, then the new function will
be harmonic and have the same boundary currents.

So we revise the Neumann problem as follows: Let A ⊂ RV be the set of
functions whose entries sum to zero. For (ψ, 0)T ∈ A, does there exist a unique
harmonic (u, c) with u ∈ A and Ku = (ψ, 0)T ? The answer is yes if and only if
K|A is invertible. Since the image of K is contained in A, this happens if and
only if rankK = dimA, which is |V | − 1.
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3.2 Spanning Forests

Our main tool to determine when certain submatrices of K are invertible is
the following combinatorial result, which generalizes the matrix-tree theorem
attributed to Kirchhoff. A more general version of this formula is found in [2].

Let G be a graph. A spanning tree T is a subgraph (without boundary)
such that T is connected, every vertex is in T , and T has no cycles. A spanning
forest F is a subgraph such that every vertex is in T and T has no cycles; the
components of F have no cycles, and are therefore trees.

Let P and Q be disjoint subsets of B with |P | = |Q| = n. Let F(P,Q)
be the set of forests F such that each connected component either contains
exactly one vertex from P and one from Q or it contains exactly one vertex
from B \ (P ∪Q). Let KP∪I,Q∪I be the submatrix of K with rows indexed by
P ∪ I and columns by Q ∪ I, ordered according to a given indexing of vertices
by the integers 1, . . . , |V |. Let p1, . . . , pn be the vertices of P and q1, . . . , qn the
vertices of Q ordered according to the same indexing. For any F ∈ F(P,Q),
there is a permutation τ ∈ Sn such that pj and qτ(j) are in the same component
of F ; call this permutation τF .

Theorem 3.1. Let P and Q be disjoint subsets of B with |P | = |Q| = n. Then

detKP∪I,Q∪I = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

Proof. Let m = |I|. Let p1, . . . , pn+m be the vertices of P ∪ I and q1, . . . , qn+m

be the vertices of Q ∪ I, so that P = {p1, . . . , pn} and Q = {q1, . . . , qn} and for
j > n, pj = qj ∈ I. Suppose σ ∈ Sn+m; if pj = qσ(j), then pj must be interior.
Let mσ be the number of indices with pj = qσ(j). By definition, detKP∪I,Q∪I
is

∑
σ∈Sn+m

sgnσ

n+m∏
j=1

κpj ,qσ(j)

=
∑

σ∈Sn+m

sgnσ

 ∏
pj 6=qσ(j)

∑
e:ι(e)=pj
τ(e)=qσ(j)

(−ae)


 ∏
pj=qσ(j)

∑
e:ι(e)=pj

ae



=
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ

 ∏
pj 6=qσ(j)

∑
e:ι(e)=pj
τ(e)=qσ(j)

ae


 ∏
pj=qσ(j)

∑
e:ι(e)=pj

ae


Our goal is to expand each of the sums inside the product. Fix σ; choosing one
term from each of the inner sums amounts to choosing for each j an edge ej
such that (1) ι(ej) = pj and (2) if pj 6= qσ(j), then τ(e) = qσ(j). Let Y be the
collection of all sets Y = {e1, . . . , en+m} such that ι(ej) = pj . We say σ ∈ Sn+m
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and Y ∈ Y are compatible if (1) and (2) are satisfied for every ej ∈ Y . Then

detKP∪I,Q∪I =
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ
∑

compatible
Y ∈Y

∏
e∈Y

ae

=
∑
Y ∈Y

∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ
∏
e∈Y

ae

Suppose that Y contains a sequence of edges ej1 , . . . , ejk with τ(j`) = ι(j`+1)
for ` = 1, . . . , k−1 and τ(ejk) = ι(ej1). (Either such a sequence forms a cycle or
k = 2 and it is a pair e, e.) If σ is compatible with Y , there are two possibilities:
Either (1) σ(j`) = j` for all ` or (2) j1 7→ j2 7→ . . . 7→ jk 7→ j1 is a cycle of σ.
In fact, there is a one-to-one correspondence between compatible permutations
satisfying (1) and those satisfying (2), and we can partition the compatible
permutations into pairs {σ, ξσ}, where ξ ∈ Sn+m is the cycle j1 7→ j2 7→ . . . 7→
jk 7→ j1, such that σ satisfies (1) and ξσ satisfies (2). Then mξσ = mσ − k and
sgn ξ = (−1)k+1, so

(−1)n+m−mξσ sgn(ξσ) = (−1)n+m−mσ−k(−1)k+1 sgnσ = −(−1)n+m−mσ sgnσ.

Thus, ∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ = 0

because the terms for σ and ξσ cancel.
Therefore, it suffices to consider elements Y ∈ Y which do not contain

cycles or pairs {e, e}. For any such Y , there is a unique spanning forest F with
E(F ) = Y ∪ Y . I claim that

1. If Y is compatible with σ, then the corresponding F is in F(P,Q),

2. There is a one-to-one correspondence between compatible (Y, σ) pairs and
forests F , and

3. For each (Y, σ), we have (−1)n+m−mσ sgnσ = (−1)n sgn τF .

To prove (1), it suffices to show that every component of F includes exactly
one vertex from B \P , that is, one vertex from Q or one from B \ {P ∪Q}. For
each pj , there is a unique outgoing ej ∈ Y with ι(ej) = pj . We start at pj and
construct a path following the oriented edges of Y . As long as the last vertex is
in P ∪I, we can continue the path. Since Y has no cycles or conjugate pairs, we
cannot repeat vertices, so eventually we will reach a vertex in B \ P , so every
component has one vertex from B \ P . Suppose for the sake of contradiction
that it had more than one. Then there would be r, r′ ∈ B \ P and a path from
r to r′ using oriented edges ε1, . . . , εK ∈ Y ∪ Y . We can assume without loss of
generality that r and r′ are the only vertices in B \ P in the path. If e ∈ Y ,
then ι(e) ∈ P ∪ Q. Thus, ε1 6∈ Y , εK ∈ Y . Let k be the first index such that
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εk ∈ Y . Then εk−1 ∈ Y , so εk and εk−1 are two edges in Y with the same initial
vertex, which contradicts our definition of Y.

(2) Choose F , and we will show there is a unique (Y, σ) which corresponds
to F . We obtain Y from E(F ) by choosing one orientation for each edge. For an
e ∈ E(F ), there is an embedded path from ι(e) to some r ∈ B\P ; this embedded
path must be unique because F is a forest. There is also an embedded path
from τ(e) to r, and one of the two paths must use e or e. We choose the
orientation which matches the orientation of the path. These orientations are
uniquely determined: If we assume e ∈ Y for some Y but that the orientation
of e does not match the orientation of the path, then we reach a contradiction
by the same argument as above.

To construct σ, we decompose τF into disjoint cycles η1, . . . , ηK . For each ηk,
we define a cycle σk ∈ Sn+m as follows: Let ηk be given by i1 7→ i2 7→ iR 7→ i1
(the dependence on k has been suppressed in the notation). There is a unique
embedded path in F from pir to qir+1

and the other vertices in the path are
interior, so the vertices in all the paths have the form

pi1 , pj1,1 = qj1,1 , pj1,2 = qj1,2 , . . . , pj1,k1 = qj1,n1
, qi2

pi2 , pj2,1 = qj2,1 , pj2,2 = qj2,2 , . . . , pj2,k2 = qj2,n2
, qi3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

piR , pjR,1 = qjR,1 , pjR,2 = qjR,2 , . . . , pjR,k2 = qjR,nR , qi1 .

We define the cycle ξk by

i1 7→ j1,1 7→ j1,1 7→ j1,2 7→ . . . 7→ j1,n1 7→ i2

i2 7→ j2,1 7→ j2,1 7→ j2,2 7→ . . . 7→ j2,n2 7→ i3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iR 7→ jR,1 7→ jR,1 7→ jR,2 7→ . . . 7→ jR,nR 7→ i1.

Then let σ = ξ1ξ2 . . . ξn. To show σ is uniquely determined, suppose σ is product
of cycles ξ1, . . . , xk. Suppose ξk given by j1 7→ j2 7→ . . . 7→ jL 7→ j1. If each j`
was greater than n (corresponding to an interior vertex), then we would have
pj` = qj` ∈ I and the edges ej1 , . . . , ejL ∈ Y would form a cycle or pair {e, e},
contradicting our assumptions about Y . Thus, some of the indices in the cycle
are ≤ n; it follows that ξk must represent boundary-to-boundary paths just as
in our original construction, and the paths are uniquely determined by F

(3) Consider a cycle ηk which maps i1 7→ i2 7→ iR 7→ i1, and let ji,1, . . . , ji,nr
be as above. Let zk =

∑R
r=1 nr, which is the number of interior vertices in the

paths corresponding to ηk. Then sgn ξk = (−1)zk sgn ηk. The total number of

interior vertices in the paths is
∑K
k=1 zk. The interior vertices not in the paths

are exactly the vertices pj for which σ(j) = j. Hence,
∑K
k=1 zk = m − mσ.

Therefore,

sgnσ = sgn(ξ1 . . . ξn) = (−1)
∑
k zk sgn(η1 . . . ηn) = (−1)m−mσ sgn τF .

13



Thus, (−1)n+m−mσ sgnσ = (−1)n sgn τF . Therefore,∑
Y ∈Y

∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ
∏
e∈Y

ae = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

Corollary 3.2. Let F = F(∅,∅). Then detKI,I =
∑
F∈F

∏
e∈E′(F )

ae.

Proof. The proof is the same except that n = 0 and there is no τF .

Corollary 3.3 (Matrix-Tree Theorem). Let G be a connected graph (without
boundary). Let K be the Kirchhoff matrix of the electrical network where each
edge has conductance ae = 1. For p, q ∈ V , (−1)p−q detKV \{p},V \{q} is the
number of spanning trees of G.

Proof. If p = q, then make G into a graph with boundary by setting B = {p}.
Reindex the vertices so that p occurs first; this does not change the determinant.
Then by the previous theorem,

detKV \{p},V \{p} = detKI,I =
∑
F∈F

sgn τF .

Since p is the only boundary vertex, each forest is a spanning tree, so the result
is the number of spanning trees. If p 6= q, set B = {p, q}. Reindex the vertices
so that p and q occur first; this does not change the determinant, but it does
change (−1)p−q to −1. Compute

detKV \{p},V \{q} = detKI∪{q},I∪{p} = −
∑

F∈F({q},{p})

sgn τF .

Again, since p and q are the only boundary vertices, each spanning forest is a
spanning tree, and τF is the identity.

3.3 Singular Networks

A network for which the Dirichlet problem does not have a unique solution is
called Dirichlet-singular ; if the (revised) Neumann problem does not have a
unique solution, it is Neumann-singular. Using the spanning forest formula, we
will show that the Dirichlet and Neumann problems have a unique solution for
reasonable graphs when ae > 0, but if we allow ae to be positive or negative, one
can generally find values of ae which create a Dirichlet-singular or Neumann-
singular network. We assume throughout that G is connected and has some
boundary vertices.

As the reader can verify, this implies that there is at least one spanning
forest in F . Hence, if ae > 0,

detKI,I =
∑
F∈F

∏
e∈E′(F )

ae > 0.
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Therefore, the Dirichlet problem has a unique solution.
However, for most graphs there will be (possibly negative) values of ae 6= 0

for which KI,I is not invertible. Suppose every interior vertex has valence ≥ 2.
Then there are at least two forests F1 and F2 in F . It is clear from the proof of
Theorem 3.1 that each forest has the same number of edges. So there is an edge
e0 ∈ E(F1) \ E(F2). Let W be the set of a = {ae}e∈E with ae = ae and ae > 0
for e 6= e0, ae0 < 0. In the spanning forest formula, the term for F1 is negative
for a ∈ W and the term for F2 is positive. Let ε < 1/|F|. If we choose a ∈ W
with |ae| = 1 for e ∈ F1 and |ae| = ε for all other e, then detKI,I < 0 because
the F1 term dominates. If we set |ae| = 1 for e ∈ F2 and |ae| = ε for other
e, then detKI,I > 0. Since W is connected, the intermediate value theorem
implies that there is an a ∈W with detKI,I = 0.

So most graphs have signed conductances which make them Dirichlet-singular.
A more delicate question is, what are the possible values of dim kerKI,I? This
depends on the graph, but in some cases, it is easy to find a lower bound: Sup-
pose G1, . . . , GN form a subgraph partition of G and B(Gk) ⊂ B(G) for all
k. Suppose there are Dirichlet-singular conductances for each Gk, and let the
conductances on G be the same as the conductances on the Gk’s. Since kerKI,I

is nontrivial for each Gk, there is a nonzero harmonic potential uk on Gk, and
we can extend it to G by setting it to zero on the other vertices. The potentials
thus defined are linearly independent because uk is nonzero on Gk, but uj for
j 6= k is zero on Gk. Thus, dim kerKI,I ≥ N .

If ae > 0, the Neumann problem has a unique solution. By similar reasoning
as in Corollary 3.3, for any p, q,

(−1)p−q detKV \{p},V \{q} =
∑

spanning
trees T

∏
e∈E′(T )

ae.

Since G is connected, it has a spanning tree, so the right hand side is positive if
ae > 0. So K has rank |V |−1 and the Neumann problem has a unique solution.
This also shows that the determinant of any |V | − 1 by |V | − 1 submatrix of K
is the same up to sign, so to see whether the Neumann problem has a unique
solution, it suffices to check one of them.

If G is a tree (that is, it has no cycles), then there is only one spanning
tree of G, which is all of G, so the Neumann problem has a unique solution.
However, if G has a cycle, there is more than one spanning tree, so by the same
argument as before, there exist signed ae’s which produce a Neumann-singular
network.

What are the possible values of dim kerK? It must be ≥ 1. Now suppose
G1, . . . , GN form a subgraph partition of G, such that each Gk is connected
and any cycle of G is contained in some Gk. Suppose there exist Neumann-
singular conductances on each Gk, and use them to define conductances on G.
Then for each Gk, there exists a non-constant harmonic potential uk on Gk with
net current zero on every vertex. We can extend uk to G by defining it to be
constant on each Gk; this will be consistent because every cycle is contained in
some Gk. Then the uk’s are linearly independent, so dim kerK ≥ N + 1.
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Figure 1: Singular conductances on the triangle-in-triangle network. Boundary
vertices are colored in.
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For some networks, it is possible for a nonzero harmonic function to have
potential and current zero on the boundary, even if there are no components
without boundary vertices. Consider the “triangle-in-triangle” network with
boundary vertices {1, . . . , 6} and interior vertices {7, 8, 9} and edges with coef-
ficients ae shown in the figure. The Kirchhoff matrix is

0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 1 0 −1 1 0 0 0 0
0 −1 1 0 −1 1 0 0 0
1 0 −1 1 0 −1 0 0 0


.

Let χp be the vector with 1 on vertex p and zero elsewhere. Then χ7 + χ8 + χ9

is a harmonic potential which is zero on the boundary and the corresponding
current function has net current zero on the boundary.

3.4 Properties of L

For linear conductances, the space of harmonic functions H is a linear subspace
of RV × RE , and L is a linear subspace of RB × RB . The harmonic potentials
are the kernel of KI,V , which has dimension at least |V | − |I| = |B|. If (u, c)
is harmonic, then the boundary potentials and currents are given by u|B and
(Ku)|B . Let Φ : kerKI,V → R2n : u 7→ (u|B , (Ku)|B). Then L = Φ(kerKI,V ).
Hence, dimL ≤ dim kerKI,V . If there is a harmonic function with zero potential
and current on the boundary, as in the last example, then ker Φ is nontrivial,
so this inequality is strict.

In general, we would expect H and L to have dimension |B|; this is the case
if either the Dirichlet problem or the Neumann problem has a unique solution.
Sometimes dimH > |B|; however, in all cases,

Proposition 3.4. dimL = |B|.

Proof. The kernel of Φ consists of harmonic potentials which are zero on the
boundary have zero current on the boundary, that is, ker Φ consists of elements
of kerK whose boundary entries are zero. Hence, ker Φ is isomorphic to kerKV,I .
By the rank-nullity theorem and symmetry of K,

rank Φ + dim ker Φ = dim kerKI,V

= |V | − rankKI,V

= |V | − rankKV,I

= |V | − |I|+ dim kerKV,I

= |B|+ dim ker Φ.

Thus, dimL = rank Φ = |B|.
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If the Dirichlet problem has a unique solution, then the Dirichlet-to-Neumann
map Λ = KB,B −KB,IK

−1
I,IKI,B is symmetric. So if (φ1, ψ1) and (φ2, ψ2) are

the boundary data of harmonic functions, then

φ1 · ψ2 = φT1 Λφ2 = φT2 Λφ1 = φ2 · ψ1.

Actually, this holds even for Dirichlet-singular networks:

Proposition 3.5. φ1 · ψ2 = φ2 · ψ1 for (φ1, ψ1), (φ2, ψ2) ∈ L.

Proof. Suppose (φ1, ψ1) and (φ2, ψ2) are in L, and let u1 and u2 be the cor-
responding harmonic potentials. Let w1 = u1|I and w2 = u2|I . Then ψj =
KB,Bφj+KI,Bwj . Since uj ∈ kerKI,V , we have 0 = KI,V uj = KI,Bφj+KI,Iwj ,
which implies KI,Bφj = −KI,Iwj . Hence, applying the symmetry of K,

φ1 · ψ2 = φT1 ψ2 = φT1 (KBBφ2 +KBIw2)

= φT1 KB,Bφ2 + (KI,Bφ1)Tw2

= φT1 KB,Bφ2 − (KI,Iw1)Tw2

= φT1 KB,Bφ2 − wT1 KI,Iw2

= φT2 KB,Bφ1 − wT2 KI,Iw1

= φ2 · ψ1.

3.5 Local Electrical Equivalences

A series is the following configuration:

a b

If a+ b 6= 0, then it is electrically equivalent to

ab
a+b

In other words, a series can be reduced to a single edge, and the resistances add:
The original resistances were 1/a and 1/b, and the new resistance is 1/a+ 1/b.
This shows that the series is not recoverable; in fact, there is a one-parameter
family of conductances on the series graph which produce the same boundary
behavior.

If a+ b = 0, then the series is Dirichlet-singular. The two boundary vertices
must have the same potential. The potential of the interior vertex is indepen-
dent of the boundary potentials, but depends on the current flowing from one
boundary vertex to the other. In this case, changing the conductances to ca
and cb for some c 6= 0 will produce an electrically equivalent network.

Any network which has a series as a subnetwork is not recoverable over the
signed linear conductances. If a+b 6= 0, we can produce an electrically equivalent
network by replacing the series subnetwork with a single-edge subnetwork, as
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follows from Corollary 2.2. This transformation is called a series reduction
and we call it one type of local electrical equivalence. We also call the inverse
operation is also a local electrical equivalence.

Suppose a+ b = 0 and p and q are the endpoints of the series, and r is the
middle vertex. If the series is a subnetwork of a larger network in which p is
an interior vertex, then we can produce an electrically equivalent network by
“collapsing” the series–identifying p and q and removing r and the edges in the
series. This is because any harmonic function must have the same potential on
p and q, and the amount of current flowing from p to q is independent of the
potentials. This is another type of local electrical equivalence.

A parallel circuit is the following configuration:

a

b

If a + b 6= 0, then this is equivalent to a single edge with conductance a + b.
If a + b = 0, then it is equivalent to a network with no edges. Substituting a
parallel edge for a single edge or no edge is another local electrical equivalence.

A Y (left) and a ∆ (right) are the following types of networks:

a

b

c

C

A

B

For any Y with a+ b+ c 6= 0, there is a unique equivalent ∆ with

A =
bc

a+ b+ c
, B =

ac

a+ b+ c
, C =

ab

a+ b+ c
.

This can be proved by computing the response matrix Λ for each network. If
a + b + c = 0, then in the Y the Dirichlet problem does not always have a
solution; however, this is impossible in a ∆, so there is no equivalent ∆. For
any ∆ with 1/A+ 1/B + 1/C 6= 0, there is a unique equivalent Y with

a =
AB +BC + CA

A
, b =

AB +BC + CA

B
, c =

AB +BC + CA

C
.

However, if 1/A+1/B+1/C = 0, then the ∆ is Neumann-singular because it is
a tree, so there is no equivalent Y . A Y -∆ transformation is the transformation
that replaces a Y subnetwork with an equivalent ∆ subnetwork or vice versa.

Y -∆ transformations preserve recoverability over the positive linear conduc-
tances. For suppose G′ is obtained from G by a Y -∆ transformation and G′
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is recoverable over the positive linear conductances. For any positive linear
conductances on G, we can find equivalent conductances on G′. These con-
ductances are uniquely determined by L over the positive linear conductances.
In particular, the conductances on the Y or ∆ in G′ are determined, but then
we can find the conductances on the corresponding ∆ or Y in G, so G is also
recoverable.

We say two graphs are Y -∆ equivalent if there is a sequence of Y -∆ transfor-
mations which will change one into the other. This is an equivalence relation. If
G is Y -∆ equivalent to G′ and G′ has a series or parallel configuration, then G′ is
not recoverable, and hence G is not recoverable over the positive linear conduc-
tances. This is one of the best methods for showing a graph is not recoverable,
and it is applied in [1] to circular planar networks.

The final type of local electrical equivalence is the F-K transformation de-
scribed in [6] and [3]. An n-star is a graph with n boundary vertices and one
interior vertex, and one edge from the interior vertex to each boundary vertex.
The complete graph Kn is a graph with n boundary vertices and one edge be-
tween each pair of distinct boundary vertices. For example, here are networks
on 4-star and K4 graphs:

1

2

3

4

a1

a2

a3

a4

1

2

3

4

b1,2b2,3

b3,4 b1,4

b1,3

b2,4

Index the vertices of the n-star and Kn by 1, . . . , n. Let aj be the conductance
of the star edge incident to j and bi,j the conductance of the edge in the Kn
between vertices i and j. Let σ = a1 + · · ·+ an. For any star with σ 6= 0, there
is an equivalent Kn with conductances bi,j = aiaj/σ. If σ = 0, then the star is
Dirichlet-singular and hence not equivalent to a Kn. If n ≥ 4, most Kn’s are
not equivalent to a star, unlike the n = 3 case of Y -∆ transformations:

Lemma 3.6. Let n ≥ 4. A network on a Kn is equivalent to a star if and only
if

• It satisfies the quadrilateral rule: bi,jbk,` = bi,kbj,` for distinct i, j, k, `.

• It is not Neumann-singular.

Proof. If the network is equivalent to a star, then for distinct i, j, k, `,

bi,jbk,` =
aiajaka`

σ2
= bi,kbj,`.
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A star is a tree and is therefore not Neumann-singular.
Suppose conversely that a Kn network satisfies these three conditions. Fix i

and choose distinct k, ` 6= i, and let

ai =
∑
j 6=i

bi,j +
bi,kbi,`
bk,`

.

The quadrilateral rule guarantees that the right hand side is independent of k
and `. This is the current on vertex i of the potential χi − (bi,`/bk,`)χk on the
Kn network. This function has net current 0 on vertex `, but since bi,`/bk,`
is independent of `, it has current 0 on all ` 6= k. Since the potential is not
constant, there must be nonzero net current on i and k, so ai must be nonzero.

Observe sgn(bi,kbk,`bi,`) = sgn(bi,kbi,`/bi,k) is independent of k and `. How-
ever, since it is symmetric in i, k, and `, it is also independent of i. Suppose
sgn(bi,kbk,`bi,`) = 1. For each i, choose ci such that

• |ci| =
√
bi,kbi,`/bk,` for distinct k, ` 6= i.

• sgn c1 = 1.

• For i 6= 1, sgn ci = sgn b1,i.

Then for i 6= j, we can choose k distinct from i, j and

|cicj | =

√
bi,jbi,k
bj,k

√
bi,jbj,k
bi,k

= |bi,j |.

Also, sgn(cicj) = sgn bi,j ; this is clear if i or j equals 1, and otherwise,

sgn(cicj) = sgn b1,i sgn b1,j = sgn bi,j .

Then

ai =
∑
j 6=i

bi,j +
bi,kbi,`
bk,`

=
∑
j 6=i

cicj + c2i = ci

n∑
j=1

cj .

Since ai 6= 0, the sum is nonzero; hence,

σ =

n∑
i=1

ci

n∑
j=1

cj =

(
n∑
i=1

ci

)2

6= 0.

The Kn is equivalent to the star because

aiaj
σ

=
(ci
∑n
k=1 ck) (cj

∑n
k=1 ck)

(
∑n
k=1 ck)

2 = cicj = bi,j .

The case where sgn(bi,kbk,`bi,`) = −1 follows from recognizing that a star with
conductances −ai will produce a complete graph with conductances −bi,j .
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For any finite graph G, there is a sequence of F-K moves and parallel circuit
reductions that will transform it into a graph with no interior vertices. Let Γ
be a signed linear network on G, and suppose that at each step, the star is non-
singular, so an equivalent K can be found. After the final step, the response
matrix is exactly the Kirchhoff matrix because there are no interior vertices. So
the F-K transformation provides a way to compute the response matrix from
the Kirchhoff matrix in small steps, and in some cases, this is a useful technique
for determining recoverability over positive linear conductances.

4 The Dirichlet Problem

4.1 Solutions to the Dirichlet Problem

We consider the Dirichlet problem on the following type of network: For each
edge e of a graph G, let γe : R→ R be an increasing function with γe(0) = 0 and
γe(x) = −γe(−x). Let γe(x

−) = limx′→x− γe(x
′) and γ(x+) = limx′→x γe(x

′);
these limits exist and γe(x

−) ≤ γe(x+). Let

Re = {(x, y) ∈ R2 : γe(x
−) ≤ y ≤ γe(x+)}.

For φ ∈ RB , Hφ be the set of solutions to the Dirichlet problem, that is, the set
of harmonic (u, c) with u|B = φ. Let Uφ = π1(Hφ) be the set of potentials of
functions (u, c) ∈ Hφ and let Cφ = π2(Hφ) be the set of current functions.

The following theorem was proved by Will Johnson [4] in the case where γe
is continuous:

Theorem 4.1.

i. There exists a (u, c) ∈ Hφ satisfying min
p∈B

φp ≤ min
q∈I

uq ≤ max
q∈I

uq ≤ max
p∈B

φp.

ii. Every u ∈ Uφ is compatible with every c ∈ Cφ.

iii. Uφ and Cφ are convex sets.

iv. For each edge e, either the potential drop uι(e) − uτ(e) or the current ce
is uniquely determined. If γe is continuous, the current is uniquely deter-
mined. If γe is strictly increasing, the potential drop is uniquely determined.

For convenience, I will say that any function u satisfies the maximum princi-
ple if minp∈B φp ≤ minq∈I uq ≤ maxq∈I uq ≤ maxp∈B φp. To prove the theorem,
we need the following definitions and results from convex analysis:

Definition. S ⊂ Rd is convex if for all x, y ∈ S and t ∈ [0, 1], (1− t)x+ ty ∈ S.

Definition. A function f : Rd → R is convex if for any x, y ∈ Rd and t ∈ [0, 1],

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

22



Definition. Let f : Rd → R. A vector v ∈ Rd is a called a subgradient of f at
x if

f(y)− f(x) ≤ v · (y − x) for all x ∈ Rd.

The subdifferential ∂f(x) is the set of all subgradients of f at x.

Lemma 4.2. If f is convex, then for any x, ∂f(x) is nonempty and convex.

Lemma 4.3. If f : R → R is increasing, then g(x) =
∫ x

0
f(t) dt is convex and

∂g(x) = [f(x−), f(x+)].

Lemma 4.4. If f1, . . . , fn are convex, then f = f1 + · · ·+ fn is convex, and

∂f(x) = ∂f1(x) + · · ·+ ∂fn(x),

where addition denotes addition of sets.

Proof of Theorem 4.1. For e ∈ E, define Qe : R→ R by

Qe(x) =

∫ x

0

γe(t) dt.

Then Qe is nonnegative convex function with Qe(x) = Qe(−x) and Qe(0) = 0.
Define the total pseudopower Q : RV → R by

Q(u) =
1

2

∑
e∈E

Qe(uι(e) − uτ(e)) =
∑
e∈E′

Qe(uι(e) − uτ(e)).

The last expression makes sense because Qe(uι(e) − uτ(e)) = Qe(uι(e) − uτ(e)).
For φ ∈ RB and w ∈ RI , I will write u = (φ,w) for u|B = φ and u|I = w.

Fix φ and let Qφ(w) = Q(u), where u = (φ,w). Qφ is also convex. We can
write

Qφ(w) =
∑
e∈E′

Fφ,e(w), where Fφ,e(w) = Qe(uι(e) − uτ(e)).

Let χp be the vector in RI with a 1 on vertex p and 0 elsewhere, and let

χe =


χι(e) − χτ(e), if ι(e) ∈ I, τ(e) ∈ I
χι(e), if ι(e) ∈ I, τ(e) ∈ B
−χτ(e), if ι(e) ∈ B, τ(e) ∈ I
0, if ι(e) ∈ B, τ(e) ∈ B.

Then it is not too hard to show

∂Fφ,e(w) = χe · ∂Qe(uι(e) − uτ(e))

= χe · [γe((uι(e) − uτ(e))
−), γe((uι(e) − uτ(e))

+)]

Thus,

∂Qφ(w) =
∑
e∈E′

∂Fφ,e(w) =
∑
e∈E′

χe · [γe((uι(e) − uτ(e))
−), γe((uι(e) − uτ(e))

+)].
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I claim that (φ,w) has a compatible current function if and only if 0 ∈
∂Qφ(w). Indeed, if 0 ∈ Qφ(w), then for each e ∈ E′, we can choose ce ∈
[γe((uι(e) − uτ(e))

−), γe((uι(e) − uτ(e))
+)] such that∑

e∈E′
ceχe = 0.

For each p ∈ I, examining the p-entry of this equation yields∑
e∈E′
ι(e)=p

ce −
∑
e∈E′
τ(e)=p

ce = 0,

which means the net current on p is 0. Hence c defines a current function which
is compatible with u. By reversing this reasoning, we see that if c is a current
function compatible with u, then 0 ∈ ∂Qφ(w).

Observe that 0 ∈ ∂Qφ(w) if and only if w is a global minimum of Qφ,
so our goal is show that a minimum is achieved. Let m = minp∈B φp and
M = maxp∈B φp. Since [m,M ]I is compact, Qφ achieves a minimum on [m,M ]I

at some point w∗. I claim w∗ is a global minimum of Qφ. Suppose w ∈ RI . Let
w̃ ∈ RI be given by

w̃p =


m, wp < m,

wp, m ≤ wp ≤M,

M, wp ≥M.

Let u = (φ,w) and ũ = (φ, w̃). Then for each e,

|ũι(e) − ũτ(e)| ≤ |uι(e) − uτ(e)|, sgn(ũι(e) − ũτ(e)) = sgn(uι(e) − uτ(e)).

Now Qe is increasing for x ≥ 0 and decreasing for x ≤ 0; therefore,

Qe(ũι(e) − ũτ(e)) ≤ Qe(uι(e) − uτ(e)).

Hence, Q(ũ) ≤ Q(u). Since w̃ ∈ [m,M ]I , we have

Qφ(w) ≥ Qφ(w̃) ≥ Qφ(w∗),

so w∗ is indeed a global minimum. Thus, u∗ = (φ,w∗) has a compatible current
function c∗. By construction, u∗ satisfies m ≤ minq∈I u

∗
q ≤ maxq∈I u

∗
q ≤ M , so

(i) is proved.
To prove (ii), it suffices to show that if u and ũ are in Uφ and u is compatible

with c, then ũ is also compatible with c. Because ce is a subderivative of Qe at
uι(e) − uτ(e), we have

Qe(ũι(e) − ũτ(e))−Qe(uι(e) − uτ(e))− ce
(

(ũι(e) − ũτ(e))− (uι(e) − uτ(e))
)
≥ 0.

Summing the left hand side over e ∈ E′ yields

Qφ(w̃)−Qφ(w)−
∑
e∈E′

ce

(
(ũι(e) − ũτ(e))− (uι(e) − uτ(e))

)
,
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and the first two terms cancel because w̃ and w must both achieve the global
minimum of Qφ. The other sum is∑
e∈E′

ce

(
(ũι(e) − ũτ(e))− (uι(e) − uτ(e))

)
=
∑
e∈E′

ce

(
(ũι(e) − uι(e))− (ũτ(e) − uτ(e))

)
=
∑
e∈E

ce(ũι(e) − uι(e))

=
∑
p∈V

∑
e∈E
ι(e)=p

ce(ũp − up).

This is zero because If p ∈ I, then
∑
ι(e)=p ce = 0, but if p ∈ B, then ũp − up =

φp − φp = 0. Hence,∑
e∈E′

(
Qe(ũι(e)−ũτ(e))−Qe(uι(e)−uτ(e))−ce

(
(ũι(e)−ũτ(e))−(uι(e)−uτ(e))

))
= 0,

but each term is nonnegative, so each term must be zero. Since ce ∈ ∂Qe(uι(e)−
uτ(e)), we have for any x ∈ R,

Qe(x)−Qe(ũι(e) − ũτ(e))− ce
(
x− (ũι(e) − ũτ(e))

)
= Qe(x)−Qe(uι(e) − uτ(e))− ce

(
x− (uι(e) − uτ(e))

)
≥ 0.

Therefore, ce is a subderivative of Qe at ũι(e) − ũτ(e), and hence

γe((ũι(e) − ũτ(e))
−) ≤ ce ≤ γe((ũι(e) − ũτ(e))

+),

and ũ is compatible with c.
For (iii), note that the set of minimizers of a convex function is convex, so

the set of w’s which minimize Qφ is convex. Thus, if u and ũ are in Uφ, then
so is (1 − t)u + tũ = (φ, (1 − t)w + tw̃). Thus, Uφ is convex. Next, suppose
c and c̃ are in Cφ. Then by (ii), there is a u which is compatible with both c
and c̃. Then (1 − t)c + tc̃ will be a valid current function because it has net
current zero on the interior vertices, and it will be compatible with u, because if
ce, c̃e ∈ [γe((uι(e) − uτ(e))

−, γe((uι(e)− uτ(e))
+], then so is (1− t)ce + tc̃e. Thus,

Cφ is convex.
For (iv), choose an edge e. Suppose the current on e is not uniquely de-

termined, so that there exist c, c̃ ∈ Cφ with ce < c̃e. Any u ∈ Uφ must be
compatible with both c and c̃, so

ce, c̃e ∈ [γe((uι(e) − uτ(e))
−), γe((uι(e) − uτ(e))

+)].

Since γe is increasing, this can only happen for one value of uι(e) − uτ(e), and
it is impossible if γe is continuous. If γe is strictly increasing, then different
potential drops on e cannot produce the same current, so (ii) implies that any
u ∈ Uφ has the same potential drop on e.
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Now that we have existence and something like uniqueness of a solution, a
natural question to ask is whether u depends continuously on φ in some sense.
The maximum principle asserts that we can make u depend continuously on
φ at 0, and indeed, we can find a value of u that depends continuously on φ.
For u ∈ RV , let ‖u‖∞ be the uniform norm maxp∈V |up|, and make the same
definition for φ ∈ RB . Then

Proposition 4.5. There exists a continuous U : RB → RV such that U(φ) ∈ Uφ
and

‖U(φ1)− U(φ2)‖∞ = ‖φ1 − φ2‖∞ .

To prove this, we need a few results from analysis:

Definition. A sequence of functions {fn} from Rd → Rd′ is equicontinuous if
for any x ∈ Rd and ε > 0, there exists δ > 0 such that

|y − x| < δ implies |fn(y)− fn(x)| < ε for all n.

Definition. A sequence of functions {fn} is pointwise bounded if for any x ∈ Rd,
{fn(x)} is a bounded set.

Lemma 4.6 (Arzela-Ascoli Theorem). Suppose fn : Rd → Rd′ is a sequence
which is equicontinuous and pointwise bounded. Then there is a subsequence
which converges uniformly on compact sets to a continuous function f .

Proof of Proposition 4.5. We can assume without loss of generality that every
component of the graph has a boundary vertex. Indeed, on a component with
no boundary vertex, we can always set U(φ) to be identically zero.

First consider the case where γe is strictly increasing. Then by (iv), the
potential drop on each edge is uniquely determined, and if every component
has a boundary vertex, the potentials themselves are uniquely determined. Let
(u∗, c∗) be a harmonic function on Γ. Define

γ̂e(x) = γe(u
∗
ι(e) − u

∗
τ(e) + x)− c∗e

Then γ̂e is strictly increasing and because c∗e is between the right and left-hand
limits of γe(u

∗
ι(e)−u

∗
τ(e)), we can make it zero-preserving by changing the value

at 0 if necessary. Let Γ̂ be the corresponding electrical network. If (u, c) is a

harmonic potential on Γ, then (u − u∗, c − c∗) is a harmonic potential on Γ̂.

Since the potential of the solution to Dirichlet problem on Γ̂ is unique and it
must satisfy the maximum principle, we have

‖u− u∗‖∞ ≤ ‖φ− φ
∗‖∞ , where φ = u|B , φ∗ = u∗|B .

Thus, if U(φ) is the harmonic potential with boundary potentials φ, then U is
continuous and satisfies the desired estimate.

Now suppose γe is weakly increasing. Let γn,e(x) = γe(x) + x/n, so that
γn,e is strictly increasing and Qn,e(x) = Qe(x) + x2/2n. Note Qn,e → Qe and

26



Qn → Q uniformly on compact sets. Let Un(φ) be the unique harmonic potential
for γn,e. Because ‖Un(φ1)− Un(φ2)‖∞ = ‖φ1 − φ2‖∞ and ‖Un(φ)‖∞ = ‖φ‖∞,
the sequence {Un} is equicontinuous and pointwise bounded. Therefore, by the
Arzela-Ascoli theorem, there is a subsequence {Unk} converging uniformly on
compact sets to a continuous function U .

Suppose u is any potential with u|B = φ. Since Qnk ≥ Q and Unk(φ)
minimizes Q over potential functions with boundary values φ,

Qnk(u) ≥ Qnk(Unk(φ)) = (Qnk(Unk(φ))−Q(Unk(φ))) +Q(Unk(φ))

By uniform convergence on compact sets, Qnk(Unk(φ)) − Q(Unk(φ)) → 0 and
by continuity of Q, Q(Unk(φ))→ Q(U(φ)). Thus, taking k →∞ yields Q(u) ≥
Q(U(φ)). Hence, U(φ) minimizes Q over potential functions with boundary
values φ, so it is a harmonic potential for conductances γ. Also,

‖U(φ1)− U(φ2)‖∞ = lim
k→∞

‖Unk(φ1)− Unk(φ2)‖∞ = ‖φ1 − φ2‖∞ .

4.2 The Dirichlet-to-Neumann Map Λ

Let Γ be as in the previous section, and in addition assume that γe is continuous.
Then there exists a solution (u, c) to the Dirichlet problem and c is uniquely
determined. In particular, the net current ψ on the boundary vertices is uniquely
determined by the boundary potentials φ. Hence, there a well-defined Dirichlet-
to-Neumann map Λ : RB → RB : φ 7→ ψ.

Since γe is continuous, Qe is C1 and

∇Q(u) = ∇u
∑
e∈E′

Qe(uι(e) − uτ(e)) =
∑
e∈E′

χeγe(uι(e) − uτ(e)).

So

∂pQ(u) =
∂

∂up
Q(u) =

∑
e∈E
ι(e)=p

γe(uι(e) − uτ(e)),

and in particular, if (u, c) is a solution to the Dirichlet problem,

∂pQ(u) =

{
0, if p ∈ I
ψp, if p ∈ B.

Hence, if πB : RV → RB is projection onto the boundary vertices, then

Λ(φ) = πB ◦ ∇Q(u) for any u ∈ Uφ.

And if U(φ) is a harmonic potential depending continuously on φ, as in Propo-
sition 4.5, then

Λ(φ) = πB ◦ ∇Q ◦ U(φ),

which shows that Λ is continuous. It also depends “continuously” on γ:
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Proposition 4.7. Suppose that γn and γ0 are continuous, increasing conduc-
tances on a graph G and Λn and Λ0 are the corresponding Dirichlet-to-Neumann
maps. If γn,e → γ0,e, then Λn → Λ0 uniformly on compact sets.

We need the following lemmas, whose proofs are left as exercises:

Lemma 4.8. Suppose gn and g are increasing functions R → R and gn → g.
If g is continuous, then the convergence is uniform on compact sets.

Lemma 4.9. Let fn : Rd1 → Rd2 and gn : Rd2 → Rd3 be continuous. If
fn → f uniformly on compact sets and gn → g uniformly on compact sets, then
gn ◦ fn → g ◦ f uniformly on compact sets.

Lemma 4.10. Let fn : Rd1 → Rd2 . If every subsequence of {fn} has in turn a
subsequence converging uniformly on compact sets to f , then fn → f uniformly
on compact sets.

Proof of Proposition 4.7. Observe that if πI : RV → RI is the projection onto
the interior vertices, then u = (φ,w) is in Uφ if and only if w minimizes Qφ if
and only if πI ◦ ∇Q(u) = ∇Qφ(w) = 0.

Let Qn and Q0 be the pseudopower corresponding to γn and γ0, and let
Un(φ) and U0(φ) be harmonic potentials as in Proposition 4.5. Since γn,e → γ0,e

uniformly on compact sets, the same is true for ∇Qn and ∇Q0. Let {Λnk} be
any subsequence of {Λn}. Since {Unk} is equicontinuous and pointwise bounded,
there is a subsequence {Unkj } converging uniformly on compact sets to a func-

tion U0. Since Qn → Q0 uniformly on compact sets, we see that U0 is a har-
monic potential by the same argument as in Proposition 4.5. By Lemma 4.9,
∇Qnkj ◦ Unkj → ∇Q0 ◦ U0 on compact sets; hence,

Λnkj = πB ◦ ∇Qnkj ◦ Unkj → πB ◦ ∇Q0 ◦ U0 = Λ0

uniformly on compact sets.

It is actually not necessary to assume that all the γe’s are continuous. If we
assume instead that γe is continuous for every edge incident to a boundary ver-
tex, then by Theorem 4.1 (iv), the boundary currents are uniquely determined.
They also depend continuously on φ.

Proposition 4.7 also generalizes: If γn,e is increasing but not necessarily
continuous, then pointwise convergence of γn,e → γ0,e implies Qn,e → Q0,e

uniformly on compact sets. Since Qn → Q0 uniformly on compact sets, U0 will
still be a harmonic potential. If we assume γn,e and γe are continuous when e is
incident to a boundary vertex, and hence γn,e → γe uniformly on compact sets,
then we still obtain Λnkj → Λ0 uniformly on compact sets.

4.3 Differentiation of Λ and U

The goal of this section is to differentiate (or linearly approximate) the Dirichlet-
to-Neumann map Λ. Assume each γe is differentiable. For u ∈ RV , define a set
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of linear conductance functions duγ by

(duγ)e(x) = γ′e(uι(e) − uτ(e))x.

These conductances satisfy

(duγ)e(x) = γ′e(uτ(e) − uι(e))x = γ′e(uι(e) − uτ(e))x = −(duγ)e(−x)

because

γ′e(x) =
d

dx
γe(x) = − d

dx
γe(−x) = γ′e(−x).

Let Λγ be the Dirichlet-to-Neumann map for the network on G with conduc-
tances γ, and let Λduγ be the Dirichlet-to-Neumann map for the network on G
with conductances duγ. Then

Theorem 4.11. Λγ is differentiable with respect to φ. For a given φ, the dif-
ferential DφΛγ : RB → RB is given by DφΛγ = Λduγ , where u is any harmonic
potential with u|B = φ.

We need the following lemma on linear conductances:

Lemma 4.12. Let ae ≥ 0, ae = ae, and a = {ae}e∈E. For linear conduc-
tances γe(x) = aex with ae ≥ 0, the Dirichlet-to-Neumann map Λγ is a linear
transformation given by a response matrix Ma, which depends continuously on
a.

Proof. If the conductances are linear, then a linear combination of harmonic
functions is a harmonic function, so the Dirichlet-to-Neumann map is linear.
Hence, it is given by a matrix Ma.

To show continuity, suppose an = {an,e}e∈E , and that an,e → ae. If
γn,e(x) = an,ex and γe(x) = aex, then γn,e → γe. Thus, by Proposition 4.7,
Λγn → Λγ uniformly on compact sets. This implies that the matrices Man

converge to Ma entry-wise.

Proof of Theorem 4.11. Using a similar translation argument as in Proposition
4.5, we can reduce to the case where φ = 0 and u = 0. For u ∈ RV , define
coefficients

au,e =

{
γe(uι(e)−uτ(e))
uι(e)−uτ(e)

, if uι(e) 6= uτ(e)

γ′e(0), if uι(e) = uτ(e).

Let au = {au,e}e∈E and (∆uγ)e(x) = au,ex and ∆uγ = {(∆uγ)e}e∈E . Then
∆uγ defines a set of a linear conductances and Λ∆uγ(φ) = Mauφ. Also, at
u = 0, ∆0γ = d0γ. Since au,e depends continuously on u, we know Mau

depends continuously on u. For each edge e,

(∆uγ)e(uι(e) − uτ(e)) =
γe(uι(e) − uτ(e))

uι(e) − uτ(e)
(uι(e) − uτ(e)) = γe(uι(e) − uτ(e)).

if uι(e) = uτ(e), and if uι(e) = uτ(e), then both sides are zero. In particular, if
u is compatible with a current function c on the network with conductances γ,
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then it is compatible with c on the network with conductances ∆uγ. So if φ
and ψ represent the boundary potentials and net currents for (u, c), we have

Λγ(φ) = ψ = Λ∆uγ(φ) = Mauφ.

Let U(φ) be a solution of the Dirichlet problem satisfying the maximum princi-
ple. Then

Λγ(φ) = MaU(φ)
φ,

and since Mau depends continuously on u, limφ→0MaU(φ)
= Ma0 . Therefore,

Λγ is differentiable at 0, and the differential D0Λγ is the linear transformation
given by the matrix Ma0 , which is exactly Λd0γ .

In the case where γ′e > 0, we can say more. In the following, we identify the
linear transformation DφΛ with its matrix.

Proposition 4.13. Suppose every component of G has a boundary vertex. Let
γe be differentiable with γ′e > 0. Let HuQ be the Hessian matrix of the total
pseudopower at u ∈ RV . Then

i. The Dirichlet problem has a unique solution.

ii. For any u ∈ RV , HuQI,I is invertible.

iii. Let U(φ) be the potential for the solution to the Dirichlet problem and
W (φ) = πI ◦ U(φ). Then DφW = −(HU(φ)Q)−1

I,I(HU(φ)Q)I,B.

iv. DφΛ is the Schur complement HU(φ)Q/(HU(φ)Q)I,I .

Proof. The solution to the Dirichlet problem is unique because γe is strictly
increasing. By computation, the mixed partial

∂p∂qQ(u) =


∑
e:ι(e)=p
τ(e)=q

γ′e(uι(e) − uτ(e)), p 6= q∑
e:ι(e)=p γ

′
e(uι(e) − uτ(e)), p = q.

Thus, HuQ is exactly the Kirchhoff matrix of the network with linear conduc-
tances duγ. Invertibility of (HuQ)I,I follows from our discussion of positive
linear conductances. For (iii), it suffices to consider the case φ = 0. Since
u = U(φ) is a harmonic potential with respect to ∆uγ,

W (φ) = −(K∆uγ)−1
I,I(K∆uγ)I,Bφ,

where K∆uγ is the Kirchhoff matrix for the linear conductances ∆uγ. Thus,

D0W = −(Kd0γ)I,I(Kd0γ)I,B = −(H0Q)−1
I,I(H0Q)I,B .

(iv) follows from the chain rule:

DφΛ = DφπB ◦ ∇Q(U(φ))

= (HuQ)B,B + (HuQ)B,I ◦DφW

= (HuQ)B,B − (HuQ)B,I(HuQ)−1
I,I(HuQ)B,I .
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4.4 Linearizing the Inverse Problem

Proposition 4.13 allows us to “linearize” the inverse problem for differentiable
conductances. Suppose that G is recoverable over positive linear conductances,
and that γe is differentiable with positive derivative. Let (U(φ), C(φ)) be the
solution to the Dirichlet problem. Linear recoverability guarantees that HU(φ)Q
is uniquely determined by DφΛ (which is uniquely determined by L). From
HU(φ)Q, we can find DφW and DφU , and hence DφC. A function is uniquely
determined by its derivative and the value at one point, and we know U(0) =
0 and C(0) = 0; thus, U and C are uniquely determined by Λ. Therefore,
γe(Uι(e) − Uτ(e)) is determined by Λ.

Suppose that for any t ∈ R, there exists a harmonic (u, c) with uι(e)−uτ(e) =
t. Then for each t, γe(t) is determined by Λ, so γ is determined by Λ. Thus, Γ
is recoverable over differentiable conductances with positive derivatives.

However, for a given t, there may not be a harmonic (u, c) with uι(e)−uτ(e) =
t. For example, consider a Y with boundary vertices {1, 2, 3} and interior vertex
4, with oriented edge ej from 4 to j. Suppose |γe1(t)| ≤M and |γe2(t)| ≤M are
bounded, but γe3 is unbounded. If γe3(t) > 2M , then there is no way to make

γe1(u4 − u1) + γe2(u4 − u2) + γe3(u4 − u3) = 0, u4 − u3 = t.

Thus, the network is not recoverable over differentiable conductances with pos-
itive derivatives.

We will return in §6.5 to the question of when there exists a harmonic func-
tion with a specified potential drop on a specified edge. But in a sense, knowing
U and C is almost as good as recovering the conductances, since it completely
describes the behavior of the network. Thus, we will say a network is weakly
recoverable over a class of PCR’s if the space of harmonic functions is uniquely
determined by L. Then

Proposition 4.14. If G is recoverable over the positive linear conductances,
then it is weakly recoverable over differentiable conductances with γ′e > 0 and
γe(0) = 0.

Future research could apply this approach to the inverse problem to graphs
which are not recoverable over the positive linear conductances.

5 The Neumann Problem

5.1 Solutions to the Neumann Problem

We approach the Neumann problem in a similar way to the Dirichlet problem.
For each edge e of a graph G, let ρe : R → R be an increasing function with
ρe(0) = 0 and ρe(y) = −ρe(−y). Let

Re = {(x, y) ∈ R2 : ρe(y
−) ≤ x ≤ ρe(y+)}.

For ψ ∈ RB , let Hψ, Uψ, and Cψ be as in the previous section.
This theorem was proved by [4] in the case where ρe is continuous.
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Theorem 5.1. Suppose ψ ∈ RB and its entries sum to zero on every connected
component of G.

i. There exists a (u, c) ∈ Hφ satisfying max
e∈E
|ce| ≤

1

2

∑
p∈B
|ψp|.

ii. Every u ∈ Uψ is compatible with every c ∈ Cψ.

iii. Uψ and Cψ are convex sets.

iv. For each edge e, either the potential drop uι(e) − uτ(e) or the current ce
is uniquely determined. If ρe is continuous, the potential drop is uniquely
determined. If ρe is strictly increasing, the current is uniquely determined.

Proof. Let X ⊂ RE be the space of current functions and Y the space of current
functions with net current zero on each boundary vertex. For e ∈ E, define
Qe : R→ R by

Qe(y) =

∫ y

0

ρe(t) dt.

Then Qe is nonnegative convex function with Qe(y) = Qe(−y) and Qe(0) = 0.
Define the total pseudopower Q : X → R by

Q(u) =
1

2

∑
e∈E

Qe(ce) =
∑
e∈E∗

Qe(ce),

where E∗ ⊂ E be a set with one oriented edge for each edge in E′.
Fix ψ ∈ RB . As the reader can verify, there exists a current function c0

whose net currents are given by ψ. Let Q∗ be the restriction of Q to c0 +Y, the
space of current functions with boundary net current ψ. Define Fe : c0 +Y → R
by Fe(c) = Qe(ce). Let

∂Fe(c) = {h ∈ Y : Fe(c
′)− Fe(c) ≥ h · (c′ − c) for c′ ∈ c0 + Y}.

If χe ∈ RE is the vector which is 1 on e and 0 on the other edges, then

∂Fe(c) + Y⊥ = χe[ρe(c
−
e ), ρe(c

+
e )] + Y⊥,

Since Y is a finite-dimensional real inner product space, Lemma 4.4 applies and

∂Q∗(c) =
∑
e∈E∗

∂Fe(c).

Hence,

∂Q∗(c) + Y⊥ =
∑
e∈E∗

χe[ρe(c
−
e ), ρe(c

+
e )] + Y⊥

=
∑
e∈E∗

1

2
(χe − χe)[ρe(c−e ), ρe(c

+
e )] + Y⊥
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because χe + χe ∈ Y⊥.
I claim that c ∈ c0 + Y has a compatible potential function if and only if

0 ∈ ∂Q∗(c). Indeed, if 0 ∈ Qφ(w), then for each e ∈ E∗, we can choose he ∈
[ρe(c

−
e ), ρe(c

+
e )] such that g =

∑
e∈E∗(χe − χe) ∈ Y⊥. Note ge = −ge, so for all

e, ge ∈ [ρe(c
−
e ), ρe(c

+
e )]. Suppose e1, . . . , en form a cycle. Then

∑n
j=1(χej −χej )

is in Y. Since g ∈ Y⊥,

0 = g ·
n∑
j=1

(χej − χej ) = 2

n∑
j=1

gej .

Since g sums to zero over every cycle, we can find u ∈ RV such that ge =
uι(e) − uτ(e), and u is a potential compatible with c. Conversely, suppose u is a
potential compatible with c. Let ge = uι(e) − uτ(e). Any c′ ∈ Y can be written
as a linear combination of functions of the form

∑n
j=1(χej − χej ) for a cycle

e1, . . . , en. Since g sums to zero over every cycle, g ∈ Y⊥. Also, g ∈ ∂Q∗(c)+Y⊥,
so 0 ∈ ∂Q∗(c).

Now 0 ∈ ∂Q∗(c) if and only if c is a global minimum of Q∗, so our goal is
show a minimum is achieved. Let Z be the set of current functions c ∈ c0 + Y
such that there is no cycle of oriented edges e1, . . . , en with cej > 0 for all j.
Then Z is closed. I claim it is also bounded, and in fact, that every c ∈ Z
satisfies the maximum principle maxe∈E |ce| ≤ 1

2

∑
p∈B |ψp|. Fix c ∈ Z and

e0 ∈ E, and we will prove |ce| ≤ 1
2

∑
p∈B |ψp|. If ce0 = 0, we are done, so

assume ce0 6= 0, and assume without loss of generality ce0 > 0. Let P be the set
of vertices p such that there exists a path from p to ι(e0) along oriented edges
with strictly positive current (including ι(e0)), and let R be the set of edges
along these paths (including e0). If p ∈ P and τ(e) = p and ce > 0, then e ∈ R.
Thus,∑

e∈R
ι(e)=p

ce −
∑
e∈R
τ(e)=p

ce =
∑
e∈R
ι(e)=p

ce −
∑
e∈E
ce>0
τ(e)=p

ce ≤
∑
e∈E
ce>0
ι(e)=p

ce −
∑
e∈E
ce>0
τ(e)=p

ce =
∑

e:ι(e)=p

ce.

Summing over p ∈ P gives∑
e∈R
ι(e)=p

ce −
∑
e∈R
τ(e)=p

ce ≤
∑
p∈P

∑
e:ι(e)=p

ce =
∑

p∈P∩B
ψp.

All edges in R except e0 have both endpoints in P , and e0 has ι(e0) ∈ P ,
τ(e0) 6∈ P . Thus, all the terms on the left hand side cancel except ce0 , and
hence,

ce0 ≤
∑

p∈P∩B
ψp ≤

∑
p∈P∩B

max(0, ψp) ≤
∑
p∈B
ψp>0

ψp.

Since
∑
p∈B ψp = 0, ∑

p∈B
ψp>0

|ψp| =
∑
p∈B
ψp<0

|ψp| =
1

2

∑
p∈B
|ψp|,
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and hence |ce| ≤ 1
2

∑
p∈B |ψp|.

This shows Z is bounded and hence compact. Thus, Q∗ attains a minimum
at some c∗ ∈ Z. I claim c∗ is a global minimum. Suppose c ∈ c0 + Y and
c 6∈ Z. Then there is some cycle with edges e1, . . . , en such that cej > 0.
Let m be the minimum over j of cej . Define c′ by letting c′ej = cej − m,
c′ej = cej +m, and c′e = ce for all other e. Then |c′e| ≤ |ce| and sgn c′e = sgn ce;

hence, Qe(c
′) ≤ Qe(c), and Q∗(c′) ≤ Q∗(c). If c′ 6∈ Z, then we can repeat

the process; at each step, we decrease the number of edges on which current is
flowing, so the process must end after finitely many steps, and we have a c′′ ∈ Z
with Q∗(c′′) ≤ Q∗(c). So the global minimum is achieved in Z, at c∗. Therefore,
c∗ has a compatible potential function, and we already showed it satisfies the
maximum principle, so (i) is proved.

To prove (ii), it suffices to show that if c and c̃ are in Cφ and c is compatible
with u, then c̃ is also compatible with u. Because uι(e)−uτ(e) is a subderivative
of Qe at ce, we have

Qe(c̃e)−Qe(ce)− (uι(e) − uτ(e))(c̃e − ce) ≥ 0.

Summing the left hand side over e ∈ E∗ yields

Q∗(c̃)−Q∗(c)−
∑
e∈E∗

(uι(e) − uτ(e))(c̃e − ce),

and the first two terms cancel because c̃ and c must both achieve the global
minimum of Q∗. The other sum is∑

e∈E∗
(uι(e) − uτ(e))(c̃e − ce) =

∑
e∈E

uι(e)(c̃e − ce)

=
∑
p∈V

∑
e:ι(e)=p

up(c̃e − ce)

=
∑
p∈V

up

 ∑
e:ι(e)=p

c̃e −
∑

e:ι(e)=p

ce

 = 0

because c and ẽ have the same net current on each vertex. Hence,∑
e∈E′

(
Qe(c̃e)−Qe(ce)− (uι(e) − uτ(e))(c̃e − ce)

)
= 0,

but each term is nonnegative, so each term must be zero. Since uι(e) − uτ(e) ∈
∂Qe(ce), the same argument as in the Dirichlet problem shows that uι(e)−uτ(e) ∈
∂Qe(c̃e), and hence c̃ is compatible with u.

The arguments for (iii) and (iv) are the same as before, and the details are
left to the reader.

Proposition 5.2. Let A be the set of ψ ∈ RB whose entries sum to zero on
each connected component of G. There exists a continuous C : RB → RE such
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that C(ψ) ∈ Cψ and

max
e∈E
|C(ψ1)− C(ψ2)| ≤ 1

2

∑
p∈B
|(ψ1)p − (ψ2)p|.

Proof. The argument is the same as for Proposition 4.5.

5.2 The Neumann-to-Dirichlet Map Ω

Let Γ be as in the previous section, and in addition assume that ρe is continuous
and each component of G has a boundary vertex. For any ψ ∈ A, there is
solution (u, c) to the Neumann problem and the potential drops are uniquely
determined. Thus, there is unique potential function u such that the boundary
potentials sum to zero on each connected component. Hence, there a well-
defined Neumann-to-Dirichlet map Ω : A → A : ψ 7→ φ. We also have the
following results; the proofs are straightforward adaptations of the analogous
proofs for the Dirichlet problem, and are left to the reader:

Proposition 5.3. Ω is continuous.

Proposition 5.4. Suppose that ρn and ρ0 are continuous, increasing resistance
functions on a graph G and Ωn and Ω0 are the corresponding Neumann-to-
Dirichlet map. If ρn,e → ρ0,e, then Ωn → Ω0 uniformly on compact sets.

Theorem 5.5. Ωρ is differentiable with respect to ψ. The differential dψΩρ :
A→ A is given by dφΩρ = Ωdcρ, where c is any element of Cψ.

6 Reduction Operations

6.1 Definition

A boundary spike is an edge {e, e} such that ι(e) ∈ B, τ(e) ∈ I, and ι(e) has
valence 1. If G has a boundary spike e and G′ satisfies

V (G′) = V (G) \ {ι(e)}, E(G′) = E(G) \ {e, e}, I(G′) = I(G) \ {τ(e)},

then the transformation G 7→ G′ is a called a boundary spike contraction. The
reverse transformation is called a boundary spike expansion.

A boundary edge is an edge {e, e} with ι(e) ∈ B and τ(e) ∈ B. If e is a
boundary edge and G′ satisfies

V (G′) = V (G), E(G′) = E(G) \ {e, e}, I(G′) = I(G),

then the transformation G 7→ G′ is a boundary edge deletion. The reverse
transformation is called a boundary edge addition.

A disconnected boundary vertex is a boundary vertex with valence 0. If p is
such a vertex, and

V (G′) = V (G) \ {p}, E(G′) = E(G), I(G′) = I(G),
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then the transformation G 7→ G′ is a disconnected boundary vertex deletion.
The opposite is disconnected boundary vertex addition.

Boundary spike contraction, boundary edge deletion, and disconnected bound-
ary vertex deletion are called reduction operations. We say G is reducible to H if
there is a sequence of reduction operations that will transform G into H. In this
case, H must be a subgraph of G. We say G and H are reduction-equivalent if
there is a sequence of reduction operations and their inverses which transforms
G into H. This is an equivalence relation.

The motivation for considering reduction operations is the “layer-stripping”
approach to the inverse problem. The idea is to determine the PCR’s on bound-
ary spikes and boundary edges, then to contract the spikes or delete the edges,
and then to repeat this process on the reduced graph. If G is reducible to the
empty graph, then we will eventually recover all the PCR’s of all edges of G,
assuming that at each step we can determine the set of boundary data of the
reduced graph.

6.2 Reduction to Embedded Flowers

Not all graphs are reducible to the empty graph. In particular, a flower is graph
with no boundary spikes, boundary edges, or disconnected boundary vertices. A
flower cannot be reduced the empty graph unless it is already the empty graph.

Every (finite) graph can be reduced to a flower. Indeed, if it is not a flower,
we can perform a reduction operation, which will either decrease the number
of vertices or decrease the number of edges. If we keep performing reduction
operations we will eventually either reach the empty graph or some subgraph of
G which cannot be reduced, which is a flower. It turns out that the flower we
reach is independent of the sequence of reduction operations:

Theorem 6.1.

i. Every graph G is reducible to a unique flower G_.

ii. G and H are reduction-equivalent if and only if G_ = H_.

iii. If H is a subgraph of G, then H_ is a subgraph of G_.

We start with a few lemmas:

Lemma 6.2. If G is reducible to H and S is a subgraph of G, then S is reducible
to S ∩H, where S ∩H is defined by

V (S ∩H) = V (S) ∩ V (H),

E(S ∩H) = E(S) ∩ E(H),

I(S ∩H) = I(S) ∩ I(H).

Proof. Suppose S is a subgraph of G. Let G = G0, G1, . . . , GN = H be a
sequence of graphs where Gn+1 is obtained from Gn by a single decomposition
operation. Let Sn = Gn ∩ S. We want to show that Sn is reducible to Sn+1.
There are several cases:
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1. Suppose Gn+1 is obtained from Gn by deleting a disconnected boundary
vertex p. If p 6∈ V (Sn), then Sn = Sn+1, so we are done. If p ∈ V (Sn),
then it is a disconnected boundary vertex as a consequence of the definition
of subgraph. Thus, Sn is reducible to Sn+1.

2. Suppose Gn+1 is obtained from Gn by deleting a boundary edge e. If
e 6∈ E(Sn), then Sn = Sn+1, and we are done. Otherwise, e must be a
boundary edge of Sn, so Sn is reducible to Sn+1.

3. Suppose Gn+1 is obtained from Gn by a contracting a boundary spike e.
If ι(e) 6∈ V (Sn), then e 6∈ E(Sn) and τ(e) is either a boundary vertex of
Sn or is not in V (Sn); thus, Sn = Sn+1, and we are done. If ι(e) ∈ V (Sn),
but e 6∈ E(Sn), then τ(e) is either a boundary vertex of Sn or is not in
V (Sn); also, ι(e) is a disconnected boundary vertex, so we can delete it to
obtain Sn+1. If e ∈ E(Sn), then ι(e) must be a boundary vertex of Sn. If
τ(e) is interior in Sn, then e is a spike in Sn, which we can contract. If
ι(e) is a boundary vertex in Sn, then e is a boundary edge and ι(e) has
degree 1. Thus, we can obtain Sn+1 by deleting the boundary edge e, then
deleting the disconnected boundary vertex ι(e).

Corollary 6.3. If G is reducible to the empty graph, then so is every subgraph
of G.

Lemma 6.4. If G is a flower and G is reduction-equivalent to H, then G is a
subgraph of H. In particular, if two flowers are reduction-equivalent, they are
equal.

Proof. There is a sequence of graphs G = G0, G1, . . . , GN = H, where Gn+1 is
obtained from Gn by a single operation. We prove the lemma for each Gn by
induction. We already know it is true for G0. Suppose it is true for Gn. Then
either Gn is a subgraph of Gn+1 or Gn+1 is a subgraph of G. If Gn is a subgraph
of Gn+1, we are done because G is a subgraph of Gn. Otherwise, Gn+1 is
obtained from Gn by contracting a boundary spike, deleting a boundary edge, or
deleting a disconnected boundary vertex. The boundary spike or boundary edge
or disconnected boundary vertex in question cannot be part of G, because then
by similar reasoning as in the previous proposition, it would be a boundary spike
or boundary edge or disconnected boundary vertex of G, which is impossible
because G is a flower. Therefore, G must be a subgraph of Gn+1.

Proof of Theorem. We already showedG can be reduced to a flower, and unique-
ness follows from Lemma 6.4. Clearly, G is reduction-equivalent to G_ and H
to H_. Thus, G is equivalent to H if and only if G_ is equivalent to H_ if and
only if G_ = H_.

For (iii), suppose H is a subgraph of G. Since G is reducible to G∗, we know
H is reducible to G_ ∩H. Then G_ ∩H must be reduction-equivalent to H_.
By Lemma 6.4, H_ must be a subgraph of G_ ∩ H, which is a subgraph of
G_.
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6.3 Electrical Properties

If we want to solve the inverse problem by layer-stripping, we need to know
that when we perform a reduction operation, the set of boundary data of the
reduced network is uniquely determined by the boundary data of the original
network and the PCR of the edge removed. This is the purpose of the following
lemmas:

Lemma 6.5. Let Γ′ be the subnetwork of Γ obtained by contracting a spike e,
and let L and L′ be the corresponding sets of boundary data. Suppose Re is
given by a resistance function ρe. Then L′ is uniquely determined by L and ρe.

Proof. Define Ξ : RB(G′)×RB(G′) → RB(G)×RB(G) by (φ′, ψ′) 7→ (φ, ψ), where

• For p ∈ B(G) = B(G′) = B(G) \ {ι(e)}, we have φp = φ′p and ψp = ψ′p.

• φι(e) = φ′τ(e) + ρe(ψp).

• ψι(e) = ψ′τ(e).

I claim L′ = Ξ−1(L). Suppose (φ′, ψ′) ∈ L′ and it is the boundary data of a
harmonic (u′, c′) on Γ′. We can extend (u, c) to a harmonic function (u, c) on Γ
by setting ce = ψ′τ(e) and uι(e) = uτ(e) + ρe(ψ

′
ι(e)). This harmonic function has

boundary data (φ, ψ) = Ξ(φ′, ψ′), so (φ′, ψ′) ∈ Ξ−1(L). Conversely, suppose
(φ, ψ) ∈ L is the boundary data of a harmonic (u, c) on Γ. Since e is a spike, ce
must equal ψι(e). Hence, uι(e) − uτ(e) = ρe(ψι(e)). Thus, when we restrict (u, c)
to Γ′, the boundary data becomes Ξ−1(φ, ψ), so Ξ−1(φ, ψ) ∈ L′.

Lemma 6.6. Let Γ′ be the subnetwork of Γ obtained by deleting a boundary
edge e, and let L and L′ be the corresponding sets of boundary data. Suppose
Re is given by a conductance function γe. Then L′ is uniquely determined by L
and γe.

Proof. Observe B(G) = B(G′). Define Ξ : RB(G′) × RB(G′) → RB(G) × RB(G)

by (φ′, ψ′) 7→ (φ, ψ), where

• φ = φ′.

• For p ∈ B(G) \ {ι(e), τ(e)}, we have ψp = ψ′p.

• ψι(e) = ψ′ι(e) + γe(φι(e) − φτ(e)).

• ψτ(e) = ψ′τ(e) − γe(φι(e) − φτ(e)).

Then L′ = Ξ−1(L). The proof is similar to the previous one and is left to the
reader.

Clearly, if Γ′ is obtained from Γ by deleting a disconnected boundary vertex,
L′ is determined by L. Thus, we have the following corollary: If Γ is reducible
to Γ′ and each PCR is given by a bijective conductance function, then L′ is
uniquely determined by L and the γe’s of the edges removed in the reduction.
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6.4 Regularity of L

Suppose G is reducible to the empty graph through a sequence of reduction op-
erations. Then we can assume that the disconnected boundary vertex deletions
occur last, since leaving a disconnected boundary vertex in the graph longer
does not prevent boundary spike contractions or boundary edge deletions. Thus,
there is a sequence of boundary spike contractions and boundary edge deletions
that reduce G to a graph with no edges and only boundary vertices.

Suppose Γ is a network on G with bijective conductance functions. Let
G = G0, G1, . . . , GN be the sequence of graphs obtained by reduction operations
such that GN has no edges or interior vertices, and let L = L0, . . . , LN their
sets of boundary data. Each graph has the same number of boundary vertices
as G. On GN , any potentials are possible, but the net currents must all be zero,
so the boundary relationship LN = RB(GN ) × {0}B(GN ).

If Gn−1 is obtained from Gn, then there is a function Ξn mapping boundary
data on Gn to boundary data on Gn−1, as seen in the proof of Lemmas 6.5 and
6.6. Thus, Ln−1 = Ξn(Ln), and

L = Ξ1 ◦ Ξ2 ◦ · · · ◦ ΞN (RB(GN ) × {0}B(GN )).

Thus, we have the following result:

Proposition 6.7. Suppose G is reducible to the empty graph. Let Γ be a network
on G with bijective conductances.

1. If each γe is continuous, then L is homeomorphic to R|B|.

2. If each γe is Ck with γ′e 6= 0, then the homeomorphism is a Ck. Hence, L
is a Ck manifold of dimension n = |B| embedded in RB × RB

3. In this case, if Lγ is the set of boundary data for conductances γ, and if
(φ, ψ) is the boundary data of a harmonic function (u, c), then the tangent
space is T(φ,ψ)(Lγ) = Lduγ .

4. Let H ⊂ RV × RE be the space of harmonic functions on Γ. If γe and ρe
are Ck, then H is a Ck manifold of dimension n, and the tangent space
is T(u,c)(Hγ) = Hduγ .

5. If two harmonic functions have the same boundary data, they are equal.

Proof.

1. If γe is continuous and bijective, then so is ρe = γ−1
e . Also, each Ξn is

continuous. For adding a boundary spike, the inverse of Ξn is the same as
Ξn but with the −ρe substituted for ρe. For adding a boundary edge, the
inverse is obtained by changing the sign of the conductance γe. So each Ξn
is a homeomorphism, so restricting Ξ = Ξ1◦· · ·◦ΞN to RB(GN )×{0}B(GN )

provides a homeomorphism onto L, and RB(GN ) × {0}B(GN ) is naturally
homeomorphic to R|B|.
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2. If each γe and ρe is Cn, then so are Ξn and Ξ−1
n .

3. Let x ∈ RB(GN ) be the restriction of u to B(GN ). By direct computation,
the differential dΞn for γ at a point Ξn+1 ◦ · · · ◦ ΞN (xu, 0) is the same as
the Ξn for the linear conductances duγ. Thus, DΞ = DΞ1 ◦ · · · ◦DΞN is
the same as the Ξ-map for the linear conductances. So if Ξγ represents the
map for conductances γ, we have D(x,0)Ξγ = Ξduγ . Since the potentials
on B(GN ) provide a parametrization of Lγ ,

T(φ,ψ)(Lγ) = D(x,0)Ξγ(RB(GN ) × 0) = Ξduγ(RB(GN ) × 0) = Lduγ .

4. We can also parametrize Hγ in terms of the potentials on B(GN ). This is
because each vertex is in B(Gn) for some n, so at some step of the above
argument, it was given as an entry of Ξn ◦ · · · ◦ ΞN (x, 0). Similarly, each
edge was a boundary edge or spike at some step.

5. Each Ξn was bijective, so the boundary data on G determines the bound-
ary data on each Gn, and hence the potentials and currents on the whole
network.

Part (3) is an analogue of the formulas for differentiating the Dirichlet-to-
Neumann and Neumann-to-Dirichlet maps. The analogous result for the inverse
problem is:

Corollary 6.8. If G is layerable recoverable over signed linear conductances,
then it is weakly recoverable over bijective, zero-preserving C1 conductances with
γ′e 6= 0.

Proof. Since L is a C1 manifold, we can compute the tangent space at each point
(φ, ψ). From this, Ldγu is determined, and by recoverability, dγu is uniquely
determined, and hence we can find the derivative of (u, c) with respect to (φ, ψ).
This, together with the fact that (u, c) = 0 when (φ, ψ) = 0, uniquely determines
(u, c) as a function of (φ, ψ).

As we saw, (4) and (5) of the Proposition do not hold for all graphs, not even
for linear conductances. Actually, (1), (2), and (3) can fail for some graphs with
bijective C∞ conductances with nonzero derivatives. Consider the following
graph:
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1 2

3

4

e1 e2

e4e3

Let ρe1(t) = ρe3(t) = t + 1
2 sin t (the orientation of the edge does not matter

since the function is odd), and let ρe2(t) = ρe3(t) = −t. These are bijective C∞

resistance functions with a C∞ inverse. The series with resistance functions
ρe1 and ρe2 is equivalent to a single-edge with resistance ρe1 + ρe2 . Thus, the
network is equivalent to a parallel connection

1 2

e1

e2

in which each edge has resistance function ρ(t) = 1
2 sin t. Let e1 and e2 be the

oriented edges shown in the picture. Thus, (u, c) is harmonic if and only if

u1 − u2 = 1
2 sin ce1 = 1

2 sin ce2 .

Now sin ce1 = sin ce2 is equivalent to ce2 = ce1 + 2πn or ce2 = π − ce1 + 2πn. If
ce1 = ce2 +2πn, then the net current ψ1 = ce1 + ce2 = 2ce1 +2πn and ψ2 = −ψ1

and u1 − u2 must be 1
2 sinψ1/2. If ce2 = π − ce1 + 2πn, then ψ1 = (2n + 1)π

and ψ2 = −ψ1 and u1 − u2 could be any number in [−1, 1]. Thus,

L ={(φ, ψ) : φ1 − φ2 = 1
2 sinψ1/2, ψ1 = −ψ2}

∪ {(φ, ψ) : φ1 − φ2 ∈ [−1, 1], ψ1 = (2n+ 1)π, ψ2 = −ψ1}.

This is not a smooth manifold because there is neighborhood of the points with
φ1 − φ2 = ±1 and ψ1 = (2n+ 1)π which is homeomorphic to R2.

6.5 Faithful Networks

In §4.4, we wanted to guarantee that for some t ∈ R and e ∈ E, there was a
harmonic (u, c) with uι(e) − uτ(e) = t. We can now answer that question for
many graphs. We say a network is faithful if for any e ∈ E, for any (x, y) ∈ Re,
there exists a harmonic (u, c) with uι(e) − uτ(e) = x and ce = y. If a network is
faithful and is weakly recoverable over R, then it is recoverable over R.
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Proposition 6.9. Let Γ be a network on a graph G which is reducible to the
empty graph, and suppose every vertex is contained a boundary-to-boundary
path. Suppose Re satisfies

• (0, 0) ∈ Re.

• If (x, y), (x′, y′) ∈ Re, then x ≤ x′ if and only if y ≤ y′.

• For any x, there exists y with (x, y) ∈ Re and for any y, there exists x
with (x, y) ∈ Re.

Then Γ is faithful.

Proof. As the reader may verify, for any such Re we can find an increasing,
zero-preserving γe and ρe such that

Re = {(x, y) : γe(x
−) ≤ y ≤ γe(x+)} = {(x, y) : ρe(y

−) ≤ x ≤ ρe(y+)}.

Let G0, G1, . . . , GN be a sequence of graphs such that G0 = G, GN has no edges
or interior vertices, and Gn is obtained from Gn−1 by deleting a boundary edge
en or contracting a boundary spike en. Choose n and (x, y) ∈ Ren . I claim
there is a harmonic (u, c) on Gn−1 with uι(e) − uτ(e) = x and ce = y. There are
two cases:

• Suppose en is a boundary edge in Gn−1. Since the Dirichlet problem has a
solution, we can find a harmonic (u, c) with uι(en)− uτ(en) = x. If ce 6= y,
we can change it to y without affecting the net current on the interior
vertices.

• Suppose en is a boundary spike in Gn−1. Since every vertex in G is con-
tained in a boundary-to-boundary path, this is also true of any subgraph
of G and in particular Gn−1. Hence, any component of Gn−1 with an
interior vertex has at least two boundary vertices. Since τ(e) is interior,
the component with e has at least two boundary veritices. So we can
choose ψ with ψι(e) = y such that the entries of ψ sum to zero on each
component of Gn−1. Let (u, c) be a solution to the Neumann problem for
ψ. If uι(e)−uτ(e) 6= x, we can change uι(e) to make it so without affecting
the net currents.

It is easy to verify that a harmonic function on Gk extends to Gk−1. Thus, by
induction, we can extend (u, c) to G. Since every oriented edge is either some
en or some en, we are done.

Corollary 6.10. Let Re be as above. Suppose G1, . . . , GN are a subgraph par-
tition of G with B(G) =

⋃N
k=1B(Gk). If the networks Γ1, . . . ,ΓN are faithful,

so is Γ. The same holds if G1, . . . , GN are a subgraph partition such that every
cycle of G is contained in some Gk, and each Gk is connected and has at least
two boundary vertices.
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Proof. SupposeG1, . . . , GN are a subgraph partition ofG withB(G) =
⋃N
k=1B(Gk).

Suppose e is an edge in Gn and (x, y) ∈ Re. There exists a harmonic (un, cn)
on Γn with (un)ι(e) − (un)τ(e) = x and (cn)e = y. Since the Dirichlet prob-
lem has a solution, for k 6= n, we can find a harmonic (uk, ck) on Γk with
(uk)p = (un)p for p ∈ B(Gn) ∩ B(Gk) and (uk)p = 0 for p ∈ B(Gk) \ B(Gn).

Since B(G) =
⋃N
k=1B(Gk), these join to form a harmonic function on G.

Suppose G1, . . . , GN are a subgraph partition of G such that every cycle of
G is contained in some Gk. For e ∈ E(Gn) and (x, y) ∈ Re, we can find a
harmonic (un, cn) on Γn with (un)ι(e) − (un)τ(e) = x and (cn)e = y. Using the
existence of a solution to the Neumann problem, we can extend (un, cn) to a
harmonic (u, c) on Γ.

Corollary 6.11. If G is reducible to the empty graph and recoverable over the
positive linear conductances, then it is recoverable over bijective, differentiable,
zero-preserving conductances with γ′e > 0.

Proof. Every vertex must be contained in a boundary-to-boundary path. If this
were not the case, then there would be a nontrivial connected subgraph ofG with
only one boundary vertex; every harmonic function on this subgraph must be
constant. Hence, changing the conductances on this subgraph would not affect
L; thus, G would not be recoverable over the positive linear conductances. It
follows by Proposition 6.9 that Γ is faithful. By Proposition 4.14, it is weakly
recoverable over bijective, differentiable, zero-preserving conductances with γ′e >
0; therefore, it is recoverable.

7 Layerings and the Inverse Problem

7.1 Two-Boundary Graphs and Layerings

We now describe a construction which will allow us to recover bijective zero-
preserving conductances on a large class of graphs, and it has several other
useful consequences.

A two-boundary graph is a graph together with two sets of vertices Bupper

and Blower. Every two-boundary graph corresponds to a graph with boundary
with B = Bupper ∪ Blower. But a graph with boundary may correspond to
many different two-boundary graphs. We do not assume Bupper and Blower are
disjoint.

Suppose G, G1, and G2 are two-boundary graphs. Then G = G1 on G2

means that

• V (G) = V (G1) ∪ V (G2).

• E(G) = E(G1) ∪ E(G2).

• E(G1) ∩ E(G2) = ∅.

• V (G1) ∩ V (G2) = Blower(G1) = Bupper(G2).
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• Bupper(G) = Bupper(G1).

• Blower(G) = Blower(G2).

A consequence is that, when considered as graphs with boundary, G1 and G2

are subgraphs of G, and in fact, a subgraph partition of G.
Let G be a two-boundary graph and Γ be an electrical network on (the graph

with boundary corresponding to) G. We define the two-boundary relationship
X ⊂ (RBupper ×RBupper)× (RBlower ×RBlower) as follows. Suppose x = (xu, xc) ∈
RBupper × RBupper and y = (yu, yc) ∈ RBlower × RBlower . Then (x, y) ∈ X if and
only if there exists a (φ, ψ) ∈ L such that

φ|Bupper
= xu

φ|Blower
= yu

ψ|Bupper\Blower
= −xc|Bupper\Blower

ψ|Bupper∩Blower
= yc|Bupper∩Blower

− xc|Bupper∩Blower

ψ|Blower\Bupper
= yc|Blower\Bupper

.

Here x represents voltage and current data on Bupper (with the sign of the net
current changed) and y represents voltage and net current data on Blower. If a
vertex p is in Bupper ∩ Blower, then (x, y) ∈ Ξ implies that (xv)p = (yv)p, and
that the net current on p is (yc)p− (xc)p. We think of yc as representing current
flowing into the network on the lower boundary and xc as representing current
flowing out of the network on the upper boundary. If p is in both boundary
sets, then current can flow directly from one boundary to the other through p.

If Γ = Γ1 on Γ2, then, by similar reasoning as in the section about subnet-
works, X is

X2 �X1 = {(x, y) : there exists z such that (x, z) ∈ X1 and (z, y) ∈ X2}.

Using “on,” we can express complicated networks as combinations of simpler
ones. Our building blocks are networks on the following four types of two-
boundary graphs, called elementary layers:

1. A horizontal-edge layer is a two-boundary graph with V = Bupper = Blower

and E 6= ∅. Its edges are called horizontal edges.

2. A vertical-edge layer is a two-boundary graph such that each connected
component is either a single valence-0 vertex p ∈ Bupper ∩ Blower, or it
consists of two vertices p ∈ Bupper \Blower and q ∈ Blower \Bupper with a
single edge {e, e} with ι(e) = p, τ(e) = q.

3. A upper-stub layer is a two-boundary graph with V = Bupper ) Blower

and E = ∅. The vertices in Bupper \Blower are called upper stubs.

4. A lower-stub layer is a two-boundary graph with V = Blower ) Bupper

and E = ∅. The vertices in Blower \Bupper are called lower stubs.
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The advantage of elementary layers is that their X relationships are simple to
describe.

If G is a graph with boundary, then a layering of G is a sequence of elemen-
tary layers G1, . . . , GN such that

• G1 on · · · on GK is a two-boundary graph corresponding to G;

• If Gj is a upper-stub layer and Gk is a lower-stub layer, then j < k.

If G has no edges and only boundary vertices, then we say that there is a layering
of G with Bupper(G) = Blower(G) = V (G) such that there are zero elementary
layers in the layering. This is a trivial case, but the definition will make the
statements and proofs of results simpler to write.

For example, see Figure 2. For a nontrivial layering, the following properties
are consequences of the definition:

• B(G) = Bupper(G1) ∪Blower(GK).

• For each n, Bupper(Gn) = Blower(Gn−1).

• If a vertex p is in Gi and Gk and i < j < k, then it is in Gj ,

• If p ∈ I(G), then p must be incident to two vertical edges.

For finite graphs, any vertical-edge layer can be written as G1 on · · · on GK ,
where each Gk is a vertical edge layer with only one edge, and the same applies
to horizontal-edge layers. Thus, we can assume if we wish that each vertical- or
horizontal-edge layer in a layering has only one edge, and similarly each upper-
or lower-stub layer has only one stub.

An upper-boundary spike is an oriented edge e with ι(e) ∈ Bupper and τ(e) 6∈
Bupper. An upper-boundary edge is an edge with ι(e) and τ(e) ∈ Bupper, and
an upper-boundary stub is a disconnected boundary vertex in Bupper \ Blower.
If G = G1 on G2 where G1 is a horizontal-edge layer with one edge, then G2

is obtained from G by an upper-boundary edge deletion; conversely, if G has
an upper boundary edge, then it can be expressed as G1 on G2, where G1 is a
horizontal-edge layer. The same holds when G1 is an upper-stub layer with one
stub, and G2 is obtained from G by deleting an upper-boundary stub; and when
G1 is a vertical-edge layer, and G2 is obtained from G by removing an upper-
boundary spike e. For the vertical-edge layer, removing the upper-boundary
spike may not actually be a spike contraction when we consider G as a graph
with boundary: If τ(e) ∈ I, then upper boundary spike is removed by a spike
contraction, but if τ(e) ∈ Blower, then it is removed by a boundary edge deletion
followed by a disconnected boundary vertex deletion of ι(e). We make the same
definitions and observations for the lower boundary.

Joining elementary layers thus provides an interpretation of reduction oper-
ations in terms of subgraph partitions. In particular, a graph G is reducible to
the empty graph if and only if there exists a layering of G.
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Figure 2: A layering of a graph. The upper boundary is shown in blue and the
lower boundary in red. The horizontal-edge layers are G1, G3, G7, and G9; the
vertical-edge layers are G2, G8, and G10; the upper-stub layer is G4 and the
lower-stub is G6.
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7.2 Recovering Boundary Spikes and Boundary Edges

If e ∈ E, then an e-horizontal layering is a layering G1, . . . , GK such that

• e ∈ E(Gj) for some horizontal-edge layer Gj .

• Gj comes between the upper- and lower-stub layers. That is, if Gk is an
upper-stub layer, then k < j, and if Gj is a lower-stub layer, then k > j.

Similarly, an e-vertical layering is a layering G1, . . . , GK such that e ∈ E(Gj)
for some vertical edge layer Gj which comes between the upper- and lower-stub
layers. Assume ι(e) is in the upper boundary of Gj and τ(e) is in the lower
boundary.

Lemma 7.1. Let Γ = (G,R) be an electrical network with bijective, zero-
preserving conductances. Suppose e is a boundary spike and there is an e-
horizontal layering of G. Then γe is uniquely determined by L.

Proof. Let G1, . . . , GK be an e-horizontal layering. With some abuse of nota-
tion, I will use G to mean the two-boundary graph with Bupper(G) = Bupper(G1)
and Blower(G) = Blower(GK). Note ι(e), the boundary vertex of the spike, must
be in Bupper(G) ∩Blower(G).

Let t ∈ R. I claim that there exists a harmonic (u, c) with

• uι(e) = t.

• For p ∈ Bupper(G) \ {ι(e)}, up = 0.

• For p ∈ Bupper(G) \Blower(G), the net current on p is zero.

Further, I claim that for any such (u, c), uτ(e) must be zero. Hence, the net
current on ι(e) is γe(uι(e) − uτ(e)) = γe(t). This implies that γe(t) is uniquely
determined by L; indeed, we only have to find some (φ, ψ) ∈ L which satisfies
the boundary conditions listed above; we know that such a (φ, ψ) exists, and
that whichever we choose, it will have ψι(e) = γe(t). Since t was arbitrary, γe
will be uniquely determined by L.

To prove the claims, let x ∈ RBupper × RBupper be the upper boundary data
which has potential t on uι(e) and 0 elsewhere and current 0 on Bupper. Solving
the above boundary value problem is equivalent to finding a (u, c) with upper
boundary data x. (For p ∈ Bupper ∩ Blower specifying the upper boundary
current does not determine the net current since we did not specify the lower
boundary current.) We construct (u, c) inductively, first defining it on G1, then
on G1 on G2, and so on until we reach GK . We rely on the fact that the
relationship X of G equals XK �XK−1�· · ·�X1, where Xk is the relationship
of Gk.

For n = 1, . . . , j − 1, we claim that there is a unique harmonic (un, cn) on
G1 on · · · on Gn with upper boundary data x, and all potentials and currents are
zero except that uι(e) = t. Note that G1 is either a upper-stub, horizontal-edge,
or vertical-edge network. In each case, any harmonic function on G1 with upper
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boundary data zero must have lower boundary data zero, since we are dealing
with bijective, zero-preserving conductances (and clearly, setting the potential
and current to zero does define a harmonic function). However, the same holds if
we change the potential of ι(e) to t. Indeed, if 1 < j, there are no edges incident
to ι(e) in G1, and ι(e) is on both boundaries of G1. So the lower boundary data
on G1 must be zero except on ι(e). The same argument applies for each Gn,
n = 1, . . . , j − 1. Each vertex and edge of G1 on · · · on Gj−1 was in one of the
layers, so it has potential or current zero, except for ι(e).

Note τ(e) ∈ Blower(Gj) = Bupper(G1 on · · · on Gj−1). The lower boundary
data of G1 on · · · on Gj−1 has potential 0 except on ι(e), and in particular, the
potential on τ(e) must be zero.

Finally, we extend our harmonic function to G1 on · · · on Gn for n ≥ j.
If there is a harmonic (un, cn) on G1 on · · · on Gn, we let its lower boundary
data be yn. Gn+1 is a lower-stub, horizontal-edge, or vertical edge layer with
bijective conductances. For any such network, we can find a harmonic function
on Gn+1 with upper boundary data yn (this function is not unique for a lower-
stub layer), and joining it with (un, cn) produces a harmonic function on G1 on
· · · on Gn+1.

Lemma 7.2. Let Γ = (G,R) be an electrical network with bijective, zero-
preserving conductances. Suppose e is a boundary edge and there is an e-vertical
layering of G. Then γe is uniquely determined by L.

Proof. Let G1, . . . , GK be an e-vertical layering. Observe that ι(e) ∈ Bupper(G)
and τ(e) ∈ Blower(G). Let t ∈ R. I claim that there exists a harmonic (u, c)
with

• A net current of t on ι(e).

• For p ∈ Bupper(G), up = 0.

• For p ∈ Bupper(G) \Blower(G) \ {ι(e)}, the net current on p is zero.

Further, I claim that for any such (u, c), the potential is zero on all neighbors
of ι(e) except τ(e). This will imply that

uι(e) − uτ(e) = γ−1
e (t) = ρe(t).

Thus, ρe(t) and hence γe are uniquely determined by L.
Let x be the upper boundary data with potentials and net currents zero

except that the net current on ι(e) is −t. The boundary value problem above is
equivalent to finding a harmonic (u, c) with upper boundary data x. As before,
we define (u, c) inductively on G1 on · · · on Gn, for n = 1, . . . ,K. The potential
and current must be zero on G1 on · · · on Gj−1, except that the net current for
ι(e) on the upper and lower boundary is −t. Since e is a vertical edge in Gj ,
ι(e) is not in V (Gn) for any n > j. Thus, any edges incident to e must have
been in the layers G1, . . . , Gj−1, so the potential on all neighbors of ι(e) except
τ(e) is zero.
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7.3 Sufficient Conditions for Recoverability

We can now state precisely what conditions we need in order to recover bijective,
zero-preserving conductances using layerings. We say a graph G is recoverably
layerable if there is a sequence of subgraphs G = G0, G1, . . . GK such that

• Gk+1 is obtained from Gk by a boundary spike contraction or boundary
edge deletion.

• GK has no edges, and all vertices are boundary vertices.

• If it Gk+1 obtained by contracting a spike e, then there is an e-horizontal
layering of Gk.

• If it Gk+1 is obtained by deleting a boundary edge e, then there is an
e-vertical layering of Gk.

Let en be the edge removed from Gn to obtained Gn+1, and let Ln be the
set of boundary data for Gn. By Lemmas 7.1 and 7.2, the conductance of
en is uniquely determined by Ln; by Lemmas 6.5 and 6.6, Ln+1 is uniquely
determined by Ln and γen . Thus, by induction γen is uniquely determined by
L for all n, which means G is recoverable over the bijective, zero-preserving
conductances.

A more symmetric and (it turns out) stronger condition is total layerability.
We say G is totally layerable if for each edge e, there exists an e-horizontal
layering, and an e-vertical layering. We will prove later that all critical circular
planar graphs are totally layerable, as well as many others.

Proposition 7.3. If G is totally layerable, then it is recoverably layerable.

To prove this, note that a totally layerable graph must be layerable. Thus,
there is a spike or boundary edge e. We can also find an e-horizontal or e-vertical
layering. It only remains to show that after contracting the spike or deleting
the boundary edge, the reduced graph is also totally layerable. To do this, we
use the following lemma:

Lemma 7.4. Suppose S is a subgraph of G and e ∈ E(S). If there is an e-
horizontal (respectively e-vertical) layering of G, then there is an e-horizontal
(respectively e-vertical) layering of S.

Proof. S can be obtained from G in three steps:

1. Change all vertices of I(G) \ I(S) to boundary.

2. Delete all edges in E(G) \ E(S), which must be boundary edges.

3. Delete all vertices in V (G) \ V (S), which must be disconnected boundary
vertices.

49



Thus, it suffices to show that if G′ is obtained from G by changing a single
interior vertex to boundary, deleting a single boundary edge, or deleting a dis-
connected boundary vertex, and if G1, . . . , GK is an e-horizontal / e vertical
layering of G, then we can find such a layering for G′.

Suppose G′ is obtained by changing an interior vertex p to boundary. Let
G1, . . . , GK be an e-horiztonal or e-vertical layering of G, and assume each
layer has one edge or one stub. Let Gj be the layer which includes e. Then p
is contained in some layer Gn, and either n ≤ j or n ≥ j. Assume n ≤ j; the
other case is symmetrical. Since p is interior, there must be some vertical edge
layer Gm with p ∈ Blower(Gm) \ Bupper(Gm). Then m ≤ n ≤ j. Let q be the
adjacent vertex in Bupper(Gm), and let e′ be the edge from q to p. We define
elementary layers G′k as follows:

• For k < m, we obtain G′k from Gk by adding p to both the upper and
lower boundary.

• Let G′m be the horizontal edge layer with V (G′m) = V (Gm) and the single
edge e′. Let G′′m be the upper-stub layer with Bupper(G

′′
m) = V (Gm) and

Blower(G
′′
m) = Blower(Gm) = V (Gm) \ {q}.

Then G′1, . . . , G
′
m−1, G

′
m, G

′′
m, Gm+1, . . . , GK form a layering of G′. Each G′k for

k < m is the same type of elementary layer as Gk. The only upper-stub layer
we added was G′′m which comes before Gj , and e is in the same type of layer it
was before (horizontal or vertical). Thus, the new layering is an e-horizontal or
e-vertical layering as desired.

SupposeG′ is obtained fromG by deleting a boundary edge e′. LetG1, . . . , GK
and Gj be as before. Then e′ is in some Gn. Then we modify the layering by
removing Gn to obtain a layering for G′. If e′ is a vertical edge, assume ι(e′) is
on the upper boundary and τ(e′) is on the lower boundary. For each k < n, Gk
must have ι(e′) on both the upper and lower boundary. Let G′k be obtained from
Gk by adding τ(e′) to both boundaries. For k > n, Gk must have τ(e′) on both
boundaries. Let G′k be obtained from Gk by adding ι(e′) to both boundaries.
Then G′1, G

′
2, . . . , G

′
n−1, G

′
n+1, . . . , G

′
K form a layering of G′, and if the original

layering was an e-vertical / e-horiztonal layering, so is the new one.
The case where G′ is obtained from G by deleting a disconnected boundary

vertex is easy and is left to the reader.

Corollary 7.5. A subgraph of a totally layerable graph is totally layerable. A
subgraph of a recoverably layerable graph is recoverably layerable.

Proof. The first statement follows easily from the lemma and definition of total
layerability. For the second, use a similar technique to Lemma 6.2; the details
are left to the reader.
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8 Layerings, Connections, and Mixed Problems

8.1 Columns and Connections

Let P and Q be sets of boundary vertices. A connection from P to Q is a
collection of disjoint boundary-to-boundary paths such that each path has its
intial vertex in P and its terminal vertex in Q; each vertex in P is in exactly
one of the paths, and each vertex in Q is in exactly one of the paths. There may
be a vertex p ∈ P ∩ Q; in this case, any connection from P to Q must include
the length-0 path from p to itself. Thus, there is a one-to-one correspondence
between connections from P to Q and connections from P \Q to Q\P . If there
is a connection from P to Q, then P and Q must have the same cardinality.

Let M(P,Q) be the maximum number of paths in any connection that exists
from some P ′ ⊂ P to some Q′ ⊂ Q. [1] shows that if G is a circular planar
graph with positive linear conductances, then M(P,Q) = rank ΛP,Q, where Λ
is the response matrix. This section generalizes their results by using layerings
to relate M(P,Q) to certain properties of L.

If G is a graph with boundary such that B = P ∪ Q, then a layering from
P to Q is a layering with P = Bupper(G1) and Q = Blower(GK). For a layering
from P to Q, the vertical edges can be joined together into embedded paths,
which we call columns. For a given column, there are three possibilities:

• The column forms a boundary-to-boundary path with one endpoint in P
and the other in Q.

• The column has one endpoint in P and the other is an upper stub.

• The column has one endpoint in Q and the other is a lower stub.

The width of the layering is the number of columns which form boundary-to-
boundary paths.

Proposition 8.1. If there is a layering from P to Q, then the width of the
layering is M(P,Q).

Proof. Let w be the width. The columns which form boundary-to-boundary
paths furnish a connection of size w from some subset of P to some subset of
Q, so M(P,Q) ≥ w. To show the reverse inequality, note that since the upper-
stub layers come before the lower-stub layers, there must be some Gn such that
Blower(Gn) = Bupper(Gn+1) has w elements, one from each of the columns which
form boundary-to-boundary paths. Any path from a vertex in P to a vertex
in Q must pass through every layer of the layering, so it must have a vertex in
Blower(Gn). Thus, there can be at most w disjoint paths from a vertex in P to
a vertex in Q, and M(P,Q) ≤ w.

8.2 The Two-Boundary Relationship

Let P and Q be sets of boundary vertices with B = P ∪Q. Consider G as a two-
boundary graph with Bupper(G) = P and Blower(G) = Q. Let X ⊂ (RBupper ×
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RBupper) × (RBlower × RBlower) be the two-boundary relationship defined in 7.1.
Let π1 and π2 be the projections onto RBupper×RBupper and RBlower×RBlower . For
x ∈ RBupper × RBupper , let Xx = {y : (x, y) ∈ X}, and for y ∈ RBlower × RBlower ,
let Xy = {x : (x, y) ∈ X}. Then

Proposition 8.2. Let Γ be an eletrical network with bijective continuous con-
ductances. Suppose there exists a layering from P to Q, and let X be as above.
Let w be the width of the layering, su the number of upper stubs, and s` the
number of lower stubs. Then

i. π1(X) is homeomorphic to R2w+su .

ii. π2(X) is homeomorphic to R2w+s` .

iii. For any x ∈ π1(X), Xx is homeomorphic to Rn` .

iv. For any y ∈ π2(X), Xy is homeomorphic to Rnu .

Proof. Let G1, . . . , GK be a layering from P to Q, such that each layer has one
edge or one stub. Choose n such that for any upper-stub layer Gk, k ≤ n, for
any lower-stub layer Gk, k > n. Let Xk be the two-boundary relationship for
Gk, so that X = XK �XK−1 � · · · �X1. We parametrize X in terms of three
things: ξ ∈ RBlower(Gn) × RBlower(Gn), η ∈ RSu , and ζ ∈ RS` .

Choose ξ, η, ζ. Let ξk = ξ. If Gn is a horizontal-edge or vertical-edge layer,
then there is a unique ξk−1 with (ξn−1, ξn) ∈ Xn. If Gn is an upper-stub layer
and p is the stub, then there is a unique ξn−1 with (ξn−1, ξn) ∈ Xn, and the
potential on p equal to ηp. We apply the same reasoning to Gn−1, Gn−2, and
so on. Then we let x = ξ0.

Similarly, if Gn+1 is a horizontal-edge or vertical-edge layer, then there is a
unique ξn+1 with (ξn, ξn+1) ∈ Xn+1. If Gn+1 is a lower-stub layer with stub
p, then there is a unique ξn+1 with (ξn, ξn+1) ∈ Xn+1 and potential ζp on p.
Apply the same reasoning to Gn+2, . . . , GK , and let y = ξK .

The (x, y) thus constructed depends continuously on ξ, η, ζ. Actually, x only
depends on ξ and η, and y depends on ξ and ζ. Conversely, for k = 1, . . . , n,
ξk depends continuously on ξk−1, so ξ and η depend continuously on x, and
similarly, ξ and ζ depend continuously on y. We have parametrized all of X.
Since π1(X) is the set of x’s and π2(X) is the set of y’s, we have proven (i) and
(ii).

For (iii), fix x ∈ π1(X). Then ξ and η are uniquely determined by x; however,
ζ does not depend on x, so the set of y’s with (x, y) ∈ X can be parametrized
by ζ, and is thus homeomorphic to Rn` . The proof of (iv) is symmetrical.

Corollary 8.3. Under the above conditions, M(P,Q) can be computed from L,
and

2M(P,Q) = dimπ1(X)− dimXy = dimπ2(X)− dimXx.

Proof. Dimension here means the dimension of a topological manifold: If S
is locally homeomorphic to Rk, then we say dimS = k. This is well-defined
by the “invariance of domain” theorem from topology. The corollary follows
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immediately, since w = M(P,Q) and since X can be computed from L and vice
versa.

Corollary 8.4. Let Γ be an electrical network with signed linear conductances,
and suppose the Dirichlet problem has a unique solution. Let Λ be the response
matrix, and let P ′ = P \ Q, Q′ = Q \ P . If there is a layering from P to Q,
then rank ΛP ′,Q′ = M(P ′, Q′).

8.3 Stubless Layerings

A stubless layering of a graph G is a layering with no upper-stub or lower-
stub networks. For stubless layerings, the relationship between layerings, mixed
problems, and connections is much stronger:

Theorem 8.5. Let G be a graph in which every interior vertex has degree ≥ 2.
Let B = P ∪Q and P ′ = P \Q = B \Q and Q′ = Q \P = B \P . The following
are equivalent:

1. There is a stubless layering from P to Q.

2. For all bijective conductances, potentials on P and net currents on P ′

determine a unique harmonic function.

3. For all (nonzero) signed linear conductances, potentials on P and net cur-
rents on P ′ determine a unique harmonic function.

4. There is a unique connection from P to Q, and this connection uses all
the interior vertices.

Remark. Let (∗) be the condition that potentials on P and net currents on P ′

determine a unique harmonic function. In (2) and (3) it is important that (∗)
holds for all conductances. Even if it holds for most signed linear conductances,
the stubless layering may not exist.

Proof. (1) =⇒ (2). Let X be the two-boundary relationship corresponding
to P and Q. Since there are no stub layers, the reasoning in the previous
Proposition implies that for bijective conductances, π1(X) is all of RP × RP
and any x ∈ RP × RP determines a unique harmonic function on the network.

(2) =⇒ (3) by definition.
(3) =⇒ (4). For signed linear conductances {ae}, (∗) is equivalent to the

submatrix KP ′∪I,Q′∪I being invertible. Recall that

detKP ′∪I,Q′∪I = (−1)n
∑

F∈F(P,Q)

sgn τF
∏
e∈F

ae.

I claim that if (∗) holds for all signed linear conductances, then F(P,Q) has
exactly one element. Clearly, it has at least one element, since otherwise
detKP ′∪I,Q′∪I is always zero. Suppose it has two elements F1 and F2. There
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is some edge e0 ∈ F1 \ F2 or vice versa. Thus, we can assign a sign ±1 to each
edge, such that

(−1)n sgn τF1

∏
e∈F1

sgn e = 1, (−1)n sgn τF2

∏
e∈F2

sgn e = −1.

Thus, by the same argument as in §3.3, there exist signed conductances with
detKP ′∪I,Q′∪I = 0. So F(P,Q) has only one element.

Let F be this element. Each component contains either one vertex in P ∩Q,
or it contains one vertex in P ′ and one in Q′. Each component is a tree, but I
claim that each component is actually a path. If some component were not a
path, then there would be an interior vertex p with only one edge e in F incident
to it. By assumption, there is another edge e′ incident to p. The other endpoint
of e′ is in some component of F , so F \ {e} ∪ {e′} is another spanning forest.
The components of F thus provide a connection from P to Q. The connection
is unique because if there were another connection, then we could add edges to
complete it to a different spanning forest. Thus, (3) implies (4).

(4) =⇒ (1). Suppose there is a unique connection from P to Q, and that
this connection uses all the interior vertices. Our goal is to produce a stubless
layering whose columns are the paths in the connection. Call the edges in the
paths “vertical” and the other edges “horizontal.” Let E∗ be the set of oriented
edges e such that either (a) e is horizontal or (b) e is vertical and oriented in
the same direction as the paths, from P to Q. For e, e′ ∈ E∗ define e ≺ e′ if
τ(e) = ι(e′) and at least one of the oriented edges is vertical.

I claim that there does not exist a sequence e1, . . . , eK ∈ E∗ with

e1 ≺ e2 ≺ · · · ≺ eK ≺ e1.

Call such a sequence a precedence loop. Suppose for the sake of contradiction a
precedence loop exists, and that e1, . . . , eK ∈ E∗ is the precedence loop with the
minimum number of horizontal edges. The idea is to use the precedence loop to
construct a different connection from P to Q, as shown in Figure 3. However,
we have many details to attend to first. Observe:

• Every precedence loop must have horizontal edges.

• If there were j < k with ej = ek, then e1, . . . , ej , ek+1, . . . , eK and ej+1, . . . , ek
would both be precedence loops. So ej+1, . . . , ek would be a precedence
loop with fewer horizontal edges. Thus, the oriented edges in our prece-
dence loop must be distinct.

• Call a subset of {1, . . . ,K} an interval if it has the form {j, . . . , k} or
{1, . . . , j, k, . . . ,K} for some 1 ≤ j < k ≤ K. If α is a path of the
connection, let Iα = {k : ek is in α}. Then Iα is an interval. For suppose
not. By reindexing if necessary, we can assume eK is not in α. Then there
exist j < k < ` < m such that ej−1 is a horizontal edge, ej , . . . , ek are in
α, ek+1 is a horizontal edge; e`−1 is a horizontal edge, e`, . . . , em are in α,
and ek+1 is a horizontal edge. We can assume that ej , . . . , ek occur earlier
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Figure 3: Proof of Theorem 8.5: (4) =⇒ (1)
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in α than e`, . . . , em (earlier meaning closer to P ). So there is a sequence
of edges e′1, . . . , e

′
n in α with e′1 ≺ e′2 ≺ · · · ≺ e′n, e′1 = ej , and e′n = em.

Thus, we obtain a precedence loop

e1, . . . , ej−1, ej = e′1, e
′
2, . . . , e

′
n = em, em+1, . . . , eK ,

which has fewer horizontal edges than the original, since we removed at
least one horizontal edge ek+1 and added only vertical edges.

• Let vj = τ(ej). Each vj is in exactly one α. Since each vj must be the
endpoint of some vertical edge, it follows from the previous observation
that for a given α, the set of j with vj in α is an interval. Thus, none of
the vj ’s in the same path can be equal to each other.

Now we use the loop to create a different connection from P to Q. Let p1, . . . , pN
be the vertices in P and q1, . . . , qN be the vertices in Q. Let αn be the path from
pn to qn. If the precedence loop does not contain any edges of αn, let α′n = αn.
If the loop contains some edges ej , . . . , ek from αn, let α′n start at pn, follow
αn until it reaches the first vertex in the loop (vj−1), then follow the horizontal
edge ej−1 to a vertex (vj−2) in a different path αm, and finally follow αm until
it reaches qm. It follows from the properties listed above that the paths α′n are
disjoint.

Therefore, (4) implies that there is no precedence loop. Thus, there must be
some e1 ∈ E∗ such that e′ 6≺ e for all e′ ∈ E∗.

• Suppose e1 is vertical. Then there are no vertical or horizontal edges
incident to ι(e). Therefore, e1 is an upper boundary spike. We define a
vertical-edge layer G1 with Bupper(G1) = P and Blower(G1) = P \{ι(e1)}∪
{τ(e1)} and E(G1) = {e1, e1}.

• Suppose e1 is horizontal. Then there is no vertical edge e ∈ E∗ with
τ(e) equal to one of the endpoints of e1. Thus, e1 must be an upper-
boundary edge. We define a horizontal-edge layer G1 with Bupper(G1) =
Blower(G1) = P and E(G1) = {e1, e1}.

Next, we find an edge e2 such that for all e ∈ E∗, e 6= e1, we have e 6≺ e2. In a
similar way, we define an elementary layer with edge e2, and continue inductively
until all edges of G have been exhausted. The resulting layers G1, . . . , GK form
a stubless layering of G from P to Q.

This result is rather surprising. Two purely geometric conditions (1) and (4)
are equivalent to the algebraic conditions (2) and (3). And it is not at all obvious
that (2) and (3) should be equivalent since bijective conductances can behave
much worse than signed linear conductances. Nor is it immediate that (1) and
(4) are equivalent, and one consequence of this is that a unique connection in a
flower cannot use all the interior vertices. However, it is relatively easy to show
directly that (1) =⇒ (4), and I leave this as an exercise.
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9 Critical Circular Planar Networks

9.1 Medial Graphs

For any graph G, there is a corresponding topological space G, the quotient
space obtained from E× [0, 1] by identifying (e, t) with (e, 1− t) and identifying
(e, 0) and (e′, 0) if ι(e) = ι(e′). An embedding of a graph on a surface with
boundary S is a function f : G → S which is a homeomorphism onto its image,
such that

• f(x) ∈ ∂S if and only if x corresponds to a boundary vertex.

• Each component of S \ f(G) is homeomorphic to an open disc.

In the future, we will identify G, G, and f(G).
The components of S \ G are called cells. The boundary of each cell is a

union of edges of G and pieces of ∂S. Two cells X and Y are adjacent if they
share an edge (that is, there is an edge contained in X ∩ Y). A two-coloring of
the cells is an assignment to each cell of a color “white” or “black,” such that
adjacent cells have opposite colors. Not all graphs admit such a coloring.

If S is a surface with boundary, then a medial graph on S is a graph embedded
on S such that each interior vertex has valence 4 and each boundary vertex has
valence 1, together with a two-coloring of the cells. If C is a curve on S or any
subset of S, we say a medial cell X touches C if X ∩ C 6= ∅. If G is embedded
on S, then we say a medial graph M is compatible with G if the following
conditions are satisfied:

• Each edge of G contains exactly one interior vertex ofM, not at either of
the endpoints of the edge, and each interior vertex of M is contained in
one edge of G.

• The edges of M only intersect G at their endpoints.

• Each black cell ofM contains exactly one vertex of G, and each vertex of
G is contained in a black cell.

• Each white cell of M is contained a cell of G, and each cell of G contains
exactly one white cell of M.

• A vertex of G is a boundary vertex if and only if its medial cell touches
∂S.

According to this definition, there may be more than one medial graph for a
given G with a given embedding.

If e and e′ are medial edges incident to an interior vertex v of a medial graph
on S, we say e and e′ are adjacent (at v) if there is a cell X with e, e′ ⊂ ∂X .
Otherwise, e and e′ are opposite (at v). A geodesic arc is a path in M with
vertices and oriented edges v0, e1, v1, e2, . . . , eK , vK such that ek and ek+1 are
opposite at vk and e1, . . . , eK are distinct. A geodesic is a geodesic arc such that
either v0 = vK or v0 and vK are both boundary vertices.
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If G is embedded on S with a medial graph M, then subgraph partitions
of G naturally arise from partitions of the surface S. Suppose C is a simple
curve on S which divides it into two regions S1 and S2 which are themselves
surfaces with boundary. Assume no vertices of M are on C, that C intersects
each edge ofM in finitely many points, and that for each medial cell X , X ∩S1

and X ∩ S2 are homeomorphic to D. For j = 1, 2, define a graph Gj by letting
V (Gj) be the set of vertices whose medial cells intersect Sj , E(Gj) the set of
oriented edges whose medial vertices are in Sj , and B(Gj) the set of vertices
whose medial cells touch ∂S1. Then G1 and G2 form a subgraph partition of
G. Similarly, we can divide S into surfaces S1, . . . , SK and find a corresponding
subgraph partition of G.

We can embed Gj into Sj by restricting the embedding of G and altering
it slightly. Then there is compatible medial graph Mj whose cells are the
intersections of the cells of M with Sj . However, the embeddings for G1 and
G2 thus constructed may or may not be consistent with each other. For example,
if G is divided into three subgraphs G1, G2, G3, one medial black cell may be
cut into three regions with no common boundary points, and in this case it
is impossible to find a position for the vertex which will work for all three
subgraphs. In this case, it is best not to worry about the position of the vertices,
but instead focus on the medial cells.

For a graph G and surface S and C ⊂ ∂S, let BC be the set of vertices whose
medial cells touch C. If G, G1, and G2 are as above, define two-boundary graphs
by letting

Bupper(G1) = B∂S1∩∂S(G1)

Blower(G1) = BC(G1)

Bupper(G2) = BC(G2)

Blower(G2) = B∂S2∩∂S(G2).

Then G = G1 on G2. In particular, we may be able to create layerings of a graph
embedded on S by constructing curves which divide S into surfaces S1, . . . , SK
such that each Gk is an elementary layer.

9.2 Total Layerability

A graph is circular planar if it can be embedded in the unit disc D, where ∂D is
the unit circle. Equivalently, it is circular planar if it can be embedded in some
surface with boundary S with S homeomorphic to D. If G is circular planar
and every component has a boundary vertex, then there exists a compatible
medial graph on D; the case where G is connected is proven in [1] and we leave
the rest to the reader.

A lens in a medial graph is a closed path in M formed by one or two
geodesic arcs with distinct edges. A medial graph is lensless if it has no lenses;
equivalently, it is lensless if every geodesic is a boundary-to-boundary path and
no two geodesics intersect more than once.
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A CP graph with a lensless medial graph is called critical (in [1], criticality
is a different condition, but it is equivalent to the medial graph being lens-
less). [1] proves that a circular planar graph is recoverable over positive linear
conductances if and only if there is a compatible lensless medial graph, and
in fact, if the medial graph has a lens, then the graph is Y -∆ equivalent to a
graph with a parallel or series connection. [4] shows that critical circular planar
(CCP) graphs are recoverable over bijective zero-preserving conductances. We
will give an alternative proof of this last result by showing that CCP graphs are
totally layerable.

We start with some definitions and lemmas: Suppose that Cupper and Clower

are two arcs which partition ∂D. Let Bupper and Blower be the sets of vertices
of G whose medial cells touch Cupper and Clower respectively. Then Bupper and
Blower are called a circular pair. They intersect in at most two vertices. We will
construct layerings between circular pairs.

Lemma 9.1. Let G be CCP with medial graph M. Let Cupper, Clower, Bupper,
and Blower be as above. Suppose every geodesic has at least one endpoint on
Cupper. Then there exists a layering from Bupper to Blower with no lower-stub
layers.

Proof. We can assume that if a black medial cell X touches Cupper, then X ∩
Cupper is an arc of Cupper, and the same holds for the lower boundary. Indeed,
if there is a black medial cell such that X ∩Cupper consists of two or more arcs,
then it is not hard to change the medial cell so that X ∩ Cupper has only one
arc, and we can do this without affecting Bupper and Blower or the hypotheses
of the lemma, and the same holds for the lower boundary.

Our goal is to construct the layering inductively. First, we show that if
there is at least one edge in G or one geodesic with both endpoints on the
upper-boundary, then there exists an upper-boundary spike, upper-boundary
edge, or upper-boundary stub. Observe the following:

• Suppose a geodesic consists of one medial edge and has both endpoints on
the upper boundary. Then this geodesic together with an arc of Cupper

bound a medial cell, and the corresponding vertex of G is an upper-
boundary stub. We will call this cell a upper-boundary stub-cell.

• Suppose there is a triangular medial cell bounded by two medial edges and
an arc of Cupper. Then two medial vertices of the cell are on Cupper and
the other is interior. We call such a medial cell an empty upper-boundary
triangle. Then the corresponding vertex of G is a valence 1 vertex in
Bupper \Blower. Hence, the edge of G corresponding to the medial vertex
of the triangle is an upper-boundary spike or upper-boundary edge.

• If there is a white empty upper-boundary triangle, and v is the interior
medial vertex of the cell, then the edge of G corresponding to v is an
upper-boundary edge.
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Therefore, it suffices to show that there is an upper-boundary stub-cell or an
empty upper-boundary triangle. If there is an upper-boundary stub-cell, we are
done.

Suppose there is no upper-boundary stub-cell. Then there is at least one
edge in G; then there is a medial vertex v at which two geodesics g0 and g′0
intersect. Choose an orientation of g0 with a starting point on Cupper, and let
g1 be the first geodesic which g0 intersects. Since g0 and g1 have an endpoint
on the upper boundary, there are geodesic arcs g′0 and g′1 contained in g0 and
g1 such that g′0 and g′1 have one endpoint at v and one on Cupper. Since M is
lensless, g′0 and g′1 only intersect at v. There there is an arc C0 of the upper
boundary such that C0, g0, and g1 form a simple closed curve and by the Jordan
curve theorem, they bound a triangular region T0. Orient g′1 starting at Cupper

and ending at v, and let g2 be the first geodesic g′1 intersects. Then there is a
triangular region T1 ⊂ T2 bounded by an arc of g1 and an arc of g2 and an arc
of Cupper. Continuing inductively to define g3, g4, . . . and T2, T3, T4, . . . . Each
Tn is a union of medial cells and edges, so there must be some n for which
Tn = Tn+1. Let R0 = Tn. Then the geodesic arcs which bound R0 must consist
of only one medial edge apiece.

So either R0 is an empty upper-boundary triangle or it fully contains some
geodesics. In the first case, we are done. In the second, R0 must contain
more than one geodesic; otherwise, it would contain a stub-cell, contrary to our
assumption. Thus, we can we find an edge of G contained in R0. Then we
repeat the above argument to find a new triangle R1 ⊂ R0 bounded by two
medial edges and an arc of Cupper. If this is not an empty upper-boundary
triangle, then there is an R2 ⊂ R1, and so on. The process must terminate after
finitely many steps because each Rn contains strictly fewer medial cells than
Rn−1. Thus, some Rn is an empty boundary triangle. Therefore, G must have
an upper-boundary spike, upper-boundary edge, or upper-boundary stub.

Given G, we construct the layering as follows: If every geodesic has one
endpoint on each boundary and there are no interior vertices in the medial graph,
then every vertex of G is on both boundaries, and G has no edges. So there exists
a trivial layering of G. Otherwise, there is an upper-boundary spike, upper-
boundary edge, or upper-boundary stub. Thus, we can write G = G1 on G′

where G1 is a vertical-edge, horizontal-edge, or upper-stub layer.
In fact, the subgraph partition can be constructed by dividing the disc into

two pieces using a curve C ′upper with the same endpoints as Cupper and Clower. In
the case of an upper-boundary stub, we make C ′upper stay close to Cupper except
near the upper-boundary stub-cell, so that the region bounded by C ′upper and
Cupper contains the stub-cell, but all interior vertices ofM are contained in the
other region. Similarly, for an empty upper-boundary triangle, we make C ′upper

stay close to Cupper except to “skirt” the triangle. Then the region D′ bounded
by Clower and C ′upper is homeomorphic to D and has an embedded medial graph
M′ formed by intersecting the cells of M with D′. Then G′ can be embedded
in D′ with medial graph M′.

It is easy to verify that G′ andM′ satisfy the original hypotheses. Thus, we
can continue inductively to divide G into into elementary layers until there are
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no more edges in G and no more geodesics with both endpoints on the upper
boundary curve.

Theorem 9.2. Critical circular planar graphs are totally layerable.

Proof. Let G be CCP with a lensless medial graph M. Let e be any oriented
edge of G, and let v be the corresponding medial vertex. Let g be one of the
geodesics which intersects at v, and let r and s be its endpoints. Let r′ be a
point on the boundary circle on the counterclockwise side of r, so that r′ is
closer to r than any geodesic endpoint (other than r itself), and let s′ similarly
be on the counterclockwise side of s. Let Cupper be the counterclockwise arc
from r′ to s′ and let Clower be the counterclockwise arc from s′ to r′.

Then g divides D into two regions; call the region bounded by g and Cupper

“above g” and the other region “below g.” Let C be a curve which starts at
r′ crosses g once and ends at s′; let it cross g on the medial edge incident to
v which is closest to r′; we can arrange that C is so close to g that there are
no medial vertices above g and below C, or below g and above C. Let C ′ start
at r′, cross g on the medial edge incident to v closest to s′, and end at s′; we
can arrange that C ′ is always above C and the only medial vertex in the region
between them is v.

Then the subgraph of G corresponding to the region between C and C ′ is
either a vertical-edge layer or horizontal-edge layer with C as the lower boundary
curve and C ′ as the upper boundary curve. If it is a vertical-edge layer, then
by putting r′ and s′ on the clockwise side of g instead and performing a similar
contruction would produce a horiztonal-edge layer, and vice versa. Let G0 be
this elementary layer; let H be the subgraph in the region bounded by C and
Clower and let H ′ be the subgraph in the region bounded by C ′ and Cupper.

Since each other geodesic only intersects g once, we can arrange that no
geodesic intersects C twice or C ′ twice. Then every geodesic in H ′ has one
endpoint on Cupper. Hence, by the Lemma, there is a layering H ′1, . . . ,H

′
j of H ′

with Cupper as the upper boundary curve and C ′ as the lower boundary curve,
and no lower-stub layers. Similarly, there is a layering H1, . . . ,H

′
k of H with

C as the upper boundary curve and Clower as the lower boundary curve, and
no upper-stub layers. Then H ′1, . . . ,H

′
j , G0, H1, . . . ,Hk is a layering of G from

Bupper to Blower which is an e-vertical or e-horizontal layering, depending on
which type of layer G0 is. Thus, there are e-horizontal and e-vertical layerings
of G.

Remark. The layerings G1, . . . , GK constructed in the above proofs have a cor-
responding division of D into regions S1, . . . , SK such that Gk is the subgraph
of G corresponding to the region Sk. For each Sk, there are arcs Cupper(Sk)
and Clower(Sk) of the boundary curve which correspond to Bupper(Gk) and
Blower(Gk), and Clower(Sk) = Cupper(Sk−1).
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9.3 The Cut-Point Lemma

[1] shows the following: Suppose G is a CCP graph with positive linear con-
ductances. If we know the response matrix Λ and the order of the boundary
vertices and geodesic endpoints on the boundary circle, then we can determine
the graph up to Y -∆ equivalence. The key observations, in my terminology,
are:

1. Suppose P and Q are a circular pair corresponding to a partition Cupper

and Clower of the boundary circle. Then the maximum size connection
M(P,Q) can be determined from L.

2. The number of geodesics which have both endpoints on Cupper is uniquely
determined by M(P,Q).

3. If we know the number of geodesics with both endpoints on Cupper for all
possible choices of Cupper, we can determine which points on the boundary
circle are endpoints of the same geodesic.

4. This will determine G up to Y -∆ equivalence.

We will generalize (1) to nonlinear conductances and present another proof of
the “cut-point lemma” used in (2). For (3) and (4), refer to [1].

Lemma 9.3. Let G be CCP. If P and Q are a circular pair, then there is a
layering from P to Q.

Proof. If P and Q are a circular pair, then there are arcs Cupper and Clower

which partition the boundary circle. If a geodesic g has both endpoints on
Cupper, then there is a region Rg bounded by g and some arc of Cupper; if h
has both endpoints on Clower it cannot intersect g; otherwise, it would have to
both enter and exit Rg, and hence would intersect g in two places, creating a
lens. Thus, the geodesics with both endpoints on the upper boundary and those
with both endpoints on the lower boundary cannot intersect. As the reader may
verify, it is possible to construct a simple curve C with endpoints r and s such
that the geodesics with both endpoints on the upper boundary are contained in
the region R1 bounded by C and Cupper, the geodesics with both endpoints on
the lower boundary are contained in the region R2 bounded by C and Clower,
and no geodesic intersects C more than once. Then as in the previous section
we construct a layering of the subgraph G1 in R1 with Cupper as the upper
boundary curve and C as the lower boundary curve and no lower-stub layers,
and a layering of the subgraph G2 in the other region with no upper-stub layers.
These join to form a layering of G from P to Q.

Corollary 9.4. Let G be CCP, and let Γ be a network on G with bijective
continuous conductances. If P and Q are a circular pair, then M(P,Q) is
uniquely determined by L.

Proof. This follows from Corollary 8.3.
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Corollary 9.5 (Cut-Point Lemma). Let Cupper and Clower be a partition of
the boundary circle into arcs. Let P and Q be the corresponding sets of bound-
ary vertices. The number of geodesics with both endpoints on Cupper is |P | −
M(P,Q).

Proof. Let G1, . . . , GK be a layering from P to Q constructed as above. As
before, there are corresponding regions S1, . . . , SK in D and upper and lower
boundary curves for each Sk. Let G′k = G1 on · · · on Gk, and let S′k be the
corresponding region. For each k, let mk be the maximum size connection
in Gk from the upper boundary, let rk be the number of geodesics with both
endpoints on the upper boundary, and let nk = |Bupper(Gk)|. Let j be the index
where Cupper(Sj) = C. For k ≤ j, we prove that rk = nk −mk by induction.
Since Gj on · · · on GK has no upper-stub layers, the maximum connection (that
is, the width of the layering) is the number of upper-boundary vertices, so
mj = nj ; there are no geodesics with both endpoints on the upper boundary, so
rj = 0 = nj −mj , which completes the base case. If Gk−1 is a vertical-edge or
horizontal-edge layer, then mk−1 = mk, nk−1 = nk, and rk−1 = rk. If Gk−1 is
an upper-stub layer, then G′k−1 has one more geodesic on the upper boundary
than G′k; it also has one more vertex on the upper boundary; but the maximum
connection is unchanged. Hence, rk−1 = rk + 1 = nk −mk + 1 = nk−1 −mk−1.
It follows that the number of geodesics with both endpoints on Cupper, which is
r1, equals n1 −m1 = |P | −M(P,Q).

The upshot is that we can determine the Y -∆ equivalence class of a CCP
network from L and the arrangement of the boundary vertices for bijective
continuous conductances. If they are bijective, continuous, and zero-preserving,
we can in theory attempt the recovery process for each member of the Y -∆
equivalence class and discover by trial and error which ones could have been the
original graph G. In the positive linear case, any member could have been the
original graph, but this is not true in general. A question for further research
is when exactly the original graph is uniquely determined by L.

10 Some Graph Contructions

10.1 Covers

Let G and H be graphs, with or without boundary. A graph morphism f :
H → G consists of two functions fV : V (H) → V (G) and fE : E(H) → E(G)
such that ι(fE(e)) = fV (ι(e)) and fE(e) = fE(e). A graph morphism is a
covering map if for each vertex p, fE restricted to {e : ι(e) = p} is bijective. For
graphs with boundary, we require in addition that fV (p) ∈ B(G) if and only if
p ∈ B(H). If there is a covering map f : H → G, then H is said to be a cover
of G.

I will write f for both fV and fE since the meaning will be clear from the
context. If f : H → G is a graph morphism and G′ is a subgraph of G, then we
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define f−1(G′) by

V (f−1(G′)) = f−1(V (G′)),

E(f−1(G′)) = f−1(E(G′)),

B(f−1(G′)) = f−1(B(G′)).

If G′ is a two-boundary graph and is a subgraph of G as a graph with boundary,
we define f−1(G′) similarly, with

Bupper(f
−1(G′)) = f−1(Bupper(G

′)),

Bupper(f
−1(G′)) = f−1(Bupper(G

′)).

Suppose f : G̃→ G is a covering map. The following are easy to verify:

• If G1, . . . , GK are a subgraph partition of G, then f−1(G1), . . . , f−1(GK)
are a subgraph partition of G̃.

• G is reducible to the empty graph if and only if G̃ is reducible to the
empty graph.

• If G = G1 on G2, then G̃ = f−1(G1) on f−1(G2).

• The preimage of an elementary layer is an elementary layer of the same
type.

• If G1, . . . , GK are a layering of G, then f−1(G1), . . . , f−1(GK) are a lay-
ering of G̃.

• If G is recoverably layerable, then so is G̃.

• If G is totally layerable, then so is G̃.

It is easy to construct covers of a given graph G. Choose an integer n, and
define the sets vertices and edges for our cover by

V (G̃) = V (G)× {1, . . . , n},
E(G̃) = E(G)× {1, . . . , n},
B(G̃) = B(G)× {1, . . . , n}.

We still need to define ι and¯ for G̃. For p ∈ V (G), denote the corresponding
vertices of G̃ by p1, . . . , pn, and for e ∈ E(G), let e1, . . . , en be the corresponding
edges. Let ι(ej) = (ι(e))j . For each e ∈ E(G), choose a permutation σe ∈ Sn,
such that σe = σ−1

e , and let ej = (e)σe(j). Then setting f(pj) = p and f(ej) = e

defines a covering map G̃→ G.
Actually, any (finite) cover of a connected graph G can be constructed this

way. Suppose G is connected and ι(e) = p in G. For each p′ ∈ f−1(p), there is
exactly one e′ ∈ f−1(e) with ι(e′) = p′. Thus, f−1(p) and f−1(e) have the same
cardinality. Since G is connected, f−1(p) and f−1(e) have the same cardinality
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Figure 4: Removing a lens using a covering map.

A lens in M. Corresponding geodesics in h−1(M).

for all vertices and edges. Let n be the cardinality (called the rank or number of
sheets of the cover). For each vertex p, let p1, . . . , pn be the elements of f−1(p)
and for each edge e, let ej be the element of f−1(e) with ι(ej) = f−1((ι(e))j).
Note ¯ is bijective and maps f−1(e) onto f−1(e); thus, there must be some
permutation σe ∈ Sn with ej = (e)σe(j), and of course, σe = σ−1

e .
This construction allows us to produce totally layerable graphs from other

totally layerable graphs. For instance, we could start with a critical circular
planar graph G, choose some large n, and choose appropriate permutations σe,
so that the resulting cover G̃ is a large, non-circular-planar, but totally layerable
graph.

Actually, a cover G̃ may be totally layerable even if G is not. Suppose for
example that G is a connected circular planar graph, and it has a medial graph
M with only one lens, which is formed by two geodesics as shown in Figure
10.1. Suppose G is embedded in the unit disc in C such that no vertex lies on
the origin, and the lens contains the origin. Let h : C→ C be given by z 7→ z2.
Then h−1(G) is a two-fold cover of G embedded in the unit disc, and h−1(M)
is a compatible lensless medial graph. This method will not work directly if
there are multiple lenses which do not contain a common point, since removing
one lens will create two copies of all the other lenses. However many times we
repeat the process, there will still be more lenses.

In general, if S is a surface with boundary and h : S̃ → S is a topological
covering map, then for any graph G embedded on S, G̃ = h−1(G) is a covering
graph of G, and ifM is a medial graph for G, then h−1(M) is a medial graph for
G̃. For general surfaces with boundary, it is not known what conditions on the
medial graph will guarantee total layerability; however, if such conditions are
discovered, topological covering maps may be a useful tool for creating totally
layerable covers of certain graphs. In particular, the map h : z 7→ zn could
be used for graphs embedded in the annulus {1 < |z| < 2} ⊂ C. One could
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also consider constructing covering graphs in a purely graph-theoretical way to
remove “obstacles” to total layerability.

10.2 Products

If G and H are graphs with boundary, let G×H be the graph with

• V (G×H) = V (G)× V (H).

• B(G×H) = (B(G)× V (H)) ∪ (V (G)×B(H)).

• E(G×H) = (E(G)× V (H)) ∪ (V (G)× E(H)).

• If e ∈ E(G) and q ∈ V (H), then (e, q) = (e, q) and ι((e, q)) = (ι(e), q).
Similarly, if p ∈ V (G) and e ∈ E(H), then (p, e) = (p, e) and ι((p, e)) =
(p, ι(e)).

Layerings of G and H naturally produce layerings of G × H. Suppose
G1, . . . , GK is a layering of G. We construct a layering of G×H as follows: The
first layer S0 will be a horizontal edge layer with vertices Bupper(G1) × V (H)
and edges Bupper(G1)× E(H). Then for each n,

• If Gk is an upper-stub, lower-stub, or horizontal-edge layer, add a layer
Sk with

Bupper(Sk) = (Bupper(Gk)× V (H)) ∪ (V (G)×B(H)),

Blower(Sk) = (Blower(Gk)× V (H)) ∪ (V (G)×B(H)),

E(Sk) = E(Gk)× V (H).

• If Gk is a vertical-edge layer, add a vertical-edge layer Sk with

Bupper(Sk) = (Bupper(Gk)× V (H)) ∪ (V (G)×B(H)),

Blower(Sk) = (Blower(Gk)× V (H)) ∪ (V (G)×B(H)),

E(Sk) = E(Gk)× I(H),

then a horizontal-edge layer S′k with

V (S′k) = (Blower(Sk)× V (H)) ∪ (V (G)×B(H)),

E(S′k) = (E(Gk)×B(H)) ∪ (Blower(Gk)× E(H)).

We will call the layering given by the Sk’s and S′k’s the product layering induced
by G1, . . . , Gn. If H1, . . . ,HN is a layering of H, then we can define a similar
layering of G × H, switching the roles of G and H. A consequence of these
product layerings is that G×H is generally “at least as layerable as” G and H.

Proposition 10.1.

i. If either G or H is layerable, then so is G×H.
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ii. If either G is recoverably layerable and H has no parallel edges, then G×H
and H ×G are recoverably layerable.

iii. If for every e ∈ E(G) there is an e-vertical layering of G and for every
e ∈ E(H) there is an e-vertical layering of H, then G×H is totally layerable.
In particular, this holds if G and H are totally layerable.

Proof.

i. For any layering of G or H, there is an induced layering of G×H.

ii. Suppose G is recoverably layerable; the other case is symmetrical. Let H ′

be the graph obtained from H by changing all the boundary vertices to
interior. Then G×H is a subgraph of G×H ′, so it suffices to show G×H ′
is recoverably layerable.

Let J0, . . . , JN be a sequence of graphs with J0 = G, and JN = ∅, and each
Jk obtained from Jk−1 by a reduction operation, such that if Jk is obtained
by contracting a spike e, then there is an e-horizontal layering of Jn−1, and
if Jn is obtained by deleting a boundary edge e, then there is an e-vertical
layering of Jn−1.

Suppose Jn is obtained from Jn−1 by deleting a boundary edge e. Let
G1, . . . , GK be an e-vertical layering of Jn−1. Then the induced layering
of Jn−1 × H ′ is an (e, q)-vertical layering for each (e, q) ∈ {e} × V (H ′).
When we delete the boundary edges {e}×V (H ′) from Jn−1×H, we obtain
Jn ×H ′.
Suppose Jn is obtained from Jn−1 by contracting a boundary spike e.
To obtain Jn × H ′ from Jn−1 × H ′, we must first delete the boundary
edges {ι(e)} ×E(H ′), then contract the boundary spikes {e} × V (H ′). Let
G1, . . . , GK be an e-horizontal layering of G with e ∈ E(Gk). Choose
e′ ∈ E(H ′). Note ι(e) is on both the upper and lower boundary of Jn−1,
so (ι(e), ι(e′)) and (ι(e), τ(e′)) are on both boundaries of Jn−1 × H ′ in
the induced layering. Also, (ι(e), e′) is in the initial layer S0. We modify
the layering as follows, relying on the fact that the only edges incident to
(ι(e), ι(e′)) are (e, ι(e′)) and edges in {ι(e)}×E(H ′), and if e′′ ∈ E(H) with
ι(e′′) = τ(e′), then (ι(e), ι(e′′)) is on both boundaries:

• Remove (ι(e), e′) from E(S0), and for any e′′ ∈ E(H) incident to τ(e′),
remove (ι(e), e′′).

• For j = 0, . . . , k−1, remove (ι(e), τ(e′)) from each layer Sj and (where
applicable) S′j .

• Remove (e, τ(e′)) from Sk.

• Insert a vertical-edge layer S∗k with (ι(e), e′) as a vertical edge.

• Insert a horizontal-edge layer with edges (e, τ(e′)) and (ι(e), e′′) for
e′′ ∈ E(H) incident to τ(e′).

• For j = k+1, . . . , k, remove (ι(e), ι(e′)) from each layer Sj and (where
applicable) S′j .
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This produces an (ι(e), e′)-vertical layering. When we delete the bound-
ary edges {ι(e)} × E(H ′) from Jn−1 ×H ′, the edges {e} × V (H ′) become
boundary spikes, and the induced layering from G1, . . . , GK produces a
(e, q)-horizontal layering for each q ∈ V (H ′).

If Jn is obtained from Jn−1 by deleting a disconnected boundary vertex,
there is nothing to prove.

iii. Let G′ and H ′ be the graphs obtained by changing the boundary vertices
of G and H to interior. Choose (e, q) ∈ E(G)× V (H). If G1, . . . , GN is an
e-vertical layering of G, then the induced product layering of G×H ′ is an
(e, q)-vertical layering, and since G×H is a subgraph of G×H ′, there is an
induced e-vertical layering of G ×H. To find an (e, q)-horizontal layering,
choose e′ ∈ E(H) with τ(e′) = q. Let H1, . . . ,HN be an e′-vertical layering
of H with e′ ∈ E(Hk). In the induced layering of G′ ×H, (e, q) occurs in
the second product layer corresponding to Hk (called S′k earlier). Thus, the
induced layering of G′ × H is an (e, q)-horizontal layering, and it induces
an (e, q)-horizontal layering of G×H. If (p, e) ∈ V (G)×E(H), then there
are (p, e)-vertical and (p, e)-horizontal layerings of G×H by a symmetrical
argument.

Products thus provide another method of producing large and complicated
totally layerable or recoverably layerable graphs from smaller ones. Less sym-
metrical graphs can be created by taking subgraphs of products.

11 More Signed Linear Conductances

11.1 The Electrical Linear Group ELn

In [5], Lam and Pylyavskyy define an “electrical linear group” EL2n, whose
“positive part” acts on circular planar networks with n + 1 boundary vertices
with positive linear conductances. The group is isomorphic to the symplectic
group. Here we define a slightly different electrical linear group. We also ap-
proach it differently since we have dealt with signed conductances on non-planar
networks from the outset. We show its relationship to the symplectic group in
a more explicit and elementary way using electrical networks rather than Lie
theory.

Suppose Γ is a network on a vertical-edge layer G with a single edge, and
the resistance of the edge is ρe(t) = at, where ae 6= 0. Index the columns of the
layer by 1, . . . , n, and let pj and qj be the upper and lower boundary vertices
on the jth column. Let k be the index of the column with the edge, so that the
edge connects pk and qk, and pj = qj for j 6= k. Any x ∈ R2n can represent
upper boundary data on Γ; for j = 1, . . . , n, we let xj represent the potential
on pj and xn+j the upper-boundary current on pj (with the appropriate sign).
Similarly, any element of R2n can also represent data on the lower boundary. If
x and y represent the upper- and lower- boundary data of a harmonic function
on Γ, then
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• For j 6= k, xj = yj and xn+j = yn+j .

• yk = xk + axn+k and yn+k = xn+k.

Hence,

y =

(
I aEk,k
0 I

)
x,

where each block is n × n and Ek,k is an n × n matrix with 1 on the k, k
entry and zeroes elsewhere. We will call this 2n × 2n matrix Vk(a). Then
Vk(a+ b) = Vk(a)Vk(b) and hence Vk(a)−1 = Vk(−a).

Similarly, if Γ is a network on a horizontal-edge layerG with vertices p1, . . . , pn
and an edge between pj and pk with conductance γe(t) = at for a 6= 0, and if x
and y represent data on the upper and lower boundaries, then

y =

(
I 0

a(Ej,j − Ej,k − Ek,j + Ek,k) I

)
x.

We call this matrix Hj,k(a). Then Hj,k(a+b) = Hj,k(a)Hj,k(b) and Hj,k(a)−1 =
Hj,k(−a).

The electrical linear group ELn is the group generated by the matrices Vk(a)
and Hj,k(b) for real a, b 6= 0 and j, k ∈ {1, . . . , n} with j 6= k. Suppose Ξ ∈ ELn
is given by Ξ = ΞM . . .Ξ1, where each Ξm is one of the generators Vk(a) or
Hj,k(b). Then each Ξm corresponds to a vertical- or horizontal-edge layer Gm.
By identifying Blower(Gm) and Bupper(Gm+1) according to the given indexing
of the columns in each layer, we construct a network G = G1 on · · · on GM . The
matrix Ξ maps upper-boundary data on G to lower-boundary data on G.

Thus, each stubless-layerable network with n columns indexed by 1, . . . , n
corresponds to a Ξ ∈ ELn. However, multiple stubless-layerable graphs may
have the same Ξ matrix. For example, we can join two vertical-edge layers
together to produce Ξ = Vk(a)Vk(b), but this is the same as Vk(a + b), and
hence could represent a network with a single vertical edge. Each Ξ matrix
thus represents a large class of stubless-layerable networks. A stubless-layerable
network with Bupper = Blower and no edges corresponds to the identity matrix.

There is another interpretation of ELn in terms of reduction operations
and their inverses. Suppose Γ is a network with n boundary vertices, indexed
1, . . . , n and Γ′ is obtained by adjoining a spike e on vertex k with ρe(t) = at.
Assume the new boundary vertex ι(e) inherits the index k from τ(e). Then if
x = (φ, ψ) ∈ R2n represents the boundary data of a harmonic function on Γ,
then the extension of (u, c) to Γ′ has boundary data represented by y = Vk(a)x,
and L′ = Vk(a)(L). Vk(−a) = Vk(a)−1 means that in terms of L, adjoining
a spike of resistance −ρe is the inverse of adjoining a spike of resistance ρe,
and it is the same as contracting a spike of resistance ρe. Similar statements
hold for Hj,k(a) and boundary edge additions, and adding a boundary edge of
conductance −γe is the inverse of adding a boundary edge with conductance γe.

The two interpretations of ELn in terms of stubless-layerable networks and
reduction operations are related. Suppose Γ is an electrical network with bound-
ary vertices indexed 1, . . . , n; consider Γ as a two-boundary network withBupper =
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∅ and Blower = B. If Γ′ is obtained from Γ by adjoining a spike, then Γ′ = Γ on
Γ∗ where Γ∗ is a vertical-edge layer. Similarly, adding a boundary edge corre-
sponds to joining a horizontal-edge layer. Thus, a sequence of spike adjunctures
and boundary-edge additions corresponds to a stubless-layerable network and
vice versa.

If we let EGn be the collection of sets L ⊂ R2n representing boundary data
of linear electrical networks, then ELn acts on EGn via Ξ · L = Ξ(L). The
action corresponds to applying a sequence of inverse reduction operations (or
joining elementary layers) to an electrical network with boundary data L.

An analogous group can be constructed with nonlinear electrical networks,
where the potential-current relationship is given by a resistance function on the
vertical edges and a conductance function on the horizontal edges. We leave the
details to the reader.

11.2 Characterization of EGn and ELn

We say a 2n× 2n matrix Ξ is symplectic if

ΞTΩΞ = Ω, where Ω =

(
0 I
−I 0

)
.

The 2n× 2n symplectic matrices form a group called Sp2n(R).
Let x0 = (1, . . . , 1, 0, . . . , 0)T represent the vector with the first n entries 1

and the last n entries 0. It is straightforward to show that any Ξ ∈ EL2n is
symplectic and fixes x0: This is true of Vk(a) and Hj,k(a) by direct computation,
and hence true of any product of these matrices.

This makes sense given that Ξ ∈ ELn represents a sequence of inverse re-
duction operations. The standard symplectic form on R2n is

ω(x, y) = xTΩy.

Ξ is symplectic if and only if ω(Ξx,Ξy) = ω(x, y) for all x, y ∈ R2n. We
saw earlier that L is the set of boundary data for an electrical network with
signed linear conductances, then for (φ1, ψ1), (φ2, ψ2) ∈ L, we have φ1 · ψ2 =
φ2 · ψ1. This says exactly that if x, y ∈ L, then ω(x, y) = 0. The fact that Ξ is
symplectic guarantees that this property is preserved under a sequence of inverse
reduction operations. And Ξ must fix x0 because a harmonic function with
constant potential 1 on an electrical network extends to a harmonic function
with constant potential 1 when we add boundary spikes or boundary edges to
the network. Ξ must also map a vector x ∈ R2n whose “current” entries sum to
zero to another vector whose “current” entries sum to zero; indeed, the sum of
the “current” entries is ω(x0, x), and ω(x0,Ξx) = ω(Ξx0,Ξx) = ω(x0, x).

These properties also make sense if we view Ξ as two-boundary map for a
stubless-layerable network. Actually, if Γ is any two-boundary network with
linear conductances with a well-defined bijective map Ξ from upper-boundary
data to lower-boundary data, then Ξ must be symplectic; this follows from
rewriting φ1 · ψ2 = φ2 · ψ1 in terms of the upper and lower boundaries. Ξ
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must also fix x0 because the function with constant potential 1 is harmonic.
And the sum of the upper-boundary currents must equal to the sum of the
lower-boundary currents.

With these facts in hand, we are ready to characterize both EGn and ELn.

Theorem 11.1. L ⊂ R2n is an element of EGn if and only if

i. L is an n-dimensional linear subspace;

ii. For (φ, ψ) ∈ L, the entries of ψ sum to zero;

iii. For (φ1, ψ1) and (φ2, ψ2) ∈ L, we have φ1 · ψ2 = φ2 · ψ1.

Proof. We have already proved that any L ∈ EGn must satisfy these properties.
Suppose L satisfies (i), (ii), and (iii). Let (φ1, ψ1), . . . , (φn, ψn) be a basis for L.
Let π1 : R2n → Rn be the projection onto the first n entries. Let ` = dimπ1(L)
and m = n− `. Let M be the matrix

M =

(
φ1 φ2 . . . φn
ψ1 ψ2 . . . ψn

)
,

so that L is the column space of M . Observe that ` ≥ 1; if ` were zero, then
the top half of the matrix would be 0; but the bottom half has column sums
zero, and hence is not invertible; so ` = 0 implies the (φj , ψj)’s are not linearly
independent.

By applying Gaussian elimination to M using column operations, and then
reindexing B if necessary, we can assume M has the form

I 0
∗ 0
∗ ∗
∗ ∗∗

 ,

where the dimensions of the blocks are
`× ` `×m
m× ` m×m
`× ` `×m
m× ` m×m

 .

Note: Reindexing B means reindexing the rows in the upper half and reindexing
the rows in the lower half in the same way. This does not affect the hypotheses
of the theorem. Since we are only concerned with the column space of M , we are
free to perform any invertible column operations, which correspond to changing
our basis for L.

I claim that if ` < n the ∗∗ block of M is invertible. Suppose not. Then the
columns of ∗∗ are linearly dependent, so there is a nontrivial linear combination
ψ∗ =

∑n
j=`+1 ψj such that the entry (ψ∗)j = 0 for j = ` + 1, . . . , n. Now

(0, ψ∗) ∈ L. For k = 1, . . . , `, observe by (iii) that

0 = 0 · ψk = φk · ψ∗ =
∑̀
j=1

(φk)j · (ψ∗)j +

n∑
j=`+1

(φk)j · (ψ∗)j = (ψ∗)k + 0.
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Hence, (ψ∗)k = 0. This is true for all k, so ψ∗ = 0. But this implies that
ψ`+1, . . . , ψn are linearly dependent, contradicting our choice of (φ1, ψ1), . . . , (φn, ψn).
Hence, ∗∗ must be invertible. Thus, by performing column operations on the
columns `+ 1, . . . , n, we can put M in the form

I 0
∗ 0
∗ ∗
∗ I

 .

LetM ′ = V`+1(1)V`+2(1) . . . Vn(1)M , and let L′ = V`+1(1)V`+2(1) . . . Vn(1)(L)
be its column space. Because each Vj(1) is symplectic and fixes x0, we know
that L′ satisfies (i), (ii), and (iii). M ′ has the form

I 0
∗ I
∗ ∗
∗ I

 ,

and further column operations will reduce M ′ to a matrix

M ′′ =


I 0
0 I
∗ ∗
∗ I

 .

Let A be the lower half of M ′′. Property (iii) implies A is symmetric, and (ii)
implies it has column sums zero. Thus, we can write A in the form

A =
∑̀
i=1

n∑
j=i+1

ai,j(Ei,i − Ei,j − Ej,i + Ej,j).

Then by direct computation,

M ′′ =

(
I
K

)
=

∏̀
i=1

k∏
j=i+1

Hi,j(ai,j)

(I
0

)
Thus,

L′ =

∏̀
i=1

n∏
j=i+1

Hi,j(ai,j)

 (Rn × {0}n),

and

L =

(
n∏

k=`+1

Vk(−1)

)∏̀
i=1

n∏
j=i+1

Hi,j(ai,j)

 (Rn × {0}n).

But Rn × {0}n is the set of boundary data for an electrical network with n
boundary vertices and no interior vertices, and each transformation Hi,j(ai,j) or
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Vk(−1) represents adding a boundary edge or boundary spike (except if ai,j = 0,
then Hi,j(ai,j) = I and we do not add any edge to the network). Equivalently,
we can think of A as the Kirchhoff matrix of a network with no interior vertices;
this network has boundary data L′; then adding spikes to vertices ` + 1, . . . , k
produces a network with boundary data L.

Several other results fall out of the proof:

Corollary 11.2. Let Γ be a signed linear electrical network. There exists P ⊂ B
such that potentials on P and net currents on B\P uniquely determine the other
boundary data.

Proof. Index the vertices 1, . . . , n, and let M and ` and m be as above. By
further column operations, we can put M in the form

I 0
∗ 0
∗ ∗
0 I

 .

Let P = {1, . . . , `}. The columns (φj , ψj) are a basis for L, and if (φ, ψ) =∑n
j=1 αj(φj , ψj), then α1, . . . , α` represent potentials on P and α`+1, . . . , αn

represent net currents on B \ P .

Corollary 11.3. Over the signed linear conductances, every network is elec-
trically equivalent to a layerable network with ≤ 1

2n(n − 1) + 1 edges, where
n = |B|.

Proof. Let Γ be any network, and index the boundary vertices by 1, . . . , n, then
L ∈ EGn. Let Γ′ be the network with the same L constructed in the proof of
the theorem. The number of vertical edges added is m = n− ` and the number
of horizontal edges is the number of nonzero entries of A above the diagonal,
which is at most 1

2`(`− 1) + `m. Thus, the total number of edges is at most

m+
1

2
(n−m)(n−m−1)+(n−m)m =

1

2
n(n−1)− 1

2
m(m−3) ≤ 1

2
n(n−1)+1.

Corollary 11.4. EGn is a smooth manifold of dimension 1
2n(n− 1).

Proof. The networks constructed in the theorem in fact give us parametrizations
of the EGn. Let Y = {(i, j) : 1 ≤ i < j ≤ n}, which has 1

2n(n − 1) elements.
For Z ⊂ {1, . . . , n}, let FZ : RY → EGn be given by

{ai,j}(i,j)∈Y 7−→

(∏
k∈Z

Vk(−1)

) ∏
(i,j)∈Y

Hi,j(ai,j)

 (Rn × {0}n).

It follows from the proof of the theorem that the images of the FZ ’s cover EGn.
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To complete the proof, it suffices to show that F−1
Z ◦FZ′ is well-defined and

C∞ on F−1
Z′ ◦FZ(RY ). Suppose that a ∈ RY , and let Γ1(a) be the network with

no interior vertices and Kirchhoff matrix K1(a) =
∑

(i,j)∈Y ai,j(Ei,i − Ei,j −
Ej,i + Ej,j); let L1(a) be its set of boundary data. Let

L2(a) =

(∏
k∈Z′

Vk(1)

)
(FZ(a)) =

(∏
k∈Z

Vk(1)

)(∏
k∈Z

Vk(−1)

)
(L1(a)).

If a ∈ F−1
Z′ ◦ FZ(RY ) and FZ′(b) = FZ(a), then L2(a) will be the set of bound-

ary data of the network with no interior vertices and Kirchhoff matrix K1(b).
Hence, a ∈ F−1

Z′ ◦ FZ(RY ) if and only if the relationship L2(a) can be de-
scribed by a Dirichlet-to-Neumann map, which will be the Kirchhoff matrix of
a network Γ1(b), and the entries of the Kirchhoff matrix will be the entries of
F−1
Z′ ◦FZ(RY ) ∈ RV . Note L2(a) is the relationship for the network Γ2(a) formed

by taking Γ1(a) and adjoining spikes of conductance −1 to vertices in Z, then
spikes of conductance 1 to vertices in Z ′. Let K2(a) be the Kirchhoff matrix of
Γ2(a). If L2(a) is given by a Dirichlet-to-Neumann map Λ2(a), then the bound-
ary potentials uniquely determine the boundary net currents, and since Γ2(a)
is layerable, these uniquely determine the potentials and currents on the whole
network; thus, the Dirichlet problem has a unique solution. Hence, K2(a)I,I is
invertible, and Λ2(a) = K2(a)/K2(a)I,I depends smoothly on a. But the entries
of any b with FZ′(b) = FZ(a) must be the above-diagonal entries of Λ2(a); so
there is a unique b ∈ F−1

Z′ ◦ FZ(a), and it depends smoothly on a.

Thus, EGn is a submanifold of the Grassmann manifold Gn,2n which is the
set of n-dimensional subspaces of R2n. We suggest calling EGn the electrical
Grassmann manifold. For Ξ ∈ ELn, the mapping L 7→ Ξ(L) is a diffeomorphism
EGn → EGn, so ELn is a diffeomorphism group acting on EGn.

Next, we characterize ELn:

Theorem 11.5. ELn is the group of symplectic matrices which fix x0.

Proof. We have already shown that any Ξ ∈ ELn is symplectic and fixes x0. We
only have to show that any matrix with those properties is in ELn. The proof
goes by induction on n. For n = 1, it is easy because any symplectic matrix
that fixes (1, 0)T must be of the form(

1 a
0 1

)
= V1(a).

For the induction step, suppose n ≥ 2 and Ξ is a symplectic 2n × 2n
matrix fixing x0 ∈ R2n. Our goal is to find Ξ1, . . . ,ΞK ∈ ELn such that
Ξ′ = ΞK . . .Ξ1Ξ is of the form:

Ξ′ =


∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1

 ,
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where each “∗” is (n− 1)× (n− 1). In other words, if χj is the standard basis
vector in R2n with a 1 on the jth entry, we want the nth and 2nth rows to
be χn and χ2n and the same for the columns. This is the behavior we would
expect from a stubless-layerable network where the nth column had a single dis-
connected boundary vertex which was on both the upper and lower boundaries.
Assuming we can obtain such a Ξ′, we let Ξ′′ be the matrix obtained by deleting
the nth and 2nth rows and columns. Then Ξ′′ is a 2(n−1)×2(n−1) symplectic
matrix that fixes x0 ∈ R2n−2, so by the induction hypothesis, Ξ′′ is the two-
boundary map of a stubless-layerable network with n − 1 columns. By adding
another column with a single vertex, we obtain Ξ′ as the two-boundary map of
a stubless-layerable network. Hence, Ξ′ ∈ ELn and Ξ = Ξ−1

1 Ξ−1
2 . . .Ξ−1

K Ξ′ is in
ELn.

Thus, it suffices to show that for n ≥ 2, we can obtain Ξ′ from Ξ by multiply-
ing by elements of ELn. Our first goal is to find Ξ1, . . . ,Ξm such that Ξm . . .Ξ1Ξ
fixes χ2n. This is the behavior we would expect from a stubless-layerable net-
work where the nth column had only one vertex on both boundaries, but the
vertex was not necessarily disconnected from the other columns. Let x = Ξχ2n;
it suffices to show that by multiplying by elements of ELn we can transform x
into χ2n. There are several cases:

1. Suppose that xn 6= 0 and that xn+1, . . . , x2n−1 6= 0. Let

y =

(
n−1∏
k=1

Vk(xk/xn+k)

)
x.

Then y1, . . . , yn−1 = 0, yn = xn 6= 0. Next, let

z =

(
n−1∏
k=1

Hk,n(yn+k/yn)

)
y.

Then z1, . . . , zn−1 = 0 and zn+1, . . . , z2n−1 = 0. But ω(x0, z) = ω(x0, x) =
1, so z2n = 1. Thus, multiplying by Vn(−zn) will make the nth entry zero,
yielding χ2n.

2. If xn = 0 but x2n 6= 0 and xn+1, . . . , x2n−1 6= 0, then we can multiply by
Vn(1) to make xn 6= 0, then proceed to Case 1.

3. Suppose that some of “currents” xn+1, . . . , xn+k are zero, but the “po-
tentials” x1, . . . , xn are not all equal. If xn+j = 0, we can find a k with
xj 6= xk. Then multiply by Hj,k(c) to make it nonzero; if xnk 6= 0, then
we can choose c so that it will still be nonzero. Once we have done this
for every j, proceed to Case 2.

4. Suppose that x1, . . . , xn are all equal to c. Since x0 = (c, . . . , c, 0, . . . , 0)T

is fixed by Ξ and all matrices in ELn, it is not possible that xn+1, . . . , x2n

are all zero. Hence, we can multiply by some Vk(1) to make the new
xk 6= c. Then proceed to Case 3.
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Our next task is find Ξm+1 . . .Ξ` such that Ξ′ = Ξ` . . .Ξm+1Ξ∗ fixes both
χn and χ2n. Let x = Ξχn, and consider the following cases:

1. Suppose that the “currents” xn+1, . . . , x2n are all nonzero. Observe

xn = ω(x, χ2n) = ω(Ξ∗χn,Ξ
∗χ2n) = ω(χn, χ2n) = 1.

Let

y =

n−1∏
k=1

Vk(−xk/xn+k),

so that y1, . . . , yn−1 = 0 and yn = 1. Then let

z =

n−1∏
k=1

Hk,n(yn+k).

Then z1 = y1, . . . , zn = yn, and zn+1, . . . , z2n−1 = 0. But ω(x0, z) =
ω(x0, χn) = 1, so z2n = 0. Hence,

z =

n−1∏
k=1

Hk,n(−yn+k)

n−1∏
k=1

Vk(−xk/xn+k)x = χn.

2. If some of “currents” xn+1, . . . , xn+k are zero, but the “potentials” x1, . . . , xn
are not all equal, we can multiply by Hj,k’s to make all the “currents”
nonzero. Then proceed to Case 1.

3. Suppose that x1, . . . , xn are all equal to 1. One of the “currents” must be
nonzero; in fact, at least two of them are nonzero. Hence, we can multiply
by Vk(1) for some k 6= n to make the new xk 6= 1. Then proceed to Case
2.

In all these cases, we never multiplied by a Vn(a) matrix. Thus, each Ξm+1, . . . ,Ξ`
fixes χ2n and Ξ′ fixes χ2n as well as χn.

Because (Ξ′)TΩΞ′ = Ω, we know (Ξ′)T = Ω−1(Ξ′)−1Ω. Since Ξ′ fixes χn
and χ2n, we know (Ξ′)T fixes Ω−1χn = −χ2n and Ω−1χ2n = χn. Thus, the nth
and 2nth columns of Ξ′ are χn and χ2n, and the n and 2nth columns of (Ξ′)T

are χn and χ2n. So Ξ′ has the desired form.

We can view the process in the above proof as a fancy form of row reduction
using the symplectic matrices Hj,k(a) and Vk(a) instead of elementary matrices.
We showed that any symplectic matrix fixing x0 could be reduced to the identity
multiplying by these “electrical elementary matrices.” This provides a non-
standard proof that the determinant of a symplectic matrix is 1; since each of
the electrical elementary matrices has determinant 1, it is true for Ξ ∈ ELn.
But it is not hard to show that Ω and ELn generate Sp2n, and det Ω = 1.

Another corollary is that ELn is a smooth manifold of dimension n(2n− 1).
This can be proved using Lie theory, but we can also find explicit parametriza-
tions in the same vein as Corollary 11.4. We sketch the process and leave the
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details to the reader. For each Ξ0, construct a factorization as in the theorem.
We parametrize a neighborhood of Ξ0 in ELn, taking as our parameters the con-
ductance/resistance coefficients from Case 1 of each step. These are uniquely
determined and depend smoothly on the entries of Ξ in a neighborhood of Ξ0.

At the nth step of the induction, there were n− 1 +n− 1 + 1 = 2n− 1 edges
in the first part (finding Ξ1, . . . ,Ξm from Ξ), and n− 1 + n− 1 = 2n− 2 edges
in the second part (finding Ξm+1, . . . ,Ξ`). That makes for 4n−3 parameters in
the nth induction step. And in the base case n = 1, there was 1 = 4− 3 edges.
Summing over the induction steps gives the total number of parameters:

n∑
j=1

(4j − 3) = 4 · 1

2
n(n+ 1)− 3n = 2n2 + 2n− 3n = n(2n− 1).

This is the same as dimEG2n, the number of parameters we would expect for
a network with 2n boundary vertices.

The action of ELn on EGn is transitive, that is, for every L1, L2 ∈ EGn,
there is a Ξ ∈ ELn with Ξ(L1) = L2. Indeed, we saw in Theorem 11.1 that
are Ξ1,Ξ2 ∈ ELn with L1 = Ξ1(Rn × {0}) and L2 = Ξ2(Rn × {0}). Hence,
L2 = Ξ−1

2 Ξ1(L1). However, the action is not faithful: There exist nontrivial
elements of ELn which fix every element of EGn. These elements are the kernel
of the homomorphism Υ from ELn to the group of bijections EGn → EGn
given by Ξ 7→ FΞ, where FΞ : EGn → EGn : L 7→ Ξ(L). The reader can verify
that the kernel consists of matrices of the form(

I + 1αT 1βT + β1T

0 I − α1T

)
,

where 1 is the vector with every entry 1 and α, β ∈ Rn with
∑n
k=1 αk = 0.

11.3 Generators of ELn and Circular Planarity

We defined ELn with the generators Vk(a) and Hj,k(a) for j 6= k and a ∈ R\{0}.
However, it would have been sufficient to include only theHj,k(a)’s with k = j+1
(which is in fact what Lam and Pylyavsky did):

Proposition 11.6. ELn is generated by elements of the form Vk(a) and Hk,k+1(a).

Proof. It suffices to show that Hj,k(a) can be written as a product of elements
of the form Vm(a) and Hm,m+1(a). To do this, we use the following identity:

Hi,k(a) = Vj(−1/a)Hi,j(−a)Vj(1/2a)Hj,k(2a)Vj(−1/4a)Hi,j(2a)Vj(1/2a)Hj,k(−a).

We begin with an elementary layer representing Hi,k(a); for simplicity, I will
show only the columns i, j, k; the conductance coefficient is printed next to the
edge:
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a

i j k

This is equivalent to Vj(− 1
a )Vj(

1
a )Hi,k(a):

a

−a

a

i j k

We insert cancelling horizontal edges to obtain

Vj(− 1
a )Hi,j(−a)Hj,k(−a)Hi,j(a)Hj,k(a)Vj(

1
a )

Hi,k(a)Hi,j(−a)Hj,k(−a)Hi,j(a)Hj,k(a).

a

−a

a
a

−a
a

−a

a

−a
a

−a

i j k

By a F-K transformation, this is equivalent to

Vj(− 1
a )Hi,j(−a)Hj,k(−a)Vj(

1
4a )Hi,j(4a)Hj,k(4a)Vj(

1
4a )Hi,j(−a)Hj,k(−a).
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4a 4a

−a

4a

4a

−a −a

−a −a

i j k

Although not strictly necessary, we simplify with two Y -∆ moves:

Vj(− 1
a )Hi,j(−a)Vj(

1
2a )Hj,k(2a)Vj(− 1

8a )Vj(− 1
8a )Hi,j(2a)Vj(

1
2a )Hj,k(−a)

−a

2a

−8a

−8a

2a

−a
2a

2a

−a

i j k

and a series reduction to

Vj(− 1
a )Hi,j(−a)Vj(

1
2a )Hj,k(2a)Vj(− 1

4a )Hi,j(2a)Vj(
1
2a )Hj,k(−a)

−a

2a

−4a

2a

−a

2a

2a

−a

i j k
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Thus, for any j, k with j < k − 1, we can write Hj,k in terms of Hj,k−1’s,
Hk−1,k’s, and Vk−1’s. Then proceeding inductively, we can write Hj,k−1 in terms
of Hj,k−2’s, Hk−2,k−1’s, and Vk−2’s, and so on. Any Hj,k can be expressed in
terms elements of the form Hm,m+1(a) and Vm(a).

The significance is that if G is circular planar with the boundary vertices
embedded in counterclockwise order, then adjoining a boundary edge between
k and k + 1 will preserve circular planarity. Thus, we have the following result
in the spirit of [7]:

Corollary 11.7. Over the signed linear conductances, every network is electri-
cally equivalent to a circular planar network. Every Ξ ∈ ELn can be represented
by circular planar stubless-layerable network.

Proof. We already showed that any L ∈ EGn could be represented by a layer-
able network. The layerable network can be obtained from a network with n
disconnected boundary vertices by adding boundary spikes and boundary edges.
By the Proposition, we can find an equivalent sequence of boundary spike and
boundary edge additions such that boundary edges are only added between
adjacent columns. Since a network with n disconnected boundary vertices is
circular planar, so is the network obtained by applying these operations.

Similarly, every stubless-layerable network is equivalent to a stubless-layerable
network where horizontal edges only occur between adjacent columns, which is
circular planar.

However, not every network is equivalent to critical circular planar network.
Consider the following network:

a

b

c

d

Suppose that a + b + c = 0 and 1/b + 1/c + 1/d = 0. Then the network is
both Dirichlet-singular and Neumann-singular. However, there does not exist a
critical circular planar network, or indeed any network recoverable over positive
linear conductances, which has three boundary vertices and is both Dirichlet-
and Neumann-singular. To be Dirichlet-singular, it must have an interior ver-
tex, and the interior vertex must have degree ≥ 3. Since any such network
cannot have more than 3 edges, the only possibility is a Y . However, a Y can-
not be Neumann-singular. This example also shows that not every network is
equivalent to a network with ≤ 1

2n(n− 1) edges, as we might hope.
Admittedly, the construction in the above proposition is rather inefficient

for finding a circular planar network equivalent to a given network, in the sense
that it produces many extra edges, and these edges are difficult to remove by
Y -∆ transformations. The final network also has no relationship to the original
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network since we discarded it and started instead with the representative of its
boundary data L from Theorem 11.1. Thus, one goal for future research might
be to find efficent ways of transforming a signed linear network into a circular
planar network using local electrical equivalences.
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