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1 Graphs with Boundary

1.1 The Category of Graphs

A graph G consists of two sets V = V (G)) and E = E(G), a function ι : E → V ,
and a function¯: E → E with e 6= e and e = e. For e ∈ E, ι(e) is the initial
vertex of e and τ(e) = ι(e) is the terminal vertex. Let E′ be the set of pairs
{e, e}. An edge is an element of E′ and an directed edge is an element of E.

We say a directed edge e is incident to a vertex p if p is the initial vertex
of e, and a non-directed edge is incident to p if p is one of its endpoints. For a
vertex p, ι−1(p) is the set of directed edges incident to p, and its cardinality is
called the valence of p.
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We will work with both finite and infinite graphs, but assume that all vertices
have finite valence. Since any connected component of an infinite graph must
be countable anyway, we will also assume that V (G) and E(G) are countable.

A morphism of graphs f : G1 → G2 consists is a pair of functions fV :
V (G1) → V (G2) and fE : E(G1) → E(G2) such that fV (ι(e)) = ι(fE(e)) and
fE(e) = fE(e). Henceforth, we will write f for fE and fV because it is simpler
and causes no confusion.

1.2 The Category of Graphs with Boundary

A graph-with-boundary G is a graph together with a partition of V into two sets
B and I. The elements of B are called boundary vertices and those of I are
interior vertices. We will call a graph-with-boundary a “bgraph” for short.

A bgraph morphism f : G1 → G2 of is a graph morphism with the following
properties:

• f maps interior vertices to interior vertices. That is, if p ∈ I(G1), then
f(p) ∈ I(G2).

• For each interior vertex p, the restriction of f to a map ι−1(p)→ ι−1(f(p))
has constant fiber size ≥ 1.

The reader may verify that this class of graph morphisms is closed under com-
position and includes the identity.

A bgraph morphism is loosely analogous to an analytic function on a plane
domain or Riemann surface. Mapping interior vertices to interior vertices is
analogous to being an open map. A vertex v where the map ι−1(p)→ ι−1(f(p))
is bijective is analogous to a point z0 where an analytic function φ has nonzero
derivative and is thus bijective in a neighborhood of z0. If the map ι−1(p) →
ι−1(f(p)) is n-to-1, then v is analogous to a point z0 where φ(z)− φ(z0) has a
zero of order n. With this in mind, we say that a vertex v has order n if the
fibers of ι−1(p)→ ι−1(f(p)) have cardinality n.

1.3 Basic Constructions in the Category of Bgraphs

Some special types of morphisms: A bgraph morphism f : G1 → G2 is
called

• injective/surjective if the maps V (G1)→ V (G2) and E(G1)→ E(G2) are
injective/surjective.

• locally injective/surjective if the maps ι−1(p)→ ι−1(f(p)) are injective/surjective
for all v.

• a covering map if it is surjective and locally bijective, and sends boundary
vertices to boundary vertices.
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Sub-bgraphs: We say G1 is a sub-bgraph of G2 if V (G1) ⊂ V (G2), E(G1) ⊂
E(G2), I(G1) ⊂ I(G2), and if p ∈ I(G1), then ι−1(p) (with respect to G2) is
contained in E(G1). Or equivalently, G1 is a sub-bgraph of G2 if it is a subgraph
and the inclusion G1 → G2 is a bgraph morphism.

If S1 and S2 are sub-bgraphs of G, we define S1 ∪ S2 by

V (S1∪S2) = V (S1)∪V (S2), E(S1∪S2) = E(S1)∪E(S2), I(S1∪S2) = I(S1)∪I(S2).

And S1 ∩ S2 is defined in the same way.
If f : G1 → G2 is a bgraph morphism and S2 is a subgraph of G2, then we

define f−1(S2) as follows:

V (f−1(S2)) = f−1(V (S2)), E(f−1(S2)) = f−1(E(S2)), I(f−1(S2)) = f−1(E(S2))∩I(G1);

the reader should verify that this is a subgraph of G1.
Pull-backs: The category of bgraphs has pull-backs (constructed in the

typical way for concrete categories). Suppose f1 : G1 → G and f2 : G2 → G are
bgraph morphisms. Then the pull-back or fiber product G1×GG2 is constructed
as follows:

• V (G1 ×G G2) is the set of pairs (p1, p2) ∈ V (G1) × V (G2) such that
f1(p1) = f2(p2).

• E(G1 ×G G2) is the set of pairs (e1, e2) ∈ E(G1) × E(G2) such that
f1(e1) = f2(e2).

• (p1, p2) is interior if and only if both p1 and p2 are interior.

• ι((e1, e2)) = (ι(e1), ι(e2)) and (e1, e2) = (e1, e2).

The reader may verify that the evident maps π1 : G1 ×G G2 → G1 and π2 :
G1 ×G G2 → G2 are bgraph morphisms.

The pull-back satisfies the following the universal property: For any bgraph
H and any maps g1 : H → G1 and g2 : H → G2 such that f1 ◦g1 = f2 ◦g2, there
exists a unique bgraph morphism φ : H → G1 ×G G2 such that gj = πj ◦ φ, as
depicted here:

H

G1 ×G G2 G1

G2 G

π1

π2 f1

f2

g1

g2

∃!φ
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This universal property characterizes G1 ×G G2 up to isomorphism.

Remark. Although the product exists in the category of graphs, it does not
generally exist in the category of graphs with boundary (exercise).

Coproducts and Push-Outs: The coproduct or disjoint union G1

∐
G2

of two bgraphs G1 and G2 is formed by taking the disjoint union of the sets of
vertices, edges, and interior vertices of G1 and G2. It is only well-defined up to
isomorphism. The evident inclusions i1 : G1 → G1

∐
G2 and i2 : G2 → G1

∐
G2

are bgraph morphisms. G1

∐
G2 satisfies the universal property that for bgraph

morphisms f1 : G1 → G and f2 : G2 → G, there is a unique corresponding
bgraph morphism f : G1

∐
G2 → G such that f1 = f ◦ i1 and f2 = f ◦ i2.

If we have two maps f1 : G→ G1 and f2 : G→ G2, we can define a push-out
G1

∐
GG2 as follows: The vertices of G1

∐
GG2 are the vertices of the disjoint

union, modulo the equivalence relation generated by the relations f1(p) ∼ f2(p)
for p ∈ V (G). We perform the same operations to obtain E(G1

∐
GG2). A

vertex of G1

∐
GG2 is declared to be interior if at least one representative of the

equivalence class is interior. If we assume that f1 and f2 are locally injective,
then the graph morphisms i1 : G1 → G1

∐
GG2 and i2 : G2 → G1

∐
GG2 will be

bgraph morphisms, because we can guarantee that the maps ι−1(p)→ ι−1(ij(p))
have constant fiber size 1 for each interior p in G1 or G2. If we allow points of
order > 1 in f1 and f2, then this fails in general.

1.4 Paths and Connections

For a graph G, a path is a sequence of vertices p0, . . . , pK and oriented edges
e1, . . . , eK such that ι(ek) = pk−1 and τ(ek) = pk. We allow a “trivial” path with
one vertex and no edges. A path is an embedded path if the vertices p0, . . . , pK
are distinct and the non-oriented edges in the path are distinct. A boundary-to-
boundary path is an embedded path such that p0 and pK are boundary vertices
and the other vertices are interior. A cycle is a non-trivial path such that the
edges are distinct, and the vertices p0, . . . , pK−1 are distinct with pK = p0.

We a path through the graph is an embedded path in which the vertices
p1, . . . , pK−1 are interior. We say two vertices p and q are connected through the
graph if there exists such a path with p0 = p and pK = q. We say two directed
edges e and e′ are connected through the graph if there exists such a path with
e1 = e and eK = e′. We say two edges are connected through the graph if we
can choose an orientation for each one such that the resulting directed edges are
connected through the graph.

A graph is connected if for any two vertices p and q, there exists a path
from p to q. For any graph, there exist connected subgraphs G1, . . . , GN ,
called components, such that V (G1), . . . , V (GN ) are a partition of V (G), and
E(G1), . . . , E(GN ) are a partition of E(G), and B(G1), . . . , B(GN ) are a parti-
tion of B(G).
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2 Networks

To motivate our general definition of electrical networks, we summarize the
types of networks we are primarily interested in:

1. It is standard to consider real-valued linear electrical networks. We are
given a bgraph G together with a positive real number ae for each edge
(called the conductance). For a “potential” function u : V → R, the
current on edge is given by ce = ae(u(ι(e))− u(τ(e))) (Ohm’s Law). The
potential is harmonic if the net current

∑
e∈ι−1(p) ce is 0 for each interior

vertex p (Kirchhoff’s Law).

2. In a “nonlinear conductance network,” each edge is assigned a conductance
function γe : R → R rather than a positive number. We define ce =
γe(u(ι(e)) − u(τ(e))). Again, a potential is harmonic if the net current
on interior vertices is zero. This provides a simple model for non-ohmic
resistors or semiconductors; in the physically relevant cases, γe is weakly
increasing and γe(0) = 0.

3. In a “nonlinear resistance network,” each edge is assigned a resistance
function ρe : R → R (if we wish, weakly increasing and zero-preserving).
We consider potential/current functions such that u(ι(e)) − u(τ(e)) =
ρe(c(e)). In this case, c is no longer a function of u, and u is not a
function of c.

4. Returning to the linear case, we can generalize in a more algebraic direc-
tion: Instead of considering the conductance to be a positive number, we
could also allow it to be negative or complex. Or we could replace real
numbers by an arbitrary field or even ring.

5. More generally, suppose each γe is a unit of a ring R. Let M be an R-
module, and consider a potential function u : V →M and current function
c : E →M with c(e) = γe · (u(ι(e))− u(τ(e))).

The minimal amount of structure we need to discuss these types of electrical
networks is

• the ability to add potentials and currents together (our u and c must take
values in some abelian group M),

• a way to specify when a potential drop u(ι(e))− u(τ(e)) and current c(e)
are compatible for a given edge e (so we have some relation in M ×M
specifying the compatible potential drop/current pairs).

Let’s formalize this.
For a set S we define the category of S-labelled graphs as follows: An object

is a pair (G, `) where G = (V,E) is a graph and together ` is a function E → S
called a labelling. A morphism of S-labelled graphs is a morphism of graphs
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f : G1 → G2 that preserves the labelling, meaning that `2(f(e)) = `1(e) for any
e ∈ E(G1). The category of S-labelled bgraphs is defined in the same way.

We can describe each of the above types of networks by labelling the edges
with different things. If we wish to include all these networks under one um-
brella, we can use the following general definition:

Let M be an abelian group (written additively). A network Γ (taking values
in M) is a bgraph where each edge is labelled by a relation Θ ⊂ M ×M , such
that Θe = −Θe. Networks form a subcategory of P(M ×M)-labelled bgraphs.
We denote the labelling by Θ.

An M -valued potential function on a bgraph G is a map u : V → M . To
make notation neater, we will write up = u(p) for p ∈ V . An M -valued current
function on a G is a map c : E →M such that

• ce = −ce.

• The net current
∑
e∈ι−1(p) ce = 0 for each interior vertex p.

Simiiarly, we have written ce = c(e). For a network Γ, a potential u and current
c are compatible if for each e, (uι(e) − uτ(e), ce) ∈ Θe.

The condition Θe = −Θe guarantees that

(uι(e) − uτ(e), ce) ∈ Θe if and only if (uι(e) − uτ(e), ce) ∈ Θe.

2.1 Harmonic Functions

Fix an abelian group M . A harmonic function on a network Γ is a compatible
potential/current pair (u, c). Let HΓ be the set of harmonic functions on Γ.

Suppose f : Γ1 → Γ2 is a network morphism. If u is a potential function on
Γ2, we can define f∗u (or “u ◦ f”) on Γ1, by f∗up = uf(p). Similarly, we can
define f∗ce = cf(e). If (u, c) is harmonic on Γ2, then (f∗u, f∗c) is harmonic on
Γ1. To prove this, we first show f∗c is actually a current function–that is, the
net current on each interior vertex is zero. Suppose p is an interior vertex of Γ1

and suppose that the fibers of ι−1(p) → ι−1(f(p)) all have cardinality n (as in
the definition of bgraph morphisms). Then∑

e∈ι−1(p)

f∗ce = n
∑

e∈ι−1(f(p))

ce,

which is zero since f(p) is interior. Then to show that u and c are compatible,
note that for each edge e,

(f∗uι(e) − f∗uτ(e), f
∗ce) = (uι(e) − uτ(e), ce) ∈ Θf(e) = Θe.

Remark. This is analogous to the result from complex analysis that if φ is
analytic and u is harmonic, then u ◦ φ is harmonic, and it is what motivated
our definition of bgraph morphisms.

Thus, Γ 7→ HΓ defines a contravariant functor from the category of networks
to the category of sets. For the various types of networks described earlier, it
could also define a functor into a category with more structure such as Top or
R-mod.
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2.2 Boundary Data; Forward and Inverse Problems

Let Γ be a network with values in an abelian group M . For a potential function
u, the boundary potential function is u|B ∈ MB . For a current function c,
the boundary net current function ψ ∈ MB is given by ψp =

∑
e∈ι−1(p) ce.

If φ is the boundary voltage of u and ψ is the boundary current of c, then
(φ, ψ) ∈ MB × MB is called the boundary data of (u, c). Define a function
Φ : HΓ → MB ×MB by mapping a harmonic function to its boundary data.
We define the set of boundary data L as the image of Φ.

We will consider the following problems:

• The Dirichlet Problem: For φ ∈ MB , does there exist a harmonic
function with boundary potential φ? Is it unique?

• The Neumann Problem: For ψ ∈ MB , does there exist a harmonic
function with boundary current ψ? It is unique?

• Regularity: If the solutions to the Dirichlet and Neumann problems
exist, do they depend “nicely” on φ or ψ? More generally, how “nice” is
L? (The notion of “nice” depends on the type of network.)

• The Inverse Problem: Let Γ = (G,Θ) be a network. Is Θ uniquely
determined by G and L?

3 Layer-stripping to Solve the Inverse Problem

3.1 General Strategy

A boundary edge on a bgraph G is a directed edge (or simply an edge) such
that both endpoints are boundary vertices.

A boundary spike on a bgraph G is a oriented edge e such that ι(e) is a
boundary vertex of degree 1. We allow τ(e) to be interior or boundary. If τ(e)
is boundary, we say the spike is degenerate. We say that an unoriented edge is
a boundary spike if at least one orientation of it is a boundary spike.

Given an oriented boundary spike e, we can define a new bgraph G′ by
V (G′) = V (G) \ {ι(e)}, E(G′) = E(G) \ {e, e}, I(G′) = I(G) \ {τ(e)}. Then
we say G′ is obtained from G by contracting the boundary spike e. If we have
a collection of boundary spikes with distinct endpoints, then we can contract
multiple spikes at the same time, even infinitely many spikes.

Given an oriented boundary edge e of a bgraph G, we can define a new
bgraph G′ by deleting the boundary edge, that is V (G′) = V (G), I(G′) = I(G),
and E(G′) = E(G) \ {e, e}. We can also delete multiple boundary edges at the
same time.

The strategy for solving the inverse problem employed by Curtis/Morrow
and Will Johnson was to recover the conductance functions on boundary spikes
and boundary edges first, then work one’s way inward, as it were, stripping
layers off the graph until nothing is left. We describe the process roughly as
follows:
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• Given a graph G with a boundary spike or boundary edge, figure out how
to recover its conductance function from L.

• Remove the boundary spike or boundary edge from the graph to obtain a
new graph G′. Find the set of boundary data L′ for the new graph.

• Repeat.

This does not work for all graphs; for instance, some graphs do not have any
boundary spikes or boundary edges. To formalize the process and state condi-
tions when it works, we need to address several questions:

1. How do we recover the conductances of boundary spikes and boundary
edges?

2. How can we find L′ from L?

3. What sorts of graphs can be “layer-stripped” so as to remove all the edges?
How do we know there is a boundary spike or boundary edge at each step
of the process? For infinite graphs, how can we make sure that our layer-
stripping exhausts all the edges?

This chapter will develop the formal machinery to describe the layer-stripping
process, and state purely geometric conditions involving “scaffolds” to guaran-
tee recoverability over BZCF. These geometric conditions may at first appear
unmotivated and hard to verify unless the reader is familiar with enough exam-
ples, but in later chapters, we will describe various general ways of constructing
scaffolds.

One key consequence will be that if f : G→ G′ is a locally injective bgraph
morphism, then the information propagation and layer-stripping structures on
G′ can be pulled back to G by taking preimages. Hence, if this method of solving
the inverse problem works on G′, it also works on G, which is potentially a much
larger graph (such as the universal cover). We will be careful to formulate our
definitions in such a way that this pulling-back is straightforward and functorial,
and works equally well for finite or infinite graphs.

3.2 Scaffolds

A scaffold S on G consists of

• A (strict) partial order ≺ on E′,

• A partition of E′ into two sets VertS and HorS, whose elements are called
respectively vertical and horizontal edges.

• Two functions t, b : VertS → V which assign a “top” endpoint t(e) and a
“bottom” endpoint b(e) to each e ∈ VertS, which are distinct endpoints
of e.

satisfying the following conditions:
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1. Every subset of E′ has a minimal element.

2. If e ∈ VertS and e′ are incident at t(e), then e ≺ e′.

3. If e ∈ VertS and e′ are incident at b(e), then e′ ≺ e.

4. If p1 and p2 are interior vertices incident to e1 and e2 respectively, with
e1 � e2, then either p1 ∈ b(VertS) or p2 ∈ t(VertS).

Remark. Condition (1) is only necessary for infinite graphs.

Some consequences of the definition help to clarify the geometric picture:
Because of the comparison conditions, there are at most two vertical edges
incident to a given vertex. Thus, if we start at a given vertex p, we can form a
unique increasing path of vertical edges, which will either terminate or continue
infinitely. And it could terminate at an interior vertex or boundary vertex.
Similarly, we can form a decreasing path of vertical edges. This path must
terminate by (1). So our vertex p is on a unique increasing path in which all
the edges are vertical beginning at a vertex q.

Let S be a scaffold on a bgraph G. Define TopS as the set of edges e such
that e � e′ for some e′ with an endpoint in I \ t(VertS). Let BotS be the set
of edges e such that e � e′ for some e′ with an endpoint in I \ b(VertS). Define
MidS = E′ \ (TopS ∪BotS). Note condition (4) implies that TopS and BotS
are disjoint.

Scaffolds behave nicely with respect to locally injective bgraph morphisms.
Let Scaf G be the set of scaffolds on a bgraph G. Suppose f : G1 → G2 is a
locally injective bgraph morphism. Suppose S ∈ Scaf G2. Then define f∗S as
follows:

• Set e1 ≺ e2 in f∗S if and only if f(e1) ≺ f(e1) in S.

• Let Vert f∗S = f−1(VertS) and Hor f∗S = f−1(HorS).

• Since the map is locally injective, we can define b, t for f∗(S) such that
f(b(e)) = b(f(e)) and f(t(e)) = t(f(e)).

The reader may verify that f∗S satisfies properties (1) through (4). Thus, we
have

Proposition 3.1. G 7→ Scaf G defines a contravariant functor from the cate-
gory of bgraphs and locally injective bgraph morphisms to Set. It also satisfies
f−1(MidS) ⊂ Mid f∗S.

Proof. Straightforward and left to the reader.

3.3 Recovery of Boundary Spikes/Edges

Lemma 3.2. Let G be a bgraph. Suppose that either

1. e0 is a boundary spike and there is a scaffold S with e0 ∈ HorS ∩MidS, or
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2. e0 is a boundary edge and there is a scaffold S with e0 ∈ VertS ∩MidS.

For any BZCF network Γ on G, Θe0 is uniquely determined by L over BZCF.

To prove the lemma, we need the following definitions:
Let T ⊂ E′. The subgraph GT induced by T is defined as follows:

• E′(GT ) = T .

• V (GT ) is the set of vertices incident to edges in T .

• A vertex is interior in GT if and only if it is interior in G and all the edges
incident to it are in T .

A sub-bgraph G′ ⊂ G is induced if and only if any vertex p ∈ V (G′)∩I(G) with
all edges incident to it contained in E(G′) must be interior in G′.

Let S be a scaffold on G. We say that G′ ⊂ G is a lower sub-bgraph if
e ≺ e′ ∈ E(G′) implies e ∈ E(G′). We say that G′ ⊂ G is an upper sub-bgraph
if e � e′ ∈ E(G′) implies e ∈ E(G′).

Proof. Consider the case of a boundary spike first. Let p be the boundary vertex
of the spike, q the interior vertex. Choose t ∈M . Let

• Γ0 be the subnetwork induced by {e ≺ e0}.

• Γ1 be the subnetwork induced by {e 6� e0}.

• Γ2 be the subnetwork induced by {e 6� e0}.

Note Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ Γ.
Claim 1: There exists a harmonic function on Γ which is identically zero

on V (Γ1) with up = t.
Because e0 ∈ MidS, we know q is the bottom vertex of some vertical edge,

hence not all edges of Γ incident to q are in Γ2, so that q is a boundary vertex
of Γ1. By assumption q is the only neighbor of p. Thus, the potential u2 which
is t at p and 0 everywhere else is harmonic, that is, it has a compatible current
function c2.

Consider the set Z of pairs (Σ, v), where Σ is an induced lower subnetwork
of Γ, Γ1 ⊂ Σ, and v is a harmonic potential on Σ which equals u1 on Γ1. Let Z
be partially ordered by setting (Σ1, v1) ≤ (Σ2, v2) if Σ1 ⊂ Σ2 and v2|V (Σ1) = v1.
Note that (Γ1, u1) ∈ Z. To apply Zorn’s lemma, note that every totally ordered
subset C of Z has an upper bound. Indeed, for two networks (Σ, v) and (Σ′, v) ∈
C, the corresponding harmonic functions agree on the overlap, and hence they
produce a well-defined harmonic function v∗ on Σ∗ =

⋃
(Σ,v)∈C Σ, and (Σ∗, v∗)

is an upper bound for C. Hence, Z has a maximal element (Σ∗, v∗).
Suppose for the sake of contradiction that Σ∗ ( Γ. Then by condition (1)

in the scaffold definition, E(Γ) \ E(Σ∗) has a minimal element e1. Let Σ+ be
the subnetwork of Γ induced by E′(Σ∗) ∪ {e1}. Now we consider two cases:
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• Suppose e1 is vertical. Then t(e1) cannot be in Σ∗ since Σ∗ is a lower
subgraph. Because e1 is not in Γ0, we must have e1 � e0, and hence
e1 6∈ BotS. This implies by definition of bottom that t(e1) is either a
boundary vertex of Γ or t(e1) ∈ b(VertS); hence, t(e1) is a boundary
vertex of Σ+. Since Θe1 is BZCF we can extend v∗ harmonically to Σ+

by choosing a potential on t(e1) so as to make the net current on b(e1)
zero (whether it’s interior in Γ or not). This contradicts the maximality
of (Σ∗, v∗).

• Suppose e1 is horizontal. As before, since e1 6∈ BotS, its endpoints must
be boundary vertices of Σ+. Hence, if v∗ is harmonic on Σ∗, it also defines
a harmonic function on Σ+, and this contradicts maximality of Σ∗.

Hence, Σ∗ = Γ and Claim 1 is proved.
Claim 2: Any harmonic function with potential zero on B(Γ) ∩ V (Γ0) and

net current zero on B(Γ) ∩ b(VertS ∩ E′(Γ0)) must be identically zero on Γ0.
Suppose for the sake of contradiction that (u, c) is a harmonic function that

violates this. Then there exists a minimal edge e1 in Γ0 with nonzero potential
on some endpoint.

• Suppose e1 is vertical. Then all edges incident to b(e1) other than e1 itself
are less than e1 by (3), and so they have potential zero on both endpoints
by minimality of e1. In particular, ub(e1) = 0. If b(e1) ∈ I(Γ), it must have
net current zero. Otherwise, we have b(e1) ∈ B(Γ) ∩ b(VertS ∩ E′(Γ0)),
so it has net current zero by assumption. Since there is zero current on
the other edges incident to b(e1), there must be zero current on e1, and
so there is zero potential on t(e1), a contradiction.

• Suppose e1 is horizontal. If an endpoint p of e1 is a boundary vertex of
Γ, then up = 0 by assumption. If it is interior in Γ, then it must be in
t(VertS) because e1 ≺ e0 ∈ MidS. If p = t(e2), that implies up = 0 by
minimality of e1. In either case, the endpoints of e1 must have potential
zero, which contradicts our choice of e1.

Conclusion: Choose any harmonic function (u, c) satisfying Claim 2 which
has potential up = t. We know such a function exists by Claim 1. By Claim 2,
uq must be zero since q ∈ V (Γ0). Since q is the only neighbor of p, this implies
the net current on p is −γe0(t) (if e0 is oriented with ι(e0) = p). Thus, by
imposing the boundary conditions of Claim 2 and potential up = t (no interior
conditions), we obtain a unique net current on p which is −γe0(t). Since this
holds for all BZCF networks, γe0(t) is uniquely determined by L over BZCF.
Since t is arbitrary, γe0 is determined.

This concludes the case for a boundary spike. In the case of a boundary
edge, the argument is the same with the following changes:

• Let q = b(e0), p = t(e0).

• To define u1 on Γ1, note p, q ∈ B(Γ1) and e0 is the only edge incident to
p in Γ1. Define u1 to be zero on Γ0 and t at vertex p.
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• We recover γe0(t) by noting that it is the net current on q. This is because
by (3) all edges incident to q except e0 are in Γ0 and hence have current
zero.

3.4 Reduction Operations and Layerable Graphs

In this section, we discuss systematically the process of removing all the edges
in the graph through a sequence of boundary spike contractions and boundary
edge deletions. A reduction operation is a transformation of a bgraph G into a
subgraph G′ such that

1. The edges removed are all boundary spikes or boundary edges of G.

2. The vertices removed are all boundary vertices of valence 0 or 1.

3. The only boundary vertices of G′ that are interior in G are the endpoints
of boundary spikes that were removed.

In other words, a reduction operation is some combination of contracting bound-
ary spikes, deleting boundary edges, and deleting disconnected boundary ver-
tices, such that each of the smaller operations affects at most one vertex. If
there is exactly one boundary spike/ boundary edge / disconnected boundary
vertex removed overall, then the reduction operation is called simple.

If f : G → G′ is a locally injective bgraph morphism, and S is obtained
from G′ by a reduction operation, then f−1(S) is obtained from G by a reduc-
tion operation (easy casework left to the reader). However, a boundary spike
contraction in G′ may produce a disconnected boundary vertex deletion in G
or some combination of boundary spike contraction and disconnected boundary
vertex deletion in G. This is why the definition was phrased so as to allow
mixing boundary spike contraction, boundary edge deletion, and disconnected
boundary vertex deletion in one reduction operation.

A (decreasing) filtration of a graph G is a sequence of subgraphs G = G0 ⊃
G1 ⊃ G2 ⊃ . . . such that

⋂∞
n=0Gn = ∅. If Gn+1 is obtained from Gn by a

reduction operation, then we the filtration is called a layerable filtration and the
bgraph is said to be layerable. A partial filtration is a sequence of subgraphs
G = G0 ⊃ G1 ⊃ . . . , and it is a partial layerable filtration if each subgraph is
obtained from the previous one by a reduction operation.

If f : G → G′ is a locally injective bgraph morphism and G′0, G
′
1, . . . is a

layerable filtration of G′, then f−1(G0), f−1(G1), . . . is a layerable filtration of
G. Hence, layerability of G′ implies layerability of G.

Layerability is related to scaffolds through the following lemma:

Lemma 3.3. Let G be a bgraph with countably many edges. The following are
equivalent:

a. G admits a layerable filtration in which the reduction operations are simple.

b. G admits a layerable filtration (that is, G is layerable).
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c. There exists a scaffold S on G with TopS = ∅.

d. For any e ∈ E′(G), there is a scaffold S on G with e 6∈ TopS.

e. For any e ∈ E′(G), there is a finite partial layerable filtration G = G0 ⊃
· · · ⊃ Gn with e 6∈ E(Gn).

Proof. (a) =⇒ (b) is immediate.
(b) =⇒ (c). Let G = G0 ⊃ G1 ⊃ . . . be a layerable filtration. Then each

edge e is in E(Gne
) \ E(Gne+1) for some ne. Define S as follows:

• e ≺ e′ if and only if ne < ne′ .

• e is vertical if it is a boundary spike of Gne and it is horizontal if it is a
boundary edge of Gne .

• If e is a boundary spike in Gne
, then b(e) is the endpoint removed in the

spike contraction and t(e) is the other endpoint.

The reader may verify that all the conditions in the definition of scaffold are
satisfied.

(c) =⇒ (d) is immediate.
(d) =⇒ (e). Define a new scaffold S ′ with the same vertical edges and t

and b functions as in S, but define the new partial order by taking the transitive
closure of the relations defined by conditions (2) and (3) of the scaffold definition.
(Thus, we are making as few edges comparable to each other as possible given
our choice of vertical edges.) Every subset of E has a minimal element with
respect to S, which will automatically be minimal with respect to S ′.

I claim that for any e ∈ E′(G), there are only finitely many edges e � e0 in
S ′. If we suppose not, then there is a minimal edge e0 for which the claim does
not hold. There are only finitely many edges e1, . . . , en which incident to and
less than e0, and {e � e0} =

⋃n
j=1{e � ej}∪{e0} since the relations (2) and (3)

used to define our partial order only compare edges which are incident to each
other. By minimality of e0, {e � ej} is finite, which implies {e � e0} is finite,
which is a contradiction.

Now choose e. Let e1, . . . , ek = e be the edges � e in S ′. We can assume they
are listed in some nondecreasing order. Let G0 = G. Then e1 is a minimal edge
in G0. The conditions in the definition of a scaffold force e1 to be a boundary
spike if it is vertical and a boundary edge if it is horizontal (similar reasoning to
the lemma about recovery). Let G1 be the graph formed by deleting/contracting
this edge as appropriate. Then e2 is a minimal edge in G1, hence a boundary
spike or boundary edge. So (e) follows by induction.

(e) =⇒ (a). Observe: If S is a subgraph of G and e is a boundary spike of G,
then it is also a boundary spike of S if it is actually contained in S. Hence, if G′

is obtained from G by contracting the boundary spike, then either S ∩G′ = G′

or else S ∩G′ is obtained from S by contracting the boundary spike. The same
observation holds for boundary edges.

We assumed in §1 that our graphs have countably many edges, so we can
write them in a sequence e1, e2, . . . . For each en, choose a kn and a sequence
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of subgraphs G = Gn,1 ⊃ · · · ⊃ Gn,kn as in (e). Then consider the following
filtration:

G = G1,1, G1,2, . . . G1,k1 ,

G1,k1 ∩G2,1, G1,k1 ∩G2,2, . . . G1,k1 ∩G2,k2

G1,k1 ∩G2,k2 ∩G3,1, . . . G1,k1 ∩G2,k2 ∩G3,k3

. . . . . .

The consecutive elements of this sequence, if they are not equal, are obtained
by removing a boundary spike or boundary edge as a result of our earlier ob-
servation. Thus, we have a partial layerable filtration which removes all the
edges in the graph. We can obtain a new filtration by replacing each reduc-
tion operation with two reduction operations–first remove the boundary spike
or boundary edge according to our original partial filtration, then remove any
disconnected boundary vertices.

3.5 Electrical Properties of Reduction Operations

Suppose that G′ is obtained from G by a reduction operation. Our goal is to
show that the boundary data L′ is uniquely determined by L and the conduc-
tance functions of the edges removed in the reduction.

Lemma 3.4. Suppose that G′ is obtained from G by contracting some non-
degenerate boundary spikes. Let Γ be a BZCF network on G and let Γ′ be the
corresponding network on G′. Let L and L′ be the sets of boundary data. Then

• The inclusion Γ′ → Γ induces a bijection UΓ → UΓ′ .

• L is determined by L′ and the conductance functions of the spikes, and L′

is determined by L and the conductance functions of the spikes.

The same holds if we replace “contracting boundary spikes” by “deleting bound-
ary edges.”

Proof. Let’s consider the case of contracting one boundary spikes (the proof for
multiple boundary spikes is the same but with more complicated notation). Let
e be the oriented boundary spike, ρe = γ−1

e the resistance function. We want
to show that any harmonic potential u′ on Γ′ extends to a unique harmonic
potential u on Γ; we only have to choose the potential on ι(e) since all the other
vertices are in Γ′. Since τ(e) is boundary in Γ′ but interior in Γ, there is only one
possible choice for ce that would yield net current zero on τ(e) for the function
on Γ. We then set uι(e) = uτ(e) + ρe(ce).

Note that the boundary data of u is uniquely determined by ρe and the
boundary data of u′. Indeed, the net current of u on ι(e) equals the net current
of u′ on τ(e) equals ce, and the uι(e) = uτ(e) + ρe(ce). Also, B(Γ′) \ {τ(e)} =
B(Γ) \ {ι(e)}, and the potential / net current on these vertices is the same for
u as it is for u′. Similarly, the boundary of u′ is uniquely determined by ρe and
the boundary data of u. Hence, we can find L from L′ and vice versa.
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For boundary edges, we can make a similar argument: Any harmonic poten-
tial on V (Γ) is harmonic on V (Γ′) as well. To find the boundary data of u from
u′ or u′ from u, we keep the potentials the same, and adjust the net currents
on the boundary vertices according to the boundary potentials together with
conductance functions γe of the boundary edges removed.

Lemma 3.5. Suppose that G′ is obtained from G by deleting some disconnected
boundary vertices. Let Γ, Γ′, L, L′ be as above. Then

• The inclusion Γ′ → Γ induces a surjection UΓ → UΓ′ .

• L′ is uniquely determined by L and L is uniquely determined by L′.

Proof. Easy exercise.

Lemma 3.6. Suppose G′ is obtained from G by reduction operation. Let Γ, Γ′,
L, L′ be as above. Then

• The inclusion Γ′ → Γ induces a surjection UΓ → UΓ′ .

• L′ is uniquely determined by L and L is uniquely determined by L′.

Proof. Any reduction operation can be expressed in three steps as a contraction
of non-degenerate spikes, deletion of boundary edges, and deletion of discon-
nected boundary vertices.

3.6 Solvable and Totally Layerable Bgraphs

Let G0, G1, . . . , Gn be a layerable filtration of a bgraph G. We say that it is a
solvable filtration if it satisfies the following:

• For each spike e removed from Gn, there is a scaffold on Gn in which e is
a horizontal, middle edge.

• For each boundary edge e removed from Gn, there is a scaffold on Gn in
which e is a vertical, middle edge.

A bgraph which admits a solvable filtration is called solvable. This name is
appropriate because these are precisely the graphs for which the inverse problem
can be solved through layer-stripping with repeated application of information
propagation:

Theorem 3.7. Any solvable bgraph is recoverable over BZCF.

Proof. Let Γ be a BZCF network on G. Let G0, G1, . . . be a solvable filtration,
and let Γ0,Γ1, . . . be the corresponding subnetworks with sets of boundary data
L0, L1, . . . . By Lemma 3.2, the conductance functions of the edges removed
from Gn are uniquely determined by Ln over BZCF. By Lemma 3.6, Ln+1 is
determined by Ln and these conductance functions. Hence, by induction each
conductance function and each Ln is uniquely determined by L over BZCF.
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Proposition 3.8. Let f : G → G′ be a locally injective bgraph morphism. If
G′0, G

′
1, . . . is a solvable filtration of G′, then f−1(G′0), f−1(G′1), . . . is a solvable

filtration of G. Hence, if G′ is solvable, then so is G.

Proof. We already know that a layerable filtration pulls back to a layerable
filtration. To see that f−1(G′0), f−1(G′1), . . . is a solvable filtration, we just pull
back the scaffolds used for each edge, using Proposition 3.1.

A more symmetrical (and it turns out stronger) condition than solvability
is total layerability. We say that a bgraph G is totally layerable if for any
edge e, there exists a scaffold S with e ∈ HorS ∩MidS and a scaffold S ′ with
e ∈ VertS ′ ∩HorS ′.

Proposition 3.9.

1. If f : G → G′ is a locally injective bgraph morphism and G′ is totally
layerable, then so is G.

2. Any totally layerable bgraph is layerable.

3. If G is a totally layerable, then it is solvable. In fact, any layerable filtra-
tion of G is a solvable filtration.

Proof. The first claim follows immediately from Proposition 3.1. (2) follows
from Lemma 3.3. To prove (3), let G0, G1, . . . be a layerable filtration. If e is a
boundary spike / boundary edge of Gn−1, then there exists a scaffold on G in
which e is a horizontal / vertical middle edge, and this induces a scaffold on Gn
as well.
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