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Abstract

We analyze geometric structure of graphs-with-boundary (or “B-graphs”)
relevant to the study of electrical networks, especially the electrical in-
verse problem. As in [5] and [10], networks are generalized to include
signed, nonlinear, and infinite resistor networks. We review fundamental
results about linear networks, including the Star-K transformation and
grove-determinant formula, as the motivation and groundwork for our re-
sults, and sketch how they generalize to arbitrary fields. Following [1],
we describe gluing together networks as composition in a category; this
formalism sheds light on the relationship between ranks and connections
and its generalization to the nonlinear case. A related geometric structure
called a scaffold allows us describe harmonic continuation and formalize
the layer-stripping approach to the inverse problem in a way which in-
cludes infinite networks. A class of “solvable B-graphs” is defined by
purely geometric conditions which guarantee the inverse problem has at
most one solution for a general class of nonlinear resistors. Critical circu-
lar planar graphs are solvable, and so are any subgraphs, covering graphs,
and box products of solvable B-graphs.
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Introduction

Network theory touches on electrical engineering, graph theory, combinatorics,
and symplectic Lie theory. Much of it is motivated by analogy with PDE and
complex analysis. TO BE CONTINUED
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1 Graphs with Boundary

1.1 Graphs

A graph G consists of two sets V = V (G)) and E = E(G), a function ι : E → V ,
and a function¯: E → E with e 6= e and e = e. For e ∈ E, ι(e) is the initial
vertex of e and τ(e) = ι(e) is the terminal vertex. Let E′ be the set of pairs
{e, e}. An edge is an element of E′ and an directed edge is an element of E.

We say a directed edge e is incident to a vertex p if p is the initial vertex
of e, and a non-directed edge is incident to p if p is one of its endpoints. For a
vertex p, ι−1(p) is the set of directed edges incident to p, and its cardinality is
called the valence of p.

A morphism of graphs f : G1 → G2 consists is a pair of functions fV :
V (G1) → V (G2) and fE : E(G1) → E(G2) such that fV (ι(e)) = ι(fE(e)) and
fE(e) = fE(e). Henceforth, we will write f for fE and fV because it is simpler
and causes no confusion.

For a graph G, a path is a sequence of vertices p0, . . . , pK and oriented
edges e1, . . . , eK such that ι(ek) = pk−1 and τ(ek) = pk. We allow a “trivial”
path with one vertex and no edges. A path is an embedded path if the vertices
p0, . . . , pK are distinct and the non-oriented edges in the path are distinct. A
graph is connected if for any two vertices p and q, there exists a path from p to
q. Any graph can be partitioned into connected subgraphs called components.

We will work with both finite and infinite graphs, but assume that all vertices
have finite valence. Since any connected component of an infinite graph must
be countable anyway, we will also assume that V (G) and E(G) are countable.

1.2 B-graphs

A graph-with-boundary G is a graph together with a partition of V into two sets
B and I. The elements of B are called boundary vertices and those of I are
interior vertices. We will call a graph-with-boundary a “B-graph” for short.

A B-graph morphism f : G1 → G2 is a graph morphism with the following
properties:

• f maps interior vertices to interior vertices. That is, if p ∈ I(G1), then
f(p) ∈ I(G2).

• For each vertex p, the restriction of f to a map ι−1(p) → ι−1(f(p)) is
injective and for interior vertices it is bijective.

The reader may verify that these morphisms is closed under composition and
includes the identity.

Remark. A B-graph morphism is loosely analogous to an analytic function with
nonzero derivative on a plane domain or Riemann surface. Mapping interior
vertices to interior vertices is analogous to being an open map. The fact that
f is bijective on the edges incident to an interior vertex is analogous to being
locally conformal.
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Sub-B-graphs: We say G1 is a sub-B-graph of G2 if V (G1) ⊂ V (G2),
E(G1) ⊂ E(G2), I(G1) ⊂ I(G2), and if p ∈ I(G1), then ι−1(p) (with respect to
G2) is contained in E(G1). Or equivalently, G1 is a sub-B-graph of G2 if it is a
subgraph and the inclusion G1 → G2 is a B-graph morphism.

If S1 and S2 are sub-B-graphs of G, we define S1 ∪ S2 by

V (S1∪S2) = V (S1)∪V (S2), E(S1∪S2) = E(S1)∪E(S2), I(S1∪S2) = I(S1)∪I(S2).

And S1 ∩ S2 is defined in the same way.
If f : G1 → G2 is a B-graph morphism and S2 is a subgraph of G2, then we

define f−1(S2) as follows:

V (f−1(S2)) = f−1(V (S2)), E(f−1(S2)) = f−1(E(S2)), I(f−1(S2)) = f−1(E(S2))∩I(G1);

the reader should verify that this is a sub-B-graph of G1.
Covering Maps: A B-graph morphism f : H → G is called a covering map

if it maps boundary vertices to boundary vertices and ι−1(p) → ι−1(f(p)) is
bijective for all vertices. In this case, H is called a covering B-graph or cover of
G. Covering maps are closed under composition.

Covering maps are easy to construct explicity. Let G be a B-graph and
S = {1, . . . , n} or N. For each e ∈ E(G), choose σe ∈ PermS with σe = σ−1

e .
Define a graph H by

• V (H) = V (G)× S.

• E(H) = E(G)× S.

• I(H) = I(G)× S.

• ι(e× j) = ι(e)× j.

• e× j = e× σ(j).

Then the map H → G is a covering map.

Exercise. If G is connected, then, up to isomorphism, all covering B-graphs of
G are constructed this way.

Exercise. Any B-graph morphism f can be written as f2 ◦ f1 where f1 is an
inclusion and f2 a covering map.

Remark. As the previous exercise shows, the class of B-graph morphisms is
rather restrictive compared to graph morphisms, just as analytic functions are
a very small subset of smooth functions. In §4 and §6, it will be essential for
our B-graph morphisms to preserve local structure.
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1.3 Pull-Backs and Push-Outs of B-graphs

Pull-Backs: Although our category of B-graphs does not have products or a
terminal object (exercise), we can construct pull-backs in the typical way for
concrete categories. Suppose f1 : G1 → G and f2 : G2 → G are B-graph
morphisms. Then the pull-back or fiber product G1 ×G G2 is constructed as
follows:

• V (G1 ×G G2) is the set of pairs (p1, p2) ∈ V (G1) × V (G2) such that
f1(p1) = f2(p2).

• E(G1 ×G G2) is the set of pairs (e1, e2) ∈ E(G1) × E(G2) such that
f1(e1) = f2(e2).

• (p1, p2) is interior if and only if both p1 and p2 are interior.

• ι((e1, e2)) = (ι(e1), ι(e2)) and (e1, e2) = (e1, e2).

The reader may verify that the evident maps π1 : G1 ×G G2 → G1 and
π2 : G1×GG2 → G2 are B-graph morphisms, and that the pull-back satisfies the
following the universal property: For any B-graph H and any maps g1 : H → G1

and g2 : H → G2 such that f1 ◦ g1 = f2 ◦ g2, there exists a unique B-graph
morphism φ : H → G1 ×G G2 such that gj = πj ◦ φ, as depicted here:

H

G1 ×G G2 G1

G2 G

π1

π2 f1

f2

g1

g2

∃!φ

This universal property characterizes G1 ×G G2 up to isomorphism.
Coproducts and Push-Outs: The coproduct or disjoint union G1

∐
G2

of two B-graphs G1 and G2 is formed by taking the disjoint union of the sets of
vertices, edges, and interior vertices of G1 and G2. It is only well-defined up to
isomorphism. The evident inclusions i1 : G1 → G1

∐
G2 and i2 : G2 → G1

∐
G2

are B-graph morphisms. G1

∐
G2 satisfies the universal property that for B-

graph morphisms f1 : G1 → G and f2 : G2 → G, there is a unique corresponding
B-graph morphism f : G1

∐
G2 → G such that f1 = f ◦ i1 and f2 = f ◦ i2.

NEEDS WORK: If we have two covering maps f1 : G → G1 and f2 : G →
G2, we can define a push-out G1

∐
GG2 as follows: The vertices of G1

∐
GG2

are the vertices of the disjoint union, modulo the equivalence relation generated
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by the relations f1(p) ∼ f2(p) for p ∈ V (G). We perform the same operations
to obtain E(G1

∐
GG2). A vertex of G1

∐
GG2 is declared to be interior if at

least one representative of the equivalence class is interior (which in fact implies
they are all interior).

1.4 Other B-graph Terminology

In a B-graph, a boundary-to-boundary path is an embedded path such that p0

and pK are boundary vertices and the other vertices are interior. A cycle is a
non-trivial path such that the edges are distinct, and the vertices p0, . . . , pK−1

are distinct with pK = p0.
A path through the graph is an embedded path in which the vertices p1, . . . , pK−1

are interior. We say two vertices p and q are connected through the graph if there
exists such a path with p0 = p and pK = q. We say two directed edges e and
e′ are connected through the graph if there exists such a path with e1 = e and
eK = e′. We say two edges are connected through the graph if we can choose
an orientation for each one such that the resulting directed edges are connected
through the graph.

For any graph, there exist connected subgraphs G1, . . . , GN , called compo-
nents, such that V (G1), . . . , V (GN ) are a partition of V (G), and E(G1), . . . , E(GN )
are a partition of E(G), and B(G1), . . . , B(GN ) are a partition of B(G).

2 Networks

To motivate our general definition of electrical networks, we summarize the types
of networks we are primarily interested in (and will consider in other papers):

1. It is standard to consider real-valued linear electrical networks. We are
given a B-graph G together with a positive real number ae for each edge
(called the conductance). For a “potential” function u : V → R, the
current on edge is given by ce = ae(u(ι(e))− u(τ(e))) (Ohm’s Law). The
potential is harmonic if the net current

∑
e∈ι−1(p) ce is 0 for each interior

vertex p (Kirchhoff’s Law).

2. In a “nonlinear conductance network” [5], each edge is assigned a con-
ductance function γe : R → R rather than a positive number. We define
ce = γe(u(ι(e))−u(τ(e))). Again, a potential is harmonic if the net current
on interior vertices is zero. This provides a simple model for non-ohmic
resistors or semiconductors; in the physically relevant cases, γe is weakly
increasing and γe(0) = 0.

3. In a “nonlinear resistance network” [5], each edge is assigned a resistance
function ρe : R → R (if we wish, weakly increasing and zero-preserving).
We consider potential/current functions such that u(ι(e)) − u(τ(e)) =
ρe(c(e)). In this case, c is no longer a function of u, and u is not a
function of c.

7



4. Returning to the linear case, we can generalize in a more algebraic direc-
tion: Instead of considering the conductance to be a positive number, we
could also allow it to be negative or complex. Or we could replace real
numbers by an arbitrary field or even ring.

5. More generally, suppose each γe is a unit of a ring R. Let M be an R-
module, and consider a potential function u : V →M and current function
c : E →M with c(e) = γe · (u(ι(e))− u(τ(e))).

The minimal amount of structure we need to discuss these types of electrical
networks is

• the ability to add potentials and currents together (our u and c must take
values in some abelian group M),

• a way to specify when a potential drop u(ι(e))− u(τ(e)) and current c(e)
are compatible for a given edge e (so we have some relation in M ×M
specifying the compatible potential drop/current pairs).

Let’s formalize this.
For a set S we define the category of S-labelled graphs as follows: An object

is a pair (G, `) where G = (V,E) is a graph and together ` is a function E → S
called a labelling. A morphism of S-labelled graphs is a morphism of graphs
f : G1 → G2 that preserves the labelling, meaning that `2(f(e)) = `1(e) for any
e ∈ E(G1). The category of S-labelled B-graphs is defined in the same way.

We can describe each of the above types of networks by labelling the edges
with different things. If we wish to include all these networks under one um-
brella, we can use the following general definition:

Let M be an abelian group (written additively). A network Γ (taking values
in M) is a B-graph where each edge is labelled by a relation Θ ⊂M ×M , such
that Θe = −Θe. Networks form a subcategory of P(M ×M)-labelled B-graphs.
We denote the labelling by Θ.

An M -valued potential function on a B-graph G is a map u : V → M . To
make notation neater, we will write up = u(p) for p ∈ V . An M -valued current
function on a G is a map c : E →M such that

• ce = −ce.

• The net current
∑
e∈ι−1(p) ce = 0 for each interior vertex p.

Simiiarly, we have written ce = c(e). For a network Γ, a potential u and current
c are compatible if for each e, (uι(e) − uτ(e), ce) ∈ Θe.

The condition Θe = −Θe guarantees that

(uι(e) − uτ(e), ce) ∈ Θe if and only if (uι(e) − uτ(e), ce) ∈ Θe.
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2.1 Harmonic Functions

Fix an abelian group M . A harmonic function on a network Γ is a compatible
potential/current pair (u, c). Let HΓ be the set of harmonic functions on Γ.

Suppose f : Γ1 → Γ2 is a network morphism. If u is a potential function on
Γ2, we can define f∗u (or “u ◦ f”) on Γ1, by f∗up = uf(p). Similarly, we can
define f∗ce = cf(e). If (u, c) is harmonic on Γ2, then (f∗u, f∗c) is harmonic on
Γ1. To prove this, we first show f∗c is actually a current function–that is, the
net current on each interior vertex is zero. Suppose p is an interior vertex of Γ1.
Then since ι−1(p)→ ι−1(f(p)) is bijective∑

e∈ι−1(p)

f∗ce =
∑

e∈ι−1(f(p))

ce,

which is zero since f(p) is interior. Then to show that u and c are compatible,
note that for each edge e,

(f∗uι(e) − f∗uτ(e), f
∗ce) = (uι(e) − uτ(e), ce) ∈ Θf(e) = Θe.

Remark. This is analogous to the result from complex analysis that if φ is
analytic and u is harmonic, then u ◦ φ is harmonic, and it is what motivated
our definition of B-graph morphisms.

Thus, Γ 7→ HΓ defines a contravariant functor from the category of networks
to the category of sets. For the various types of networks described earlier, it
could also define a functor into a category with more structure such as Top or
R−mod.

2.2 Boundary Behavior; Forward and Inverse Problems

Let Γ be a network with values in an abelian group M . For a potential function
u, the boundary potential function is u|B ∈ MB . For a current function c,
the boundary net current function ψ ∈ MB is given by ψp =

∑
e∈ι−1(p) ce.

If φ is the boundary voltage of u and ψ is the boundary current of c, then
(φ, ψ) ∈ MB × MB is called the boundary data of (u, c). Define a function
Φ : HΓ → MB ×MB by mapping a harmonic function to its boundary data.
We define the boundary behavior or set of boundary data L as the image of Φ.
(The term “behavior” is borrowed from [1].)

We will consider the following problems:

• The Dirichlet Problem: For φ ∈ MB , does there exist a harmonic
function with boundary potential φ? Is it unique?

• The Neumann Problem: For ψ ∈ MB , does there exist a harmonic
function with boundary current ψ? It is unique?

• Regularity: If the solutions to the Dirichlet and Neumann problems
exist, do they depend “nicely” on φ or ψ? More generally, how “nice” is
L? (The notion of “nice” depends on the type of network.)
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• The Inverse Problem: Let Γ = (G,Θ) be a network. Is Θ uniquely
determined by G and L?

Of course, as stated the inverse problem is very badly posed since we allow so
many different values of Θ. In practice, one only wants to consider a particular
type of Θ. For instance, when working over R, we could consider Θ’s given by
a conductance function γe : R→ R which is smooth, zero-preserving, bijective,
and increasing. Or simply assume γe(t) = aet for some ae > 0 as is most often
done. But then our argument that we can “recover” the ae’s from L is likely to
depend on the fact that all Θ’s considered have the same form.

Thus, we make the following definition: Let G be a B-graph and let Z be
a collection of Θ’s on G. Then we say that G is recoverable over Z if the map
Θ 7→ L is injective on Z. We say a particular network Γ = (G,Θ0) with Θ0 ∈ Z
is recoverable over Z if there are no other choices of Θ which yield the same L
as Θ0.

For our approach to the inverse problem, the natural collection of Θ’s to
consider are the ones where Θe = {x, γe(x)} for some bijective function γe :
M →M with γe(0) = 0. We call this collection of Θ’s BZCF, which stands for
bijective zero-preserving conductance functions.

3 Linear Networks

In this section, we shall review / prove a hodgepodge of results about linear
networks, which serve as tools or motivations for the results of later sections. We
will also describe when familiar results for positive real conductances generalize
to nonzero conductances in any field.

3.1 The Kirchhoff Matrix

Let G be a finite B-graph and assume it has no self-looping edges. Let Γ be
a network on G with Θe given by {(t, aet)} for some nonzero ae = ae in a
field F. Let HΓ be the set of F -valued harmonic functions (u, c) on Γ, with
ce = ae · (uι(e) − uτ(e)). Note H is a linear subspace of FV × FE . Since c is
determined by u, HΓ is linearly isomorphic to UΓ, the set of harmonic potentials,
so we might as well work with UΓ.

Recall UΓ is the set of all u ∈ FV such that∑
e∈ι−1(v)

ae(uι(e) − uτ(e)) = 0 for each v ∈ I.

These equations can be compactly expressed in terms of the Kirchhoff matrix.
Define the Kirchhoff matrix K ∈MV F by

Kp,q =


∑
e:ι(e)=p,
τ(e)=q

ae, p 6= q

−
∑
e:ι(e)=v ae, p = q.
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The Kirchhoff matrix K defines a linear transformation FV → FV , and the
component indexed by p is

(Ku)p = −
∑

e∈ι−1(p)

ae(uι(e) − uτ(e)).

If πI : FV → FI is the projection map, then u is harmonic if and only if
πIKu = 0, hence

UΓ = ker(πIK) ⊂ FV .

The Dirichlet and Neumann problems have an interpretation in terms of
linear algebra. In the following, we will assume G is connected. There is no
real loss of generality, since a harmonic function on G restricts to a harmonic
function on any connected component, and harmonic functions on the connected
components combine to form a harmonic function on G. And components with
no boundary vertices are of little interest. If G has multiple connected compo-
nents G1, . . . , GN and we reorder the vertices of G so that the vertices of G1

are first, then V (G2), and so on, then the Kirchhoff matrix will decompose into
blocks

K =


K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · KN

 ,

so the behavior of the whole can easily be understood from the behavior of the
smaller blocks.

Consider the Dirichlet problem. For φ ∈ RB , we want to find a harmonic
potential u with u|B = φ. This is the same as letting u = (φ,w), where w
satisfies

KI,Bφ+KI,Iw = 0.

This will have a unique solution if and only if KI,I is invertible. As we will
see, this does not always happen. But suppose KI,I is invertible. Then w =
−K−1

I,IKI,Bφ. The current on each edge can be computed from the conductance
functions. The net current on the boundary vertices is

ψ = KB,Bφ+KB,Iw = (KB,B −KB,IK
−1
I,IKI,B)φ.

The matrix Λ = KB,B − KB,IK
−1
I,IKI,B is called the response matrix and it

acts as a Dirichlet-to-Neumann map FB → FB sending boundary potentials
to the boundary net currents of the corresponding harmonic function. Then
L = {(φ,Λφ) : φ ∈ FB}.

The matrix Λ is an example of a Schur complement. Suppose we have a
square matrix M partitioned into blocks

M =

(
A B
C D

)
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and D is square and invertible. Then A−BD−1C is called the Schur complement
of D in M and is denoted M/D. In this notation, Λ = K/KI,I .

The Neumann problem has a similar interpretation. For ψ ∈ FB , we want
to find a potential u such that

Ku =

(
ψ
0

)
.

Of course, if ψ came from a valid current function, its entries must sum to zero.
We cannot expect the solution to the Neumann problem to be unique either.
Indeed, if we take a harmonic function and raise the potentials on all the vertices
by some constant, then the new function will be harmonic and have the same
boundary currents.

So we revise the Neumann problem as follows: Let A ⊂ RV be the set of
functions whose entries sum to zero. For (ψ, 0)T ∈ A, does there exist a unique
harmonic (u, c) with u ∈ A and Ku = (ψ, 0)T ? The answer is yes if and only if
K|A is invertible. Since the image of K is contained in A, this happens if and
only if rankK = dimA, which is |V | − 1.

3.2 A Grove-Determinant Formula

Our main tool to determine when certain submatrices of K are invertible is
the following combinatorial result, which generalizes the matrix-tree theorem
attributed to Kirchhoff. The formula presented here is a special case of Robin
Forman’s [3] (see also Kenyon [6]).

Let G be a graph. A spanning tree T is a subgraph (without boundary)
such that T is connected, every vertex is in T , and T has no cycles. A forest
F is a subgraph F with no cycles; the components of F have no cycles, and
are therefore trees. A grove is a forest such that each component contains a
boundary vertex.

Let P and Q be disjoint subsets of B with |P | = |Q| = n. Let F(P,Q)
be the set of groves F such that each connected component either contains
exactly one vertex from P and one from Q or it contains exactly one vertex
from B \ (P ∪Q). Let KP∪I,Q∪I be the submatrix of K with rows indexed by
P ∪ I and columns by Q ∪ I, ordered according to a given indexing of vertices
by the integers 1, . . . , |V |. Let p1, . . . , pn be the vertices of P and q1, . . . , qn the
vertices of Q ordered according to the same indexing. For any F ∈ F(P,Q),
there is a permutation τ ∈ Sn such that pj and qτ(j) are in the same component
of F ; call this permutation τF .

Theorem 3.1 (Grove-determinant Formula, [3] [6]). Let G be a finite B-graph
labelled by elements of a field F. Let P and Q be disjoint subsets of B with
|P | = |Q| = n. Then

detKP∪I,Q∪I = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

12



Proof. Let m = |I|. Let p1, . . . , pn+m be the vertices of P ∪ I and q1, . . . , qn+m

be the vertices of Q ∪ I, so that P = {p1, . . . , pn} and Q = {q1, . . . , qn} and for
j > n, pj = qj ∈ I. Suppose σ ∈ Sn+m; if pj = qσ(j), then pj must be interior.
Let mσ be the number of indices with pj = qσ(j). By definition, detKP∪I,Q∪I
is ∑

σ∈Sn+m

sgnσ

n+m∏
j=1

κpj ,qσ(j)

=
∑

σ∈Sn+m

sgnσ

 ∏
pj 6=qσ(j)

∑
e:ι(e)=pj
τ(e)=qσ(j)

(−ae)


 ∏
pj=qσ(j)

∑
e:ι(e)=pj

ae



=
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ

 ∏
pj 6=qσ(j)

∑
e:ι(e)=pj
τ(e)=qσ(j)

ae


 ∏
pj=qσ(j)

∑
e:ι(e)=pj

ae


Our goal is to expand each of the sums inside the product. Fix σ; choosing one
term from each of the inner sums amounts to choosing for each j an edge ej
such that (1) ι(ej) = pj and (2) if pj 6= qσ(j), then τ(e) = qσ(j). Let Y be the
collection of all sets Y = {e1, . . . , en+m} such that ι(ej) = pj . We say σ ∈ Sn+m

and Y ∈ Y are compatible if (1) and (2) are satisfied for every ej ∈ Y . Then

detKP∪I,Q∪I =
∑

σ∈Sn+m

(−1)n+m−mσ sgnσ
∑

compatible
Y ∈Y

∏
e∈Y

ae

=
∑
Y ∈Y

∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ
∏
e∈Y

ae

Suppose that Y contains a sequence of edges ej1 , . . . , ejk with τ(j`) = ι(j`+1)
for ` = 1, . . . , k−1 and τ(ejk) = ι(ej1). (Either such a sequence forms a cycle or
k = 2 and it is a pair e, e.) If σ is compatible with Y , there are two possibilities:
Either (1) σ(j`) = j` for all ` or (2) j1 7→ j2 7→ . . . 7→ jk 7→ j1 is a cycle of σ.
In fact, there is a one-to-one correspondence between compatible permutations
satisfying (1) and those satisfying (2), and we can partition the compatible
permutations into pairs {σ, ξσ}, where ξ ∈ Sn+m is the cycle j1 7→ j2 7→ . . . 7→
jk 7→ j1, such that σ satisfies (1) and ξσ satisfies (2). Then mξσ = mσ − k and
sgn ξ = (−1)k+1, so

(−1)n+m−mξσ sgn(ξσ) = (−1)n+m−mσ−k(−1)k+1 sgnσ = −(−1)n+m−mσ sgnσ.

Thus, ∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ = 0

13



because the terms for σ and ξσ cancel.
Therefore, it suffices to consider elements Y ∈ Y which do not contain

cycles or pairs {e, e}. For any such Y , there is a unique spanning forest F with
E(F ) = Y ∪ Y . I claim that

1. If Y is compatible with σ, then the corresponding F is in F(P,Q),

2. There is a one-to-one correspondence between compatible (Y, σ) pairs and
forests F , and

3. For each (Y, σ), we have (−1)n+m−mσ sgnσ = (−1)n sgn τF .

To prove (1), it suffices to show that every component of F includes exactly
one vertex from B \P , that is, one vertex from Q or one from B \ {P ∪Q}. For
each pj , there is a unique outgoing ej ∈ Y with ι(ej) = pj . We start at pj and
construct a path following the oriented edges of Y . As long as the last vertex is
in P ∪I, we can continue the path. Since Y has no cycles or conjugate pairs, we
cannot repeat vertices, so eventually we will reach a vertex in B \ P , so every
component has one vertex from B \ P . Suppose for the sake of contradiction
that it had more than one. Then there would be r, r′ ∈ B \ P and a path from
r to r′ using oriented edges ε1, . . . , εK ∈ Y ∪ Y . We can assume without loss of
generality that r and r′ are the only vertices in B \ P in the path. If e ∈ Y ,
then ι(e) ∈ P ∪ Q. Thus, ε1 6∈ Y , εK ∈ Y . Let k be the first index such that
εk ∈ Y . Then εk−1 ∈ Y , so εk and εk−1 are two edges in Y with the same initial
vertex, which contradicts our definition of Y.

(2) Choose F , and we will show there is a unique (Y, σ) which corresponds
to F . We obtain Y from E(F ) by choosing one orientation for each edge. For an
e ∈ E(F ), there is an embedded path from ι(e) to some r ∈ B\P ; this embedded
path must be unique because F is a forest. There is also an embedded path
from τ(e) to r, and one of the two paths must use e or e. We choose the
orientation which matches the orientation of the path. These orientations are
uniquely determined: If we assume e ∈ Y for some Y but that the orientation
of e does not match the orientation of the path, then we reach a contradiction
by the same argument as above.

To construct σ, we decompose τF into disjoint cycles η1, . . . , ηK . For each ηk,
we define a cycle σk ∈ Sn+m as follows: Let ηk be given by i1 7→ i2 7→ iR 7→ i1
(the dependence on k has been suppressed in the notation). There is a unique
embedded path in F from pir to qir+1 and the other vertices in the path are
interior, so the vertices in all the paths have the form

pi1 , pj1,1 = qj1,1 , pj1,2 = qj1,2 , . . . , pj1,k1 = qj1,n1
, qi2

pi2 , pj2,1 = qj2,1 , pj2,2 = qj2,2 , . . . , pj2,k2 = qj2,n2
, qi3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

piR , pjR,1 = qjR,1 , pjR,2 = qjR,2 , . . . , pjR,k2 = qjR,nR , qi1 .

14



We define the cycle ξk by

i1 7→ j1,1 7→ j1,1 7→ j1,2 7→ . . . 7→ j1,n1 7→ i2

i2 7→ j2,1 7→ j2,1 7→ j2,2 7→ . . . 7→ j2,n2 7→ i3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iR 7→ jR,1 7→ jR,1 7→ jR,2 7→ . . . 7→ jR,nR 7→ i1.

Then let σ = ξ1ξ2 . . . ξn. To show σ is uniquely determined, suppose σ is product
of cycles ξ1, . . . , xk. Suppose ξk given by j1 7→ j2 7→ . . . 7→ jL 7→ j1. If each j`
was greater than n (corresponding to an interior vertex), then we would have
pj` = qj` ∈ I and the edges ej1 , . . . , ejL ∈ Y would form a cycle or pair {e, e},
contradicting our assumptions about Y . Thus, some of the indices in the cycle
are ≤ n; it follows that ξk must represent boundary-to-boundary paths just as
in our original construction, and the paths are uniquely determined by F

(3) Consider a cycle ηk which maps i1 7→ i2 7→ iR 7→ i1, and let ji,1, . . . , ji,nr
be as above. Let zk =

∑R
r=1 nr, which is the number of interior vertices in the

paths corresponding to ηk. Then sgn ξk = (−1)zk sgn ηk. The total number of

interior vertices in the paths is
∑K
k=1 zk. The interior vertices not in the paths

are exactly the vertices pj for which σ(j) = j. Hence,
∑K
k=1 zk = m − mσ.

Therefore,

sgnσ = sgn(ξ1 . . . ξn) = (−1)
∑
k zk sgn(η1 . . . ηn) = (−1)m−mσ sgn τF .

Thus, (−1)n+m−mσ sgnσ = (−1)n sgn τF . Therefore,∑
Y ∈Y

∑
compatible
σ∈Sn+m

(−1)n+m−mσ sgnσ
∏
e∈Y

ae = (−1)n
∑

F∈F(P,Q)

sgn τF
∏

e∈E′(F )

ae.

Corollary 3.2. Let F = F(∅,∅). Then detKI,I =
∑
F∈F

∏
e∈E′(F )

ae.

Proof. The proof is the same except that n = 0 and there is no τF .

The matrix-tree theorem follows as a special case:

Corollary 3.3 (Matrix-Tree Theorem). Let G be a connected graph (without
boundary). Let K be the Kirchhoff matrix of the electrical network where each
edge has conductance ae = 1. For p, q ∈ V , (−1)p−q detKV \{p},V \{q} is the
number of spanning trees of G.

Proof. If p = q, then make G into a graph with boundary by setting B = {p}.
Reindex the vertices so that p occurs first; this does not change the determinant.
Then by the previous theorem,

detKV \{p},V \{p} = detKI,I =
∑
F∈F

sgn τF .
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Since p is the only boundary vertex, each grove is a spanning tree, so the result
is the number of spanning trees. If p 6= q, set B = {p, q}. Reindex the vertices
so that p and q occur first; this does not change the determinant, but it does
change (−1)p−q to −1. Compute

detKV \{p},V \{q} = detKI∪{q},I∪{p} = −
∑

F∈F({q},{p})

sgn τF .

Again, since p and q are the only boundary vertices, each grove is a spanning
tree, and τF is the identity.

The grove-determinant formula allows us to test when KP∪I,Q∪I is invertible
for networks over various fields. In particular:

Proposition 3.4. Let G be a finite B-graph labelled with nonzero elements of
some field F . Let P,Q ⊂ B be disjoint with |P | = |Q| = n. Then

a. If F(P,Q) = ∅, then detKP∪I,Q∪I = 0.

b. If F(P,Q) has exactly one element, then detKP∪I,Q∪I 6= 0.

c. If F(P,Q) has more than one element, then we can label the edges of G with
nonzero real numbers which will make detKP∪I,Q∪I positive, negative, or
zero. The determinant is nonzero for some positive numbers.

Proof. In case (a), the grove-determinant formula expresses the term is a sum
over an empty index set, which is zero. In case (b), there is exactly one term in
the sum, which is a product of nonzero numbers, hence nonzero. Now consider
case (c). Let F1 and F2 be two distinct groves. All the groves must have the same
number of edges, as is clear from the proof of the grove-determinant formula.
Thus, there is some e0 ∈ E′(F1) \ E′(F2) and e1 ∈ E′(F2) \ E′(F1). Choose
a sign sgn e = ±1 for each edge in E as follows: Set sgn e = 1 for e 6= e0, e1

and choose sgn e0 such that sgn e0 sgn τF1 = 1 and sgn e1 sgn τF2 = −1. Choose
ε < 1/|F(P,Q)| and set

ae =

{
sgn e, e ∈ E′(F1)

ε sgn e, 6∈ E′(F1).

Then in the grove expansion of detKP∪I,Q∪I , the term for F1 dominates making
the determinant positive. In the other hand, if

be =

{
sgn e, e ∈ E′(F2)

ε sgn e, 6∈ E′(F2),

then the determinant is negative. Applying the intermediate value theorem to
the connected region {c ∈ RE′ : sgn ce = sgn e} shows that there are nonzero
numbers ce which will make the determinant zero.

The same argument shows that whatever sign we choose for the edges, we
can make detKP∪I,Q∪I nonzero; in particular, this holds if we want the con-
ductances to be positive.
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3.3 Singular Networks over R
A network for which the Dirichlet problem does not have a unique solution
is called Dirichlet-singular ; if the Neumann problem does not have a unique
solution up to a constant, it is Neumann-singular. Using the grove-determinant
formula, we will show that the Dirichlet and Neumann problems have a unique
solution for reasonable graphs when ae > 0, but if we allow ae to be positive or
negative, one can generally find values of ae which create a Dirichlet-singular
or Neumann-singular network. We assume throughout that G is connected and
has some boundary vertices.

As the reader can verify, this implies that there is at least one grove in F .
Hence, if ae > 0,

detKI,I =
∑
F∈F

∏
e∈E′(F )

ae > 0.

Therefore, the Dirichlet problem has a unique solution. However, for most
graphs there will be real values of ae 6= 0 for which KI,I is not invertible. Indeed,
if there exist some interior vertices, and if each interior vertex has degree ≥ 2,
then there are at least two groves in F , hence the determinant is sometimes zero
for nonzero real numbers by Proposition 3.4.

A more delicate question is, what are the possible values of dim kerKI,I?
This depends on the graph, but in some cases, it is easy to find a lower bound:
Suppose G1, . . . , GN form a subgraph partition of G and B(Gk) ⊂ B(G) for all
k. Suppose there are Dirichlet-singular conductances for each Gk, and let the
conductances on G be the same as the conductances on the Gk’s. Since kerKI,I

is nontrivial for each Gk, there is a nonzero harmonic potential uk on Gk, and
we can extend it to G by setting it to zero on the other vertices. The potentials
thus defined are linearly independent because uk is nonzero on Gk, but uj for
j 6= k is zero on Gk. Thus, dim kerKI,I ≥ N .

If ae > 0, the Neumann problem has a unique solution. By similar reasoning
as in Corollary 3.3, for any p, q,

(−1)p−q detKV \{p},V \{q} =
∑

spanning
trees T

∏
e∈E′(T )

ae.

Since G is connected, it has a spanning tree, so the right hand side is positive if
ae > 0. So K has rank |V |−1 and the Neumann problem has a unique solution.
This also shows that the determinant of any |V | − 1 by |V | − 1 submatrix of K
is the same up to sign, so to see whether the Neumann problem has a unique
solution, it suffices to check one of them.

If G is a tree (that is, it has no cycles), then there is only one spanning tree of
G, which is all of G, so the Neumann problem has a unique solution. However,
if G has a cycle, there is more than one spanning tree, so by Proposition 3.4,
there exist signed ae’s which produce a Neumann-singular network.

What are the possible values of dim kerK? It must be ≥ 1. Now suppose
G1, . . . , GN form a subgraph partition of G, such that each Gk is connected
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Figure 1: Singular conductances on the triangle-in-triangle network. Boundary
vertices are colored in.

1

2 3

4

5 6

7

8

9

1

−1 1

−1

1−1

1

−1 1

−1

1−1

and any cycle of G is contained in some Gk. Suppose there exist Neumann-
singular conductances on each Gk, and use them to define conductances on G.
Then for each Gk, there exists a non-constant harmonic potential uk on Gk with
net current zero on every vertex. We can extend uk to G by defining it to be
constant on each Gk; this will be consistent because every cycle is contained in
some Gk. Then the uk’s are linearly independent, so dim kerK ≥ N + 1.

For some networks, it is possible for a nonzero harmonic function to have
potential and current zero on the boundary, even if there are no components
without boundary vertices. Consider the “triangle-in-triangle” network with
boundary vertices {1, . . . , 6} and interior vertices {7, 8, 9} and edges with coef-
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ficients ae shown in the figure. The Kirchhoff matrix is

0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 1 0 −1 1 0 0 0 0
0 −1 1 0 −1 1 0 0 0
1 0 −1 1 0 −1 0 0 0


.

Let χp be the vector with 1 on vertex p and zero elsewhere. Then χ7 + χ8 + χ9

is a harmonic potential which is zero on the boundary and the corresponding
current function has net current zero on the boundary.

Given this fact, it is conceivable that on a network, the Dirichlet problem
does not have a unique solution, and yet the net currents on the boundary
vertices are uniquely determined since the only harmonic functions with zero
potential also have zero current. In this case, we will say that the boundary
behavior is not Dirichlet-singular even though the network is. The same con-
sideration applies to the Neumann problem.

3.4 Ranks and Connections

An important consequence of the grove-determinant formula is the relationship
between ranks and connections noted by [2] and others.

Let P and Q be sets of boundary vertices. A connection from P to Q is a
collection of disjoint boundary-to-boundary paths through the graph such that
each path has its intial vertex in P and its terminal vertex in Q. There may
be a vertex p ∈ P ∩ Q; in this case, any connection from P to Q must include
the length-0 path from p to itself. Thus, there is a one-to-one correspondence
between connections from P to Q and connections from P \Q to Q\P . If there
is a connection from P to Q, then P and Q must have the same cardinality.

Assume KI,I is invertible. Suppose P and Q are disjoint subsets of B
with |P | = |Q|. Then the submatrix ΛP,Q is equal to the Schur complement
KP∪I,Q∪I/KI,I by elementary computation. The Hainsworth identity for Schur
complements tells us that

det ΛP,Q = detKP∪I,Q∪I/ detKI,I ,

and hence ΛP,Q is invertible if and only if KP∪I,Q∪I is invertible.
If there exists a connection from P to Q, then edges in the paths can be

completed to a grove in F(P,Q), and conversely, any grove in F(P,Q) contains
a connection. If there is no connection from P to Q, then Proposition 3.4 tells us
that det ΛP,Q = 0. If there is a connection, then we can choose positive numbers
such that KP∪I,Q∪I is invertible (and we already know KI,I is invertible for
positive conductances), and hence Λ is defined and det ΛP,Q 6= 0.
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Now suppose P and Q do not necessarily have the same cardinality, but are
still disjoint sets of boundary vertices. Let m(P,Q) be the maximum size of a
connection from some subset of P to some subset of Q. Then by considering all
subsets of P and Q we see that rank ΛP,Q ≤ m(P,Q) and equality is achieved for
some positive conductances. Later, we will describe situations in which equality
is guaranteed to hold for all conductances.

3.5 Properties of L for Networks over a Field

For linear conductances in a field F, the space of harmonic potentials is the
kernel of KI,V , which has dimension at least |V |−|I| = |B|. If (u, c) is harmonic,
then the boundary potentials and currents are given by u|B and (Ku)|B . Let
Φ : kerKI,V → FB × FB : u 7→ (u|B , (Ku)|B). Then L = Φ(kerKI,V ). Hence,
dimL ≤ dim kerKI,V . If there is a harmonic function with zero potential and
current on the boundary, as in the last example, then ker Φ is nontrivial, so this
inequality is strict.

In general, we would expect H and L to have dimension |B|; this is the case
if either the Dirichlet problem or the Neumann problem has a unique solution.
Sometimes dimH > |B|; however, in all cases,

Proposition 3.5. dimL = |B|.

Proof. The kernel of Φ consists of harmonic potentials which are zero on the
boundary have zero current on the boundary, that is, ker Φ consists of elements
of kerK whose boundary entries are zero. Hence, ker Φ is isomorphic to kerKV,I .
By the rank-nullity theorem and symmetry of K,

rank Φ + dim ker Φ = dim kerKI,V

= |V | − rankKI,V

= |V | − rankKV,I

= |V | − |I|+ dim kerKV,I

= |B|+ dim ker Φ.

Thus, dimL = rank Φ = |B|.

If the Dirichlet problem has a unique solution, then the Dirichlet-to-Neumann
map Λ = KB,B −KB,IK

−1
I,IKI,B is symmetric. So if (φ1, ψ1) and (φ2, ψ2) are

the boundary data of harmonic functions, then

φ1 · ψ2 = φT1 Λφ2 = φT2 Λφ1 = φ2 · ψ1.

Actually, this holds even for Dirichlet-singular networks:

Proposition 3.6. φ1 · ψ2 = φ2 · ψ1 for any (φ1, ψ1), (φ2, ψ2) ∈ L.

Proof. Suppose (φ1, ψ1) and (φ2, ψ2) are in L, and let u1 and u2 be the cor-
responding harmonic potentials. Let w1 = u1|I and w2 = u2|I . Then ψj =
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KB,Bφj+KI,Bwj . Since uj ∈ kerKI,V , we have 0 = KI,V uj = KI,Bφj+KI,Iwj ,
which implies KI,Bφj = −KI,Iwj . Hence, applying the symmetry of K,

φ1 · ψ2 = φT1 ψ2 = φT1 (KBBφ2 +KBIw2)

= φT1 KB,Bφ2 + (KI,Bφ1)Tw2

= φT1 KB,Bφ2 − (KI,Iw1)Tw2

= φT1 KB,Bφ2 − wT1 KI,Iw2

= φT2 KB,Bφ1 − wT2 KI,Iw1

= φ2 · ψ1.

3.6 Local Network Equivalences

As before, assume we are dealing with linear networks over a field; we leave it to
the reader to work out when they generalize to rings. A series is the following
configuration:

a b

If a+ b 6= 0, then it is electrically equivalent to

ab
a+b

In other words, a series can be reduced to a single edge, and the resistances add:
The original resistances were 1/a and 1/b, and the new resistance is 1/a+ 1/b.
This shows that the series is not recoverable; in fact, there is a one-parameter
family of conductances on the series graph which produce the same boundary
behavior.

If a+ b = 0, then the series is Dirichlet-singular. The two boundary vertices
must have the same potential. The potential of the interior vertex is indepen-
dent of the boundary potentials, but depends on the current flowing from one
boundary vertex to the other. In this case, changing the conductances to ca
and cb for some c 6= 0 will produce an electrically equivalent network.

Any network which has a series as a subnetwork is not recoverable over the
signed linear conductances. If a+b 6= 0, we can produce an electrically equivalent
network by replacing the series subnetwork with a single-edge subnetwork, as
follows from Corollary [refsubnetworksplicing]. This transformation is called a
series reduction and we call it one type of local electrical equivalence. We also
call the inverse operation is also a local electrical equivalence.

Suppose a+ b = 0 and p and q are the endpoints of the series, and r is the
middle vertex. If the series is a subnetwork of a larger network in which p is
an interior vertex, then we can produce an electrically equivalent network by
“collapsing” the series–identifying p and q and removing r and the edges in the
series. This is because any harmonic function must have the same potential on
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p and q, and the amount of current flowing from p to q is independent of the
potentials. This is another type of local electrical equivalence.

A parallel circuit is the following configuration:

a

b

If a + b 6= 0, then this is equivalent to a single edge with conductance a + b.
If a + b = 0, then it is equivalent to a network with no edges. Substituting a
parallel edge for a single edge or no edge is another local electrical equivalence.

A Y (left) and a ∆ (right) are the following types of networks:

a

b

c

C

A

B

For any Y with a+ b+ c 6= 0, there is a unique equivalent ∆ with

A =
bc

a+ b+ c
, B =

ac

a+ b+ c
, C =

ab

a+ b+ c
.

This can be proved by computing the response matrix Λ for each network. If
a + b + c = 0, then in the Y the Dirichlet problem does not always have a
solution; however, this is impossible in a ∆, so there is no equivalent ∆. For
any ∆ with 1/A+ 1/B + 1/C 6= 0, there is a unique equivalent Y with

a =
AB +BC + CA

A
, b =

AB +BC + CA

B
, c =

AB +BC + CA

C
.

However, if 1/A+1/B+1/C = 0, then the ∆ is Neumann-singular because it is
a tree, so there is no equivalent Y . A Y -∆ transformation is the transformation
that replaces a Y subnetwork with an equivalent ∆ subnetwork or vice versa.

Over R, Y -∆ transformations preserve recoverability over the positive linear
conductances. For suppose G′ is obtained from G by a Y -∆ transformation and
G′ is recoverable over the positive linear conductances. For any positive linear
conductances on G, we can find equivalent conductances on G′. These con-
ductances are uniquely determined by L over the positive linear conductances.
In particular, the conductances on the Y or ∆ in G′ are determined, but then
we can find the conductances on the corresponding ∆ or Y in G, so G is also
recoverable.

We say two graphs are Y -∆ equivalent if there is a sequence of Y -∆ transfor-
mations which will change one into the other. This is an equivalence relation. If
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G is Y -∆ equivalent to G′ and G′ has a series or parallel configuration, then G′ is
not recoverable, and hence G is not recoverable over the positive linear conduc-
tances. This is one of the best methods for showing a graph is not recoverable
over R, and it is applied in [2] to circular planar networks.

The final type of local electrical equivalence is the F-K transformation de-
scribed in [8] and [4]. An n-star is a graph with n boundary vertices and one
interior vertex, and one edge from the interior vertex to each boundary vertex.
The complete graph Kn is a graph with n boundary vertices and one edge be-
tween each pair of distinct boundary vertices. For example, here are networks
on 4-star and K4 graphs:

1

2

3

4

a1

a2

a3

a4

1

2

3

4

b1,2b2,3

b3,4 b1,4

b1,3

b2,4

Index the vertices of the n-star and Kn by 1, . . . , n. Let aj be the conductance
of the star edge incident to j and bi,j the conductance of the edge in the Kn
between vertices i and j. Let σ = a1 + · · ·+ an. For any star with σ 6= 0, there
is an equivalent Kn with conductances bi,j = aiaj/σ. If σ = 0, then the star
has Dirichlet-singular boundary behavior and hence is not equivalent to a Kn.
If n ≥ 4, most Kn’s are not equivalent to a star, unlike the n = 3 case of Y -∆
transformations:

Lemma 3.7. Let n ≥ 4. A network on a Kn is equivalent to a star if and only
if

• It satisfies the quadrilateral rule: bi,jbk,` = bi,kbj,` for distinct i, j, k, `.

• It is not Neumann-singular.

Proof. If the network is equivalent to a star, then for distinct i, j, k, `,

bi,jbk,` =
aiajaka`

σ2
= bi,kbj,`.

A star is a tree and is therefore not Neumann-singular. Thus, the boundary
behavior of the Kn cannot be Neumann-singular, and since all its vertices are
boundary vertices this is equivalent to the network itself not being Neumann-
singular.
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Suppose conversely that a Kn network satisfies these two conditions. Fix i
and choose distinct k, ` 6= i, and let

ai =
∑
j 6=i

bi,j +
bi,kbi,`
bk,`

.

The quadrilateral rule guarantees that the right hand side is independent of k
and `. But for a fixed k and `, this is the current on vertex i of the potential
χi − (bi,`/bk,`)χk on the Kn network. This function has net current 0 on vertex
`, but since bi,`/bk,` is independent of the choice of `, it has current 0 on all
vertices other than k and i. Since the potential is not constant and the network
is not Neumann-singular, there must be nonzero net current on i and k, so ai
must be nonzero.

Now we must verify that σ =
∑
ai 6= 0 and that aiaj/σ = bij . By extending

F to a larger field if necessary, we can assume that there exists ci with

c2i = bi,kbi,`/bk,` for distinct k, ` 6= i,

and again this is independent of k, `. Then

c2i c
2
j =

bi,kbi,j
bj,k

bj,kbi,j
bi,k

= b2i,j

so that cicj = ±bi,j . By choosing c1 first and then modifying cj for j 6= 1 if
necessary, we can guarantee c1cj = b1,j for j 6= 1. Then for i 6= 1 we have

cicj = b1,ib1,j/c
2
1 = bi,j

as well. Then

ai =
∑
j 6=i

bi,j +
bi,kbi,`
bk,`

=
∑
j 6=i

cicj + c2i = ci

n∑
j=1

cj .

Since ai 6= 0, the sum is nonzero; hence,

σ =

n∑
i=1

ci

n∑
j=1

cj =

(
n∑
i=1

ci

)2

6= 0.

The Kn is equivalent to the star because

aiaj
σ

=
(ci
∑n
k=1 ck) (cj

∑n
k=1 ck)

(
∑n
k=1 ck)

2 = cicj = bi,j .

For any finite graph G, there is a sequence ofF-K moves and parallel circuit
reductions that will transform it into a graph with no interior vertices. Let Γ
be a signed linear network on G, and suppose that at each step, the star is non-
singular, so an equivalent K can be found. After the final step, the response
matrix is exactly the Kirchhoff matrix because there are no interior vertices. So
the F-K transformation provides a way to compute the response matrix from
the Kirchhoff matrix in small steps, and in some cases, this is a useful technique
for determining recoverability over positive (real) linear conductances.
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4 Layering I: Reduction Operations

4.1 Motivation: Layer-stripping and the Inverse Problem

A boundary edge on a B-graph G is a directed edge (or simply an edge) such
that both endpoints are boundary vertices.

A boundary spike on a B-graph G is a oriented edge e such that ι(e) is a
boundary vertex of degree 1. We allow τ(e) to be interior or boundary. If τ(e)
is boundary, we say the spike is degenerate. We say that an unoriented edge is
a boundary spike if at least one orientation of it is a boundary spike.

Given an oriented boundary spike e, we can define a new B-graph G′ by
V (G′) = V (G) \ {ι(e)}, E(G′) = E(G) \ {e, e}, I(G′) = I(G) \ {τ(e)}. Then
we say G′ is obtained from G by contracting the boundary spike e. If we have
a collection of boundary spikes with distinct endpoints, then we can contract
multiple spikes at the same time, even infinitely many spikes.

Given an oriented boundary edge e of a B-graph G, we can define a new
B-graph G′ by deleting the boundary edge, that is V (G′) = V (G), I(G′) = I(G),
and E(G′) = E(G) \ {e, e}. We can also delete multiple boundary edges at the
same time.

The strategy for solving the inverse problem employed by Curtis/Morrow
[2] and Will Johnson [5] was to recover the conductance functions on boundary
spikes and boundary edges first, then work one’s way inward–as it were, stripping
layers off the graph until nothing is left. We describe the process roughly as
follows:

• Given a graph G with a boundary spike or boundary edge, figure out how
to recover its conductance function from L.

• Remove the boundary spike or boundary edge from the graph to obtain a
new graph G′. Find the set of boundary data L′ for the new graph.

• Repeat.

This does not work for all graphs; for instance, some graphs do not have any
boundary spikes or boundary edges. To formalize the process and state condi-
tions when it works, we need to address several questions:

1. How do we recover the conductances of boundary spikes and boundary
edges?

2. How can we find L′ from L?

3. What sorts of graphs can be “layer-stripped” so as to remove all the edges?
How do we know there is a boundary spike or boundary edge at each step
of the process? For infinite graphs, how can we make sure that our layer-
stripping exhausts all the edges?

In this chapter, we will describe layer-stripping formally and address the second
question above.

25



4.2 Definitions and Basic Properties

A reduction operation is a transformation of a B-graph G into a subgraph G′

such that

1. The edges removed are all boundary spikes or boundary edges of G.

2. The vertices removed are all boundary vertices of valence 0 or 1.

3. The only boundary vertices of G′ that are interior in G are the endpoints
of boundary spikes that were removed.

In other words, a reduction operation is some combination of contracting bound-
ary spikes, deleting boundary edges, and deleting disconnected boundary ver-
tices, such that each of the smaller operations affects at most one vertex. If
there is exactly one boundary spike/ boundary edge / disconnected boundary
vertex removed overall, then the reduction operation is called simple.

If f : G → G′ is a B-graph morphism, and S is obtained from G′ by a
reduction operation, then f−1(S) is obtained from G by a reduction operation
(easy casework left to the reader). However, a boundary spike contraction in G′

may produce a disconnected boundary vertex deletion in G or some combination
of boundary spike contraction and disconnected boundary vertex deletion in G.
This is why the definition was phrased so as to allow mixing boundary spike
contraction, boundary edge deletion, and disconnected boundary vertex deletion
in one reduction operation.

A (decreasing) filtration of a graph G is a sequence of subgraphs G = G0 ⊃
G1 ⊃ G2 ⊃ . . . such that

⋂∞
n=0Gn = ∅. If Gn+1 is obtained from Gn by a

reduction operation, then we the filtration is called a layerable filtration and the
B-graph is said to be layerable. A partial filtration is a sequence of subgraphs
G = G0 ⊃ G1 ⊃ . . . , and it is a partial layerable filtration if each subgraph is
obtained from the previous one by a reduction operation.

If f : G → G′ is a B-graph morphism and G′0, G
′
1, . . . is a layerable filtra-

tion of G′, then f−1(G0), f−1(G1), . . . is a layerable filtration of G. Hence,
layerability of G′ implies layerability of G.

Now we describe the electrical properties of reduction operations. Suppose
that G′ is obtained from G by a reduction operation. We will show that the
boundary data L′ is uniquely determined by L and the conductance functions
of the edges removed in the reduction.

Lemma 4.1. Suppose that G′ is obtained from G by contracting some non-
degenerate boundary spikes. Let Γ be a BZCF network on G and let Γ′ be the
corresponding network on G′. Let L and L′ be the sets of boundary data. Then

• The inclusion Γ′ → Γ induces a bijection UΓ → UΓ′ .

• L is determined by L′ and the conductance functions of the spikes, and L′

is determined by L and the conductance functions of the spikes.

The same holds if we replace “contracting boundary spikes” by “deleting bound-
ary edges.”
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Proof. Let’s consider the case of contracting one boundary spike (the proof for
multiple boundary spikes is the same but with more complicated notation). Let
e be the oriented boundary spike, ρe = γ−1

e the resistance function. We want
to show that any harmonic potential u′ on Γ′ extends to a unique harmonic
potential u on Γ; we only have to choose the potential on ι(e) since all the other
vertices are in Γ′. Since τ(e) is boundary in Γ′ but interior in Γ, there is only one
possible choice for ce that would yield net current zero on τ(e) for the function
on Γ. We then set uι(e) = uτ(e) + ρe(ce).

Note that the boundary data of u is uniquely determined by ρe and the
boundary data of u′. Indeed, the net current of u on ι(e) equals the net current
of u′ on τ(e) equals ce, and the uι(e) = uτ(e) + ρe(ce). Also, B(Γ′) \ {τ(e)} =
B(Γ) \ {ι(e)}, and the potential / net current on these vertices is the same for
u as it is for u′. Similarly, the boundary of u′ is uniquely determined by ρe and
the boundary data of u. Hence, we can find L from L′ and vice versa.

For boundary edges, we can make a similar argument: Any harmonic poten-
tial on V (Γ) is harmonic on V (Γ′) as well. To find the boundary data of u from
u′ or u′ from u, we keep the potentials the same, and adjust the net currents
on the boundary vertices according to the boundary potentials together with
conductance functions γe of the boundary edges removed.

Lemma 4.2. Suppose that G′ is obtained from G by deleting some disconnected
boundary vertices. Let Γ, Γ′, L, L′ be as above. Then

• The inclusion Γ′ → Γ induces a surjection UΓ → UΓ′ .

• L′ is uniquely determined by L and L is uniquely determined by L′.

Proof. Easy exercise.

Lemma 4.3. Suppose G′ is obtained from G by reduction operation. Let Γ, Γ′,
L, L′ be as above. Then

• The inclusion Γ′ → Γ induces a surjection UΓ → UΓ′ .

• L′ is uniquely determined by L and L is uniquely determined by L′.

Proof. Any reduction operation can be expressed in three steps as a contraction
of non-degenerate spikes, deletion of boundary edges, and deletion of discon-
nected boundary vertices.

5 Layering II: IO-Graphs and Factorization

5.1 The Category of Input-Output Graphs

In [1], John Baez and Brendan Fong describe “gluing networks together” in
terms of a composition in a category of cospans. Here we present a simplified
version of their definitions and some geometric-electrical applications. Roughly
speaking, we will label some of the boundary vertices of our B-graph as “input”
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and some as “output” (allowing a vertex to be both input and output), and
think of the B-graph (or a network) as a transformation from the input vertices
to the output vertices. We compose such transformations by identifying the
output vertices of the first with the input vertices of the second.

Formally, a graph with input and output or IO-graph is a graph G together
with two sets P and Q and injections i : P → V (G) and j : Q → V (G). In
this case, we say the triple (G, i, j) is an IO-graph from P to Q. If (G, i, j) and
(G, i′, j′) are two IO-graphs from P to Q, then we say they are isomorphic if
there is a graph isomorphism f : G→ G′ such that the following commutes:

PQ

V (G)

V (G′)

ij

i′j′

f

We define the category of IO-graphs as follows:

• The objects are sets.

• A morphism G : P → Q is an isomorphism class of IO-graphs from P to
Q.

• Composition is defined as follows: Suppose G1 : P → Q and G2 : Q → R,
and choose representatives (G1, i1, j1) and (G2, i2, j2) of the isomorphism
classes. Let G be the graph obtained from the disjoint union of G1 and
G2 by identifying j1(q) with i2(q) for each q ∈ Q. We define i : P → V (G)
by composing i1 with the obvious map V (G1)→ V (G) and j : R→ V (G)
is defined similarly. Then G2 ◦ G1 : P → R is the isomorphism class
represented by (G, i, j).

• The identity morphism P → P is a represented by a graph with no edges
and V (G) = P , and i and j are the identity P → P .

The reader may verify that this is well-defined. The reason to use isomorphism
classes is that the disjoint union of graphs is only well-defined up to isomorphism.

Any IO-graph can be made into a B-graph by defining B = i(P ) ∪ j(Q).
Conversely, if we have a B-graph G and write B as a union of two sets P and
Q, then G represents an IO-graph morphism from P to Q.

For any set S, one can define the category of input-output S-labelled graphs,
and in particular, there is a category of IO-networks. To describe what the
composition of IO-networks does to the boundary behavior of the networks, we
first put the boundary behavior into a new form. Recall our networks take
values in the abelian group M . Suppose that G is an IO graph from P to Q
labelled with potential-current relationships Θe. Consider G as a B-graph with
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B = i(P ) ∪ j(Q), and let Γ be the corresponding network. We then define a
relation

Ξ : (MP ×MP )→ (MQ ×MQ)

as follows: Let πP be the projection MB → MP and πQ : MB → MQ. Let
ιP and ιQ be the canonical inclusions MP → MQ and MQ → MB . If x =
(x1, x2) ∈ MP ×MP and y = (y1, y2) ∈ MQ ×MQ, then we say (x, y) ∈ Ξ if
and only if there exists (φ, ψ) ∈ L such that

x1 = πPφ, y1 = πQφ, ιP (x2)− ιQ(y2) = ψ.

To state it more concretely, (x, y) ∈ Ξ if there exists a harmonic function on
Γ with boundary potentials consistent with x1 and y1 and boundary net currents
consistent with x2 and y2. Here x2 represents current flowing into the network
at the input vertices, and y2 represents current flowing out of the network at
the output vertices. If a vertex is both input and output, then current can flow
in at the input side and out at the output side.

If G : P → Q is an IO-network morphism,1 then Ξ(G) is independent of
the choice of representation for the isomorphism class. I claim we can define a
functor X : IO− graph → Rel by setting X(P ) = MP ×MP and X(G) =
Ξ(G). To see that X preserves composition, suppose G1 : P → Q and G2 :
Q→ R. Let G = G2 ◦ G1 and let Γ1,Γ2,Γ be specific networks representing the
isomorphism classes. We can assume without loss of generality Γ1 and Γ2 are
subnetworks of Γ.

Composition in the category of relations gives us that (x, z) ∈ Ξ(G2) ◦Ξ(G1)
if and only if there exists some y with (x, y) ∈ Ξ(G1) and (y, z) ∈ Ξ(G2). In
this case, (x, y) and (y, z) represent the boundary data of harmonic functions
(u1, c1) and (u2, c2) on Γ1 and Γ2. I claim these functions paste together to
form a harmonic function Γ. Note that V (Γ1) ∩ V (Γ2) = i2(Q) = j1(Q), and
the potentials of u1 and u2 on these vertices are both given by y1, so that u1

and u2 agree on V (Γ1) ∩ V (Γ2) and hence define a function u : V (Γ) → M .
Now E(Γ1) ∩ E(Γ2) = ∅, so c1 and c2 define a function c : E(Γ) → M . The
net current at each interior vertex of Γ1 or Γ2 is already zero. On the vertices
i2(Q) = j1(Q), we know the output current on Γ1 and the input current on Γ2

are given by y2; because of the difference in signs, these two net currents cancel.
In particular, if one of these vertices is interior it has net current zero, and if it
is in i1(P ) and/or j2(R), then the net current is given by x2, −z2, or x2 minus
z2 as appropriate. Thus, we can see Ξ(G2)◦Ξ(G1) ⊂ Ξ(G2◦G1), and the opposite
inclusion follows by similar reasoning.

Thus, X respects composition, and the reader can check that it preserves
the identity morphism and hence is a functor.

We make the convention that if P = ∅ then MP ×MP is a one-element set.

1Unfortunately, I have used the same notation for isomorphism classes of networks as for
graphs, but I don’t suppose any confusion will result.
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5.2 Elementary IO-graphs

The category of IO graphs enables us to express complicated networks as com-
positions of simpler ones. Our building blocks are networks on the following
four types of elementary IO-graphs:

1. A graph in which every component consists of either (a) an isolated vertex
which is both an input and an output or (b) one edge and two vertices,
where one of the vertices is an input and the other is an output. See
G1, G3, G9 in Figure 2.

2. A graph in which all the vertices are both inputs and outputs. See
G2, G4, G8, G10 in Figure 2.

3. A graph with no edges in which every vertex is an input. We call the
vertices which are not outputs input stubs. See G5 in Figure 2.

4. A graph with no edges in which every vertex is an output. We call the
vertices which are not inputs output stubs. See G7 in Figure 2.

An elementary factorization of an IO-graph morphism G : P → Q is a factoriza-
tion G = Gn ◦ ◦G1 such that each Gj is represented by an elementary IO-graph
and all the type 3 elementary IO-graphs come before (to the right of) the type
4 elementary IO-graphs. If G is the identity morphism P → P = Q then we
make the convention that it has an elementary factorization of length zero. If
we are given a graph G representing G : P → Q and an elementary factorization
of G, then we can assume without loss of generality that Gj is represented by a
subgraph Gj of G, and we will often make this simplification.

Remark. The usefulness of the stipulation that the type 3 IO-graphs come before
the type 4 ones will become clear in the next section. For the moment, the reader
can verify that, if we allowed type 3 IO-graphs to come after type 4 IO-graph,
then any morphism G : P → Q represented by a finite graph would admit a
factorization. It is unreasonable to expect such cheap factorizations to provide
useful information.

Remark. In the case of finite graphs, any type 1 IO-graph can be factorized
into type 1 IO-graphs with only one edge. It is more convenient for writing out
specific factorizations if we allow several edges; but in proving general theorems
we will often assume only one edge. The same considerations apply to the other
types of elementary IO-graphs.

We define an elementary IO-network to be a network on an elementary IO-
graph. The behavior of Ξ on such IO-networks is easy to describe in the cases
we are interested in:

1. Suppose we have a type 1 network Γ with only one edge with input vertex
p = ι(e) and output q = τ(e). Suppose Θe is given by a resistance function
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Figure 2: An elementary factorization. The inputs are shown in red and the
outputs in blue.
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31



ρe : M →M . Then (x, y) = ((x1, x2), (y1, y2)) is in Ξ if and only if

(y1)q = (x1)p + ρe((x2)p)

(y2)q = (x2)p

(x1)r = (y1)r and (x2)r = (y2)r for r 6= p, q.

As a result, Ξ defines a bijective function MP ×MP →MQ ×MQ.

2. Suppose we have a type 2 network Γ with only one edge with endpoints
p = ι(e) and q = τ(e). Suppose Θe is given by a conductance function
γe : M →M . Then (x, y) ∈ Ξ(Γ) if and only if

x1 = y1

(y2)p = (x2)p − γe((x1)p − (x1)q)

(y2)q = (x2)q + γe((x1)p − (x1)q)

(y2)r = (x2)r for r 6= p, q.

As a result, Ξ defines a bijective function MP ×MP →MQ ×MQ.

3. Suppose we have a type 3 network Γ with only one input stub p. Then
(x, y) ∈ Ξ if and only if (x2)p = 0 and for all r 6= p, (x1)r = (y1)r and
(x2)r = (y2)r.

4. The case of a type 4 network is symmetrical.

5.3 Factorization, Layerability, and Regularity

Any B-graph represents an IO-graph morphism G : B → ∅. Then

1. If G′ is a type 1 IO-graph morphism, then G ◦ G′ is obtained from G by
adjoining a boundary spike. (Or to be precise, this holds for some pair of
B-graphs representing G ◦ G′ and G.)

2. If G′ is a type 2 IO-graph morphism, then G ◦ G′ is obtained from G by
adjoining a boundary edge.

3. Precomposing a type 3 IO-graph morphism corresponds to adding an iso-
lated boundary vertex.

4. Precomposing a type 4 IO-graph morphism corresponds to changing a
boundary vertex to interior.

The IO-graphs can thus be viewed as a geometric and categorical realization
of reduction operations and other graph transformations. I invite the reader to
reinterpret the proofs of §4.2 using elementary IO-networks.

If we consider G : ∅→ B instead and postcompose the elementary B-graphs,
then the roles of type 3 and type 4 networks are reversed. These considerations
lead to . . .
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Lemma 5.1. Let G be a finite B-graph. The following are equivalent:

a. G is layerable.

b. The IO-graph morphism B → ∅ represented by G admits an elementary
factorization into networks of types 1, 2, and 3.

c. For some P,Q ⊂ B with P ∪ Q = B, the morphism P → Q represented by
G admits an elementary factorization.

Proof. (a) =⇒ (b). A sequence of reduction operations on G can be interpreted
as a factorization into elementary IO-graphs. Details left to the reader.

(b) =⇒ (c) is trivial.
(c) =⇒ (a). Let G represent an IO-graph morphism G with factorization

G = Gn ◦ · · · ◦ G1. We can choose some k such that j ≤ k for any type 3 network
Gj and j > k for any type 4 network Gj . Then we define a layerable filtration
of G using the subgraphs that represent

Gn ◦ · · · ◦ G1

Gn−1 ◦ · · · ◦ G1

. . .

Gk+1 ◦ · · · ◦ G1

Gk ◦ · · · ◦ G1

Gk ◦ · · · ◦ G2

. . .

Gk ◦ Gk−1

Gk
∅

For layerable networks, this idea provides an easy way to parametrize the
space of harmonic functions and the boundary behavior. If G is layerable, it is
not hard to show that we can express G : B → ∅ in the form Gn ◦ · · · ◦ G1 ◦ G0

where Gj is a type 1 or type 2 network for j ≥ 1 and G0 is a type 3 network
with no outputs. Suppose Γ is a network on G with bijective conductance
functions γe : M → M . The boundary behavior of Γ0 is L0 = {(φ, 0)} ⊂
M (V (G0))×M (V (G0)) since any potentials are possible but the net current at
each vertex must be zero. Then the boundary behavior of Gj ◦ · · · ◦ G0 is given
by

Lj = Ξ(Γj) ◦ · · · ◦ Ξ(Γ1)(L0).

Hence, we have a bijective parametrization of Lj by MV (G0), and in particular
L = Ln has such a parametrization. In the process, we have also parametrized
the space of harmonic functions HΓ. This, together with our explicit formula
for Ξ(Gj) yields the following corollary:

Lemma 5.2. Suppose Γ is a layerable with bijective conductance functions γe.
Then Φ : HΓ → LΓ is a bijection. Also,
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a. If M is a field F and γe is linear, then Φ is a linear isomorphism, and the
space of harmonic functions has the “expected” dimension |B|.

b. If M is a topological abelian group and γe is a homeomorphism M → M ,
then Φ is a homeomorphism.

c. If M = R or C and γe is a diffeomorphism, then Φ is a diffeomorphism and
L is a smooth manifold of dimension |B|.
We have already seen that (a) does not hold in general. It turns out that

(c) can also fail without the assumption of layerability. Consider the following
graph:

1 2

3

4

e1 e2

e4e3

Define resistance functions R → R as follows: Let ρe1(t) = ρe3(t) = t + 1
2 sin t

(the orientation of the edge does not matter since the function is odd), and
let ρe2(t) = ρe3(t) = −t. These are bijective C∞ resistance functions with a
C∞ inverse. The series with resistance functions ρe1 and ρe2 is equivalent to
a single-edge with resistance ρe1 + ρe2 . Thus, the network is equivalent to a
parallel connection

1 2

e1

e2

in which each edge has resistance function ρ(t) = 1
2 sin t. Let e1 and e2 be the

oriented edges shown in the picture. Thus, (u, c) is harmonic if and only if

u1 − u2 = 1
2 sin ce1 = 1

2 sin ce2 .

Now sin ce1 = sin ce2 is equivalent to ce2 = ce1 + 2πn or ce2 = π − ce1 + 2πn. If
ce1 = ce2 +2πn, then the net current ψ1 = ce1 + ce2 = 2ce1 +2πn and ψ2 = −ψ1

and u1 − u2 must be 1
2 sinψ1/2. If ce2 = π − ce1 + 2πn, then ψ1 = (2n + 1)π

and ψ2 = −ψ1 and u1 − u2 could be any number in [−1, 1]. Thus,

L ={(φ, ψ) : φ1 − φ2 = 1
2 sinψ1/2, ψ1 = −ψ2}

∪ {(φ, ψ) : φ1 − φ2 ∈ [−1, 1], ψ1 = (2n+ 1)π, ψ2 = −ψ1}.
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This is not a smooth manifold because there is neighborhood of the points with
φ1 − φ2 = ±1 and ψ1 = (2n+ 1)π which is not homeomorphic to R2.

5.4 Factorization, Rank, and Connections

In this section, all graphs are assumed finite. Our goal is to find situations where
we can guarantee rank ΛP,Q = m(P,Q) is valid for all conductances. First, we
find a substitute for rank ΛP,Q that makes sense even when Λ is not defined and
when P and Q are not necessarily disjoint.

For a linear IO-networks over a field representing a morphism P → Q, Ξ is
a linear relationship, that is, a linear subspace of (FP × FP ) × (FQ × FQ). In
general, for finite-dimensional vector spaces W1 and W2 and a linear relationship
R : W1 →W2, we define rankR to be the maximal rank of a linear map T from
some subspace of W1 to a subspace of W2 such that (w, Tw) ∈ R for all w. Let
π1 and π2 be the projections R → W1 and R → W2. Then R defines a linear
isomorphism

π1(R)/π1 ◦ π−1
2 (0)→ π2(R)/π2 ◦ π−1

1 (0).

From this (with some linear algebra) we can see

rankR = dimπ1(R)/π1 ◦ π−1
2 (0) = dimπ2(R)/π2 ◦ π−1

1 (0)

= dimπ1(R)− dimπ−1
2 (0) = dimπ2(R)− dimπ−1

1 (0)

(since dimπ2◦π−1
1 (0) = dimπ−1

1 (0) and the same holds with π1 and π2 switched).

Proposition 5.3. Suppose the Dirichlet problem has a unique solution on a
linear network Γ. Suppose P and Q are a partition of B, and let Ξ be the relation
defined by Γ as an IO-network morphism P → Q. Then rank Ξ = 2 rank ΛP,Q.

Proof. Let π1, π2 be as above for Ξ instead of R. Note that π−1
2 (0) is iso-

morphic to the space of harmonic functions which have zero potential and net
current on Q. Since the Dirichlet problem has a unique solution, these func-
tions are parametrized by their potentials on P . Thus, the space is isomorphic
to ker ΛQ,P , so that dimπ−1

2 (0) = dim ker ΛQ,P . To compute π1(Ξ), we apply Λ
to FB , then record the potential and current data on P . This means the matrix(

IP 0
ΛP,P ΛP,Q

)
maps FB = FP × FQ onto π1(Ξ) ⊂ FP × FP . Row reducing the left half will
make the matrix block diagonal, and then we can see its rank is |P |+rank ΛP,Q.
Hence,

rank Ξ = dimπ1(Ξ)− dimπ−1
2 (0)

= |P |+ rank ΛP,Q − dim ker ΛQ,P

= rank ΛP,Q + rank ΛQ,P = 2 rank ΛP,Q.
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Exercise. Suppose P and Q are not disjoint but B = P ∪ Q. Let P ′ = P \ Q
and Q′ = Q \ P . Find rank Ξ in terms of rank ΛP ′,Q′ .

Suppose an IO-graph morphism G : P → Q admits an elementary factoriza-
tion Gn◦· · ·◦G1 with Gj : Pj−1 → Pj , then we define the rank of the factorization
to be min0≤j≤n |Pj |.

Proposition 5.4. Let G be a finite B-graph representing a morphism G : P →
Q; let Γ be a linear network on G with nonzero conductances in F. If G has an
elementary factorization of rank m, then rank Ξ = 2n.

Proof. We can assume without loss of generality each elementary IO-network
has one edge or one stub. Let Gj and Pj be as above. Let Ξj be the relation for
Gj , so that Ξ = Ξn ◦ · · · ◦Ξ1. Choose k such that G1, . . . ,Gk are type 1, 2, or 3,
and Gk+1, . . . ,Gn are type 1, 2, or 4. We will parametrize the space of harmonic
functions and Ξ by starting in the middle of the factorization and working our
way outward.

Choose any xk ∈ FPk × FPk . If Ξk is type 1 or 2, there is a unique xk−1

such that (xk−1, xk) ∈ Ξk. If Ξk is type 3, then the data on the inputs which
are not stubs is uniquely determined by xk, and the current on the input stub
must be zero, but the potential on the input stub is a free variable, so we have a
one-dimensional affine space of functions xk−1 compatible with xk. After deter-
mining the possible values of xk−1, we repeat this process for xk−2, xk−3, . . . , x0.
For each xn, we can choose a compatible x0, . . . , xk−1, and in fact the space of
possible choices has dimension the number of type 3 networks (which we will
call Ni). However, x0 uniquely determines x1 which uniquely determines x2,
and so forth.

By a symmetrical argument, we can choose xk+1, . . . , xn compatible with xk
and the space of choices has dimension the number of type 4 networks (call it
No), and on the other hand, xn uniquely determines xk. The effect is that we
have parametrized Ξ using xn and the potentials on the input and output stubs.

In particular, π1(Ξ) is parametrized by xk and the potentials on the input
stubs and so has dimension 2|Pk|+Ni, and dimπ2(Ξ) = 2|Pk|+No. If xn = 0,
that forces xk to be zero, so the possible choices of x0 have dimension the number
of input stubs; that is, dimπ−1

2 (0) = Ni, and similarly, dimπ−1
1 (0) = No.

Therefore, rank Ξ = 2|Pk| = 2m as desired.

Proposition 5.5. Let G be a finite B-graph representing a morphism G : P →
Q. If G has an elementary factorization of rank m, then m(P,Q) = m. Hence,
rank Ξ = 2m(P,Q).

Proof. Let Gj , Pj , and k be as above. To create a connection of size m, we start
from the middle of the factorization. We want each path to contain exactly
one element of Pk. If Gk is type 2 or 3, then our paths are length zero, and if
it is type 1, we use the edges in the network for our paths and hence have a
connection from Pk to Pk−1. We continue to extend the paths inductively. Once
we have a connection from Pk to some subset Rj of Pj through Gk ◦ · · · ◦ Gj , we
extend the paths into Gj−1–if it is type 2 or 3, there is nothing to do, and if it is
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type 1 we use the edges that have endpoints in Rj and thus obtain a connection
to some subset of Pj−1. Hence, we have a connection from Pk to some subset of
P0. In the same way, we can extend our paths from Pk through Gk+1, . . . ,Gn.
Therefore, we have a connection of size m from P to Q, with the paths formed
by edges from type 1 networks.

On the other hand, it is easy to verify (by induction on the number of
elementary IO-graphs) that any path from a vertex in P to a vertex in Q must
contain a vertex of every Pj . In particular, every path in a connection from a
subset of P to a subset of Q must use a vertex from Pk, so there can be at most
|Pk| = m paths.

The maximum connection can thus be detected from L if we already know
a factorization exists. Actually, this holds for nonlinear networks as well:

Proposition 5.6. Let Γ be a network on a bgraph G such that Θe is given by
a conductance function γe : R→ R which is a homeomorphism. Let B = P ∪Q
and suppose the IO-graph morphism P → Q represented by G has an elementary
factorization of rank m with Ni input stubs and No output stubs. Then there
are homeomorphisms

π1(Ξ) ∼= R2m+Ni ,

π2(Ξ) ∼= R2m+No ,

π−1
2 (x) ∼= RNi for any x ∈ π2(Ξ)

π−1
1 (x) ∼= RNo for any x ∈ π1(Ξ).

The proof is to parametrize each of the spaces in the same way as in Proposi-
tion 5.4. The upshot is this: From the invariance of domain theorem in topology,
we know that each of the four spaces has a well-defined dimension as a topo-
logical manifold. If we define “rank Ξ” to be dimπ1(Ξ) − dimπ−1

2 (x), then we
again have rank Ξ = 2m(P,Q), so that m(P,Q) is visible in the topology of Ξ
(and hence L), even with nonlinear conductances that are merely bijective and
continuous.

6 Layering III: Scaffolds

6.1 Motivation

While elementary factorizations allow us to describe a variety of electrical prop-
erties, they have several disadvantages:

• It can be cumbersome to list the vertices, edges, inputs, and outputs of
each factor. This would also make it difficult to write out complete proofs
constructing them.

• If f : G → G′ is a B-graph morphism, then it should be possible to pull
back a factorization of G′ to produce a factorization of G. While this

37



works for covering maps, it fails for inclusions. Indeed, if we view G′

as an IO-graph morphism P → Q and factorize it, we cannot even say
what the domain and codomain of the IO-graph morphism represented by
G should be, since f−1(P ) and f−1(Q) may be empty. Simply put, the
system of factorizations does not define any nice functors on the category
of B-graphs.

• Elementary factorizations do not generalize well to infinite graphs. We
could perhaps make sense of composing an infinite sequence of IO-graphs,
but we still have another issue: It was important that all the type 3
networks come before the type 4 networks, so if we have infinitely many
type 3 networks and type 4 networks, a sequence would be insufficient to
describe our order of operations.

This chapter will develop more flexible machinery that addresses these is-
sues. We can then describe harmonic continuation on infinite graphs, describe
the recovery of boundary spikes and boundary edges in somewhat general sit-
uations, and formulate purely geometric conditions to guarantee recoverability
over BZCF. This machinery lays the groundwork for the methods of constructing
factorizations in later chapters.

6.2 Definitions

A scaffold S on G consists of

• A (strict) partial order ≺ on E′,

• A partition of E′ into two sets VertS and HorS, whose elements are called
respectively vertical and horizontal edges.

• Two functions t, b : VertS → V which assign a “top” endpoint t(e) and a
“bottom” endpoint b(e) to each e ∈ VertS, which are distinct endpoints
of e.

satisfying the following conditions:

1. Every subset of E′ has a minimal element.

2. If e ∈ VertS and e′ are incident at t(e), then e ≺ e′.

3. If e ∈ VertS and e′ are incident at b(e), then e′ ≺ e.

4. If p1 and p2 are interior vertices incident to e1 and e2 respectively, with
e1 � e2, then either p1 ∈ b(VertS) or p2 ∈ t(VertS).

Some consequences of the definition help to clarify the geometric picture:
Because of the comparison conditions, there are at most two vertical edges
incident to a given vertex. Thus, if we start at a given vertex p, we can form a
unique increasing path of vertical edges, which will either terminate or continue
infinitely. And it could terminate at an interior vertex or boundary vertex.
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Similarly, we can form a decreasing path of vertical edges. This path must
terminate by (1). So our vertex p is on a unique increasing path in which all
the edges are vertical beginning at a vertex q.

Let S be a scaffold on a B-graph G. Define TopS as the set of edges e such
that e � e′ for some e′ with an endpoint in I \ t(VertS). Let BotS be the set
of edges e such that e � e′ for some e′ with an endpoint in I \ b(VertS). Define
MidS = E′ \ (TopS ∪BotS). Note condition (4) implies that TopS and BotS
are disjoint.

Scaffolds behave nicely with respect to B-graph morphisms. Let Scaf G
be the set of scaffolds on a B-graph G. Suppose f : G1 → G2 is a B-graph
morphism. Suppose S ∈ Scaf G2. Then define f∗S as follows:

• Set e1 ≺ e2 in f∗S if and only if f(e1) ≺ f(e1) in S.

• Let Vert f∗S = f−1(VertS) and Hor f∗S = f−1(HorS).

• Since the map is locally injective, we can define b, t for f∗(S) such that
f(b(e)) = b(f(e)) and f(t(e)) = t(f(e)).

The reader may verify that f∗S satisfies properties (1) through (4). Thus, we
have

Proposition 6.1. G 7→ Scaf G defines a contravariant functor B− graph →
Set. It also satisfies f−1(MidS) ⊂ Mid f∗S.

Proof. Straightforward and left to the reader.

6.3 Scaffolds, Elementary Factorization, and Layerability

In the case of finite graphs, scaffolds describe the same structure as elemen-
tary factorization. We sketch the correspondence and leave some details to the
reader. Suppose P,Q ⊂ B and G has an elementary factorization as an IO-
graph morphism P → Q, given by G = Gn ◦ · · · ◦ G1. Then we can define a
scaffold S by

• An edge is vertical if it occurs in one of the type 1 networks; the bottom
endpoint is the input vertex and the top endpoint is the output vertex.

• We set e ≺ e′ if e is in Gj and e′ is in Gk for some j < k.

It is clear this is a partial order and satisfies axioms (1), (2), and (3) of the
scaffold definition. For (4), note that if p 6∈ b(VertS) is an interior vertex, then
it must be an input stub in some elementary IO-graph, and if q ∈ I(G)\t(VertS),
then it is an output stub. Hence, if e is incident to p and e′ incident to q, then
e ≺ e′.

Conversely, suppose S is a scaffold on a finite graph G. We can easily
complete the partial order on E′ to a total order without changing the top,
bottom, and middle of S, and write the edges in order as e1, . . . , en. it is
possible that a boundary vertex is incident to two vertical edges (which does
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not happen when the scaffold comes from a factorization). In that case, we
modify the scaffold as follows: Choose k such that BotS ⊂ {ej : j ≤ k} and
TopS ⊂ {ej : j > k}. Suppose that ei ≺ ej are vertical edges incident to a
boundary vertex p. Then either i ≤ k or j > k. In the first case, we can change
ei to a horizontal edge, and we will still have a layering; if the other endpoint
q of ei was interior, then we have created a new interior vertex that is not the
bottom endpoint of a vertical edge; but all the edges incident to q are � ei, so
that the Top and Bottom are still disjoint. In the case j > k, we change ej to
a horizontal edge.

By repeating this for each vertex, we obtain a scaffold S ′ in which every
boundary vertex is incident to at most one vertical edge, and the edges are to-
tally ordered. Take P = B\t(VertS ′) and Q = B\b(VertS ′). From the scaffold
conditions, we deduce that e1 is either a boundary spike with one endpoint in
P or a boundary edge with both endpoints in P , so that we have a factorization
G = S1 ◦ G1 where G1 is a type 1 or type 2 IO-graph. We repeat this process for
the edges e1, . . . , ek to get a factorization

G = Sk ◦ Gk ◦ · · · ◦ G1.

Next, in a symmetrical way, we start at en and work our way downwards to
factorize

Sk = Gn ◦ · · · ◦ Gk+1 ◦ T .

Then T cannot have any interior vertices, and so T = T1 ◦ T2 where T1 is an
output-stub IO-graph and T1 is an input-stub IO-graph, and this complete the
factorization.

Even in the infinite case, layerability is related to scaffolds through the fol-
lowing lemma:

Lemma 6.2. For a B-graph G, the following are equivalent:

a. G admits a layerable filtration in which the reduction operations are simple.

b. G admits a layerable filtration (that is, G is layerable).

c. There exists a scaffold S on G with TopS = ∅.

d. For any e ∈ E′(G), there is a scaffold S on G with e 6∈ TopS.

e. For any e ∈ E′(G), there is a finite partial layerable filtration G = G0 ⊃
· · · ⊃ Gn with e 6∈ E(Gn).

Proof. (a) =⇒ (b) is immediate.
(b) =⇒ (c). Let G = G0 ⊃ G1 ⊃ . . . be a layerable filtration. Then each

edge e is in E(Gne) \ E(Gne+1) for some ne. Define S as follows:

• e ≺ e′ if and only if ne < ne′ .

• e is vertical if it is a boundary spike of Gne and it is horizontal if it is a
boundary edge of Gne .

40



• If e is a boundary spike in Gne , then b(e) is the endpoint removed in the
spike contraction and t(e) is the other endpoint.

The reader may verify that all the conditions in the definition of scaffold are
satisfied.

(c) =⇒ (d) is immediate.
(d) =⇒ (e). Define a new scaffold S ′ with the same vertical edges and t

and b functions as in S, but define the new partial order by taking the transitive
closure of the relations defined by conditions (2) and (3) of the scaffold definition.
(Thus, we are making as few edges comparable to each other as possible given
our choice of vertical edges.) Every subset of E has a minimal element with
respect to S, which will automatically be minimal with respect to S ′.

I claim that for any e ∈ E′(G), there are only finitely many edges e � e0 in
S ′. If we suppose not, then there is a minimal edge e0 for which the claim does
not hold. There are only finitely many edges e1, . . . , en which incident to and
less than e0, and {e � e0} =

⋃n
j=1{e � ej}∪{e0} since the relations (2) and (3)

used to define our partial order only compare edges which are incident to each
other. By minimality of e0, {e � ej} is finite, which implies {e � e0} is finite,
which is a contradiction.

Now choose e. Let e1, . . . , ek = e be the edges � e in S ′. We can assume they
are listed in some nondecreasing order. Let G0 = G. Then e1 is a minimal edge
in G0. The conditions in the definition of a scaffold force e1 to be a boundary
spike if it is vertical and a boundary edge if it is horizontal (similar reasoning to
the lemma about recovery). Let G1 be the graph formed by deleting/contracting
this edge as appropriate. Then e2 is a minimal edge in G1, hence a boundary
spike or boundary edge. So (e) follows by induction.

(e) =⇒ (a). Observe: If S is a subgraph of G and e is a boundary spike of G,
then it is also a boundary spike of S if it is actually contained in S. Hence, if G′

is obtained from G by contracting the boundary spike, then either S ∩G′ = G′

or else S ∩G′ is obtained from S by contracting the boundary spike. The same
observation holds for boundary edges.

We assumed in §1 that our graphs have countably many edges, so we can
write them in a sequence e1, e2, . . . . For each en, choose a kn and a sequence
of subgraphs G = Gn,1 ⊃ · · · ⊃ Gn,kn as in (e). Then consider the following
filtration:

G = G1,1, G1,2, . . . G1,k1 ,

G1,k1 ∩G2,1, G1,k1 ∩G2,2, . . . G1,k1 ∩G2,k2

G1,k1 ∩G2,k2 ∩G3,1, . . . G1,k1 ∩G2,k2 ∩G3,k3

. . . . . .

The consecutive elements of this sequence, if they are not equal, are obtained
by removing a boundary spike or boundary edge as a result of our earlier ob-
servation. Thus, we have a partial layerable filtration which removes all the
edges in the graph. We can obtain a new filtration by replacing each reduc-
tion operation with two reduction operations–first remove the boundary spike
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or boundary edge according to our original partial filtration, then remove any
isolated boundary vertices.

6.4 Scaffolds, Harmonic Extensions, and Recovery

We need two more pieces of terminology: Let T ⊂ E′. The subgraph GT induced
by T is defined as follows:

• E′(GT ) = T .

• V (GT ) is the set of vertices incident to edges in T .

• A vertex is interior in GT if and only if it is interior in G and all the edges
incident to it are in T .

A sub-B-graph G′ ⊂ G is induced if and only if any vertex p ∈ V (G′) ∩ I(G)
with all edges incident to it contained in E(G′) must be interior in G′.

Let S be a scaffold on G. We say that G′ ⊂ G is a lower sub-B-graph if
e ≺ e′ ∈ E(G′) implies e ∈ E(G′). We say that G′ ⊂ G is an upper sub-B-graph
if e � e′ ∈ E(G′) implies e ∈ E(G′).

Let S be a scaffold on G, and that G′ is an induced lower sub-B-graph. Then
by definition of scaffold, E′(G) \ E′(G′) has some minimal element e0. Let G′′

be the sub-B-graph induced by E(G′) ∪ {e0}. Then

• Suppose e0 is vertical. By the conditions on the partial order, we know
that t(e0) is not in G′. If e0 6∈ BotS, that implies t(e0) is the bottom
vertex of some vertical edge e1 � e0. Since G′ is a lower subgraph, this e1

is not in G′, hence it is not in G′′. In particular, not all the edges incident
to t(e0) are in G′′, which implies t(e0) is a boundary vertex of G′′. So e0

is a boundary spike of G′′. Thus, for BZCF networks, we can extend any
harmonic function on G′ to a harmonic function on G′′.

• Suppose e0 is horizontal and e0 6∈ BotS. Then both endpoints are the
bottom endpoint of some vertical edge, which cannot be in G′′, which
implies e0 is a boundary edge of G′′. Hence, any harmonic function on G′′

extends to a harmonic function on G′.

This proves the following lemma:

Lemma 6.3. Suppose S is a scaffold on G and G′ is an induced lower subgraph.
Let G′′ be the subgraph induced by E′(G′) ∪ {e0}. Let e0 be a minimal edge not
in G′ and suppose that e0 6∈ BotS. Let Γ be a BZCF network on G. Then any
harmonic function on Γ′ has some extension to Γ′′.

The next lemma follows using transfinite induction:

Lemma 6.4. Suppose S is a scaffold on G and G′ is an induced lower subgraph
with BotS ⊂ E′(G′). Let Γ be a BZCF network on G. Then any harmonic
function on Γ′ extends to a harmonic function on Γ.
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Proof. Let u′ be a harmonic potential on Γ′. Consider the set Z of pairs (Σ, v),
where Σ is an induced lower subnetwork of Γ, Γ′ ⊂ Σ, and v is a harmonic
potential on Σ which equals u′ on Γ′. Let Z be partially ordered by setting
(Σ1, v1) ≤ (Σ2, v2) if Σ1 ⊂ Σ2 and v2|V (Σ1) = v1. Note that (Γ1, u1) ∈ Z.
To apply Zorn’s lemma, note that every totally ordered subset C of Z has an
upper bound. Indeed, for two networks (Σ, v) and (Σ′, v) ∈ C, the corresponding
harmonic functions agree on the overlap, and hence they produce a well-defined
harmonic function v∗ on Σ∗ =

⋃
(Σ,v)∈C Σ, and (Σ∗, v∗) is an upper bound for

C. Hence, Z has a maximal element (Σ∗, v∗).
If Σ∗ is not all of Γ, then there is a minimal edge not in Σ∗. Then by the

previous lemma, we can extend v∗ to a larger induced lower subnetwork, which
contradicts maximality of (Σ∗, v∗). So we are done.

Now instead of considering the existence of extensions, we consider unique-
ness:

Lemma 6.5. Suppose S is a scaffold on G, and Γ is a BZCF network. Let Γ′

be an induced lower subnetwork of Γ and suppose that TopS ∩E(Γ′) = ∅. Then
any harmonic function on Γ′ is uniquely determined by

• The potential on the vertices of B(Γ) ∩ V (Γ′).

• The net current on the vertices of B(Γ) ∩ b(VertS ∩ E(Γ′)).

Proof. Suppose that u′ and v′ are two harmonic potentials on Γ′ with the same
potential on B(Γ)∩V (Γ′) and net current on B(Γ)∩b(VertS ∩E(Γ′)). Suppose
for contradiction that u′ and v′ do not agree on all of Γ′. Let T be the set of
edges e in Γ′ such that u′ and v′ disagree on one or both endpoints of e. Then
T has a minimal element e0. Then

• Suppose e0 is vertical. If b(e0) is a boundary vertex of Γ, then by assump-
tion u′ and v′ have the same potential and net current at b(e0). Also, by
minimality of e0, u′ and v′ agree on all edges less than e0, and in particu-
lar all other edges incident to b(e0). Thus, u′ and v′ must have the same
current on e0, and hence the same voltage at t(e0), which contradicts our
choice of e0.

• In the case where e0 is vertical and b(e0) is interior in Γ, we know from
e0 6∈ TopS that b(e0) has some edges incident to it at b(e0), and hence
u′ and v′ have the same potential and net current on b(e0). The same
argument yields a contradiction to the minimality of e0.

• Suppose e0 is horizontal. Since e0 6∈ TopS, we conclude that each endpoint
is either a boundary vertex of Γ or incident to edges less than e0. Thus,
u′ and v′ have potentials which agree on both endpoints of e0, which
contradicts our choice of e0.

The contradiction shows that T is empty and u′ = v′.
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Lemma 6.6. Let G be a B-graph. Suppose that either

1. e0 is a boundary spike and there is a scaffold S with e0 ∈ HorS ∩MidS, or

2. e0 is a boundary edge and there is a scaffold S with e0 ∈ VertS ∩MidS.

For any BZCF network Γ on G, Θe0 is uniquely determined by L over BZCF.

Proof. Consider the case of a boundary spike first. Let p be the valence-one
boundary vertex of the spike, q the other vertex. Choose t ∈M . Let

• Γ0 be the subnetwork induced by {e ≺ e0}.

• Γ1 be the subnetwork induced by {e 6� e0}.

• Γ2 be the subnetwork induced by {e 6� e0}.

Note Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ Γ.
I claim that the potential u2 on Γ2 which is t at p and 0 everywhere else is

harmonic. Because e0 ∈ MidS, we know q is the bottom vertex of some vertical
edge, hence not all edges of Γ incident to q are in Γ2, so that q is a boundary
vertex of Γ1. Hence, p is not adjacent to any interior vertices of Γ2, so u2 is
harmonic.

By Lemma 6.4, u2 extends to a harmonic function u on Γ satisfying:

a. u(p) = t.

b. u = 0 on B(Γ) ∩ V (Γ0).

c. u has net current zero on B(Γ) ∩ b(VertS ∩ E(Γ0)).

By Lemma 6.5, any harmonic function satisfying properties (a) - (c) must be
identically zero on Γ0, and in particular have potential zero at q. Since q is the
only neighbor of p, this implies the net current on p is −γe0(t) (if e0 is oriented
with ι(e0) = p). Thus, by imposing the boundary conditions of (a) - (c), we
obtain a unique net current on p which is −γe0(t). Since this holds for all BZCF
networks, γe0(t) is uniquely determined by L over BZCF. Since t is arbitrary,
γe0 is determined.

This concludes the case for a boundary spike. In the case of a boundary
edge, the argument is the same with the following changes:

• Let q = b(e0), p = t(e0).

• To define u1 on Γ2, note p, q ∈ B(Γ2) and e0 is the only edge incident to
p in Γ2. Define u1 to be zero on Γ2 and t at vertex p.

• We recover γe0(t) by noting that it is the net current on q. This is because
by (3) all edges incident to q except e0 are in Γ0 and hence have current
zero.
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6.5 Solvable and Totally Layerable B-graphs

Let G0, G1, . . . , Gn be a layerable filtration of a B-graph G. We say that it is a
solvable filtration if it satisfies the following:

• For each spike e removed from Gn, there is a scaffold on Gn in which e is
a horizontal, middle edge.

• For each boundary edge e removed from Gn, there is a scaffold on Gn in
which e is a vertical, middle edge.

A B-graph which admits a solvable filtration is called solvable. This name is
appropriate because these are precisely the graphs for which the inverse problem
can be solved through layer-stripping with repeated application of information
propagation:

Theorem 6.7. Any solvable B-graph is recoverable over BZCF.

Proof. Let Γ be a BZCF network on G. Let G0, G1, . . . be a solvable filtration,
and let Γ0,Γ1, . . . be the corresponding subnetworks with sets of boundary data
L0, L1, . . . . By Lemma 6.6, the conductance functions of the edges removed
from Gn are uniquely determined by Ln over BZCF. By Lemma 4.3, Ln+1 is
determined by Ln and these conductance functions. Hence, by induction each
conductance function and each Ln is uniquely determined by L over BZCF.

Proposition 6.8. Let f : G → G′ be a B-graph morphism. If G′0, G
′
1, . . . is a

solvable filtration of G′, then f−1(G′0), f−1(G′1), . . . is a solvable filtration of G.
Hence, if G′ is solvable, then so is G.

Proof. We already know that a layerable filtration pulls back to a layerable
filtration. To see that f−1(G′0), f−1(G′1), . . . is a solvable filtration, we just pull
back the scaffolds used for each edge, using Proposition 6.1.

A more symmetrical (and it turns out stronger) condition than solvability
is total layerability. We say that a B-graph G is totally layerable if for any
edge e, there exists a scaffold S with e ∈ HorS ∩MidS and a scaffold S ′ with
e ∈ VertS ′ ∩HorS ′.

Proposition 6.9.

1. If f : G → G′ is a B-graph morphism and G′ is totally layerable, then so
is G.

2. Any totally layerable B-graph is layerable.

3. If G is a totally layerable, then it is solvable. In fact, any layerable filtra-
tion of G is a solvable filtration.

Proof. The first claim follows immediately from Proposition 6.1. (2) follows
from Lemma 6.2. To prove (3), let G0, G1, . . . be a layerable filtration. If e is a
boundary spike / boundary edge of Gn−1, then there exists a scaffold on G in
which e is a horizontal / vertical middle edge, and this induces a scaffold on Gn
as well.
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7 Graphs on Surfaces

7.1 Embeddings of Graphs, Strand Arrangements, and
Medial Strands

The study of graphs on surfaces, especially the disk, has made heavy use of
graph embeddings and the medial graph. Before we detail how to construct
scaffolds and elementary factorizations using the medial graph, we need some
technical definitions. Our goal here is to define “embedding” and “medial graph”
in enough generality to cover a lot of degenerate cases that are not usually
considered, so that we can safely handle very small subgraphs without having
to modify our definitions ad hoc. We do not care whether the medial graph is
well-defined, only that some medial graph is there for us to use.

For any graph G, there is a corresponding topological space, the quotient
space obtained from E× [0, 1] by identifying (e, t) with (e, 1− t) and identifying
(e, 0) and (e′, 0) if ι(e) = ι(e′). We will call this topological space G as well since
no confusion will result. An embedding of a graph on a surface with boundary
S is a function f : G→ S which is a homeomorphism onto its image, such that
f(x) ∈ ∂S if and only if x corresponds to a boundary vertex. Let’s identify
f(G) with G.

The embedding is non-degenerate if each component of S \G is homeomor-
phic to an open disk. Unfortunately, a non-degenerate embedding can easy
become degenerate when we pass to a subgraph, or even delete a boundary
edge.

It will be helpful to have a generalization of a “chord diagram” or “pseudoline
arrangement,” which we will call a “strand arrangement.” A strand arrangement
on a surface with boundary S is a collection of curves on S called strands such
that

• Each strand s admits a parametrization fs by [0, 1], S1, R, or [0,∞) which
is a closed map and is locally a homeomorphism.

• The endpoints of any strand parametrized by [0, 1] or [0,∞) must be on
∂S. No other points of the strands are allowed to be on ∂S.

• For each x ∈ S there are at most two strand segments which intersect
there. That is,

⋃
s f
−1
s (x) contains at most two points.

• Call a point where two strands intersect or one strand intersects itself a
vertex. We assume the vertices form a discrete set, and none of these
points are on ∂S.

• For any point x ∈ S, there is a neighborhood that intersects at most two
strands. This prevents infinitely many strands from accumulating near a
point.

If S is compact, then any strand arrangement will form a B-graph embedded
on S where the vertices of the strands are interior vertices of the graph and
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the endpoints of the strands are boundary vertices (by some tedious topological
argument). This fails in the non-compact case because some strands may run
off to ∞, but we do not give a hoot about it.

A lens in a strand arrangement is a loop formed by one or two arcs of strands.
If an arrangement has no lenses, it is called lensless.

The components of S minus the union of the strands are called cells. Two
cells A and B are adjacent if ∂A ∩ ∂B contains some strand segment. A two-
coloring of the cells is an assignment of a “white” or “black” color to each cell
such that no adjacent cells are the same color. Depending on the surface, not
all strand arrangements may admit a two-coloring of the cells.

For a graph G embedded on S, a compatible medial strand arrangement is a
strand arrangement with a two-coloring of the cells such that

• Each black cell is homeomorphic to the disk (though the closure might
not be homeomorphic to the closed disk).

• There is a bijective correspondence between vertices of G and black cells
such that each black cell contains the corresponding vertex.

• If A is a black cell, then ∂A intersects ∂S if and only if the corresponding
vertex of G is a boundary vertex.

• There is a bijective correspondence between the edges of G and vertices of
the strand arrangement (“medial vertices”) such that each edge of G con-
tains the corresponding medial vertex and no other points of any strand.

• At each medial vertex, the two strands cross the edge e of G. That is,
there is some neighborhood N of the vertex, homeomorphic to D, such
that the each parametrized strand moves from one component of N \ e to
the other.

Depending on how degenerate the embedding is, there may be many different
compatible medial strand arrangements.

INCOMPLETE: Subgraph partitions and Elementary factorizations com-
patible with the embedding.

7.2 Producing Scaffolds from the Medial Graph

An orientation of a strand arrangement is a choice of orientation for each strand.
It is acyclic if there is a no loop formed by oriented strand segments.

An orientation O of the medial strands naturally produces a relation on E′

and an assignment of vertical and horizontal edges (which may or may not form
a scaffold). We can define a relation ≺ on the medial vertices by setting a ≺ b
if there is an increasing path from a to b along medial edges. Define ≺ on the
edges E′(G) by the relation on the corresponding medial vertices.

Suppose e ∈ E′(G) corresponds to a medial vertex a. Define e to be vertical
if and only if the ingoing medial edges at a are on the boundary of one black
cell, and the outgoing edges are on the boundary of the other black cell. In this
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case, b(e) is the G vertex corresponding to the black cell bounded by the ingoing
edges, and t(e) is the black cell bounded by the outgoing edges. Equivalently, e
is vertical if the oriented strands cross e in opposite directions. Otherwise, e is
horizontal.

For this to be a bona fide scaffold, we need to guarantee several things:

• ≺ defines a partial order; this is a equivalent to saying that the orientation
of the medial strands is acyclic.

• For infinite graphs, every subset has a minimal element.

• The vertical and horizontal edges incident to a vertex have the correct
behavior and the Top and Bottom are disjoint (scaffold conditions 2,3, 4).

The last condition will hold if we arrange that, for any interior medial black cell
A, ∂A can be partitioned into two arcs, the first arc when oriented according
to O moves counterclockwise around ∂A, and the second arc moves clockwise
(see Figure . . . ). For boundary medial black cells, we want the same behavior,
except that either arc of ∂A is allowed to contain portions of the boundary
of the surface. That is, all the strand segments in the first arc are oriented
counterclockwise around ∂A and the strand segments in the second are oriented
clockwise. This will guarantee that there are at most two vertical edges incident
to any vertex of G, and the vertical edges are comparable with the other edges
in the correct way. It also guarantees that each interior vertex is both the top
and the bottom endpoint of some vertical edge, so that every edge will be in
MidS and scaffold condition (4) is trivially satisfied.

To produce a scaffold, the orientation must be chosen judiciously. We will
explain how to do this on the disk and half-plane, and leave other surfaces to
future researchers.

7.3 B-graphs on the Disk

Lensless circular planar graphs have been well-studied by ??. We will give
an alternative proof of several of their results using scaffolds produced by the
medial graph.

We use two types of orientations for the medial strands: First, fix eiθ ∈ ∂D
and assume it is not the endpoint of any strrand. Define Oθ as follows: If a
strand s has endpoints eiα and eiβ with θ < α < β < θ + 2π, then the positive
direction moves from eiα to eiβ .

The second orientation Oθ,φ is given by two points eiθ, eiφ ∈ ∂D which are
not endpoints of any strand. We can assume θ < φ ≤ θ + 2π. Suppose s is a
strand with endpoints eiα and eiβ . After possibly switching α and β or changing
their period, we can arrange that exactly one of the following holds:

• θ < α < β < φ.

• θ < α < φ < β < θ + 2π.

• φ < β < α < θ + 2π.
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Then we say that the positive orientation of s moves from eiα to eiβ .
Note that Oθ is exactly Oθ,θ+2π, so if we allow eiθ = eiφ, then we only have

one type of orientation to worry about. Now to verify it is acyclic . . .

Lemma 7.1. For any lensless strand arrangement in D, Oθ,φ defines an acyclic
orientation.

Proof. The proof is by induction on the number of strands. It clearly holds for
one strand. Suppose it holds for n− 1 strands and consider n strands s1, . . . , sn
with endpoints eiαj and eiβj where αj and βj satisfy the relations above.

From the Jordan curve theorem, we know that D \ sj has two components,
one on the left of sj and one on the right of sj . Since the strand arrangement is
lensless, sj can only cross sk in one direction and the direction can be detected
from the positions of the start and endpoints of sj and sk on ∂D. I claim there
is some sk such that no sj crosses from the left to the right of sk. There are
two cases:

• If there are any strands which satisfy φ < βj < αj < θ + 2π, then let sk
be the one with the minimal value of αk. Any sj which crosses from left
to right of sk would have to have αj between αk and βk. Then sj must
be one of the strands with φ < βj < αj < θ+ 2π since otherwise αj would
be less than φ. But in that case, our choice of sk implies αk < αj , so
βk < αj < αk is impossible.

• Otherwise, we can assume all strands have αj < φ and αj < βj . Choose
sk to have the minimum possible value of αk. If sj crossed from the left to
the right of sk, then we would have αk < βj < βk < αk which contradicts
our assumption that αj < βj .

By reindexing assume k = n. From the induction hypothesis, s1, . . . , sn−1

do not form any oriented loops. Thus, if a loop exists it must contain some
segment of sn and clearly it cannot be all contained in sn. When the loop exits
sn, it must move into the left component of D \ sn because no strand crosses
sn from left to right. But then at some point the loop must return to or cross
sn from the left component of D \ sn which implies there is some strand which
crosses sn from left to right, causing a contradiction. So there is no loop.

To describe the behavior of Oθ,φ on the boundary of a medial cell, we use

Lemma 7.2. Let A be a cell of a lensless strand arrangement on D. Let
s1, . . . , sn be the strands that intersect ∂A, listed in CCW order around ∂A
and oriented in the same direction as the CCW orientation of ∂A (with A on
the left of each sj). Let xj and yj be respectively the start and end of sj. Then
x1, . . . , xn occur in CCW order around ∂D, and so do y1, . . . , yn.

Remark. We do not assume in the hypothesis that s1, . . . , sn are distinct, al-
though that turns out to be true.
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Proof. Suppose A is an interior cell. Let z be the vertex of ∂A where s1 and s2

intersect. Let C be the counterclockwise arc of ∂D from x1 to x2. Let h1 and
h2 be the arcs of s1 and s2 from x1 and x2 to z, so that C, h1, and h2 bound a
geodesic triangle T .

Suppose for contradiction that there is some other xj ∈ C. Let w be the
first point where sj hits ∂T . If w ∈ h2, then sj crosses s2 there from left to
right. It cannot intersect s2 again sinceM is lensless, but that implies it cannot
intersect ∂A because A is on the left side of s2. So suppose w ∈ h1. Then at w,
sj crosses from the left to the right side of s2, and this occurs before the point z
along s2, which implies z ∈ ∂A is on the right side of sj . This also is impossible
because A is supposed to be on the left side of sj .

This contradiction proves that there is no xj between x1 and x2, and the
same argument applies to xk and xk+1 for all k, hence x1, . . . , xn occur in
counterclockwise order. By a symmetrical argument, y1, . . . , yn occur in coun-
terclockwise order. In the case of a boundary cell, similar reasoning applies
except that arcs of ∂D may intervene between the strand segments; details left
to the reader.

Now consider a medial cell A, with sj and xj and yj as above, but let sj
be oriented according to Oθ,φ. Assume without loss of generality that x1 is the
first xj on the counterclockwise side of eiθ. Note that as we proceed through
the list s1, . . . , sn,

1. As long as eiθ, xj , e
iφ and eiθ, xj , yj occur in CCW order, then xj is the

start point of sj in Oθ,φ.

2. At some point xj may pass eiφ so that eiφ, xj , e
i(θ+2π) are in CCW order.

3. At some point yj may pass eiθ so that eiθ, yj , xj occur in CCW order.

4. Either (2) or (3) may occur first, but after either one occurs, yj will be
the start point of sj . And (2) or (3) will continue to hold for the rest of
the strands.

Thus, ∂A can be divided into two arcs; before (2) or (3) occurs the orientation
of sj matches the CCW orientation of ∂A, and after (2) or (3) occurs they are
opposite.

This concludes the proof that Oθ,φ produces a scaffold; call it Sθ,φ. We then
have

Theorem 7.3 (cf. [2] Theorem ?? and [5] Theorem 6.7). A circular planar
B-graph with a lensless medial graph is totally layerable, hence recoverable over
BCZF for any M .

Proof. Let e be any edge and let a be the corresponding medial vertex, and
s1 and s2 the geodesics that meet there. Note s1 and s2 divide D into four
components, and e is contained in two opposite components. If eiθ is on the
boundary of one of the components that contains e, then e is horizontal in the
scaffold Sθ, and if eiθ is on the boundary of one of the other components, then
e is vertical.
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Any two “cut-points” eiθ and eiφ divide ∂D into two arcs; let C1 be the
CCW arc from eiθ to eiφ and let C2 be the other arc. Let P and Q be the sets
of vertices of G whose medial cells touch C1 and C2 respectively. Then P and
Q are called a circular pair. P ∩Q contains at most two vertices. The strands
fall into three categories:

• A strand with both endpoints on C1 is called reentrant on C1.

• A strand with both endpoints on C2 is called reentrant on C2.

• A strand with one endpoint on C1 and one on C2 is called transverse.

Theorem 7.4 (cf. [2] Lemma ??). Let G be a lensless B-graph on D. Assume
the boundary of each medial cell intersects ∂D in at most one arc. Suppose P
and Q are a circular pair induced by cut-points eiθ and eiφ. Then

a. The IO-graph morphism G : P → Q represented by G admits an elementary
factorization compatible with the medial strand arrangement.

b. Hence, rank Ξ(G) = 2m(P,Q) for any network on G where a suitable notion
of rank is defined.

c. Also, 2 ·m(P,Q) = #(transverse strands) + |P ∩Q|.

Proof. We produce a factorization from the scaffold Sθ,φ by a similar method
to §6.3 (and Sθ would work as well). Using the Jordan curve theorem, the
reentrant strands on C1 do not intersect those on C2. Thus, the medial vertices
on the C1-reentrant strands come before those on the C2-reentrant geodesics
in our partial order, when they are comparable. Let W be the set of medial
vertices a such that a 6� b for some b on a C2-reentrant geodesic. Then

• If there is a C1-reentrant strand with no medial vertices on it, then there
is an isolated boundary vertex of G with its medial cell touching C1 but
not C2. (We assume that a medial cell only intersects C1 in one arc, not
two.)

• Otherwise, if W is nonempty, then choose a minimal element and let e be
the corresponding edge in G. The strands which meet at e are tranverse
or C1-reentrant, so e is either a boundary spike with an endpoint on C1

or an boundary edge with both endpoints’ medial cells touching C1.

In either case, we can write G = G′ ◦ G1 where G1 is an elementary IO-graph of
type 1, 2, or 3 and the factorization can be represented by cutting D into two
components with a curve g1 from eiθ to eiφ.

The main component U1 of D \ g1 is homeomorphic to D and the scaffold
satisfies all the same properties as before. (We may produce medial cells which
intersect ∂U1 in two arcs, but not we cannot produce any which intersect g1

in two arcs.) We can repeat this process with U1 instead of D until there are
no C1-reentrant strands without medial vertices, and W is empty. Continuing
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inductively, we obtain a factorization G = G′′ ◦ Gn ◦ · · · ◦ G1, where the Gj ’s are
type 1, 2, or 3.

Next, we repeat this process starting at C2 with a C2-reentrant strands with
no medial vertices or a maximal medial vertex in our partial order. So we
produce elementary IO-graph morphisms G′j of type 1, 2, or 4. In the end, we
have G = G′1 ◦ · · · ◦ G′m ◦ G∗ ◦ Gn ◦ · · · ◦ G1. This G∗ has no reentrant strands and
no edges in the graph; it represents the identity IO-graph morphism. Thus, the
factorization is complete, proving (a), and (b) follows from earlier theorems.

In G∗, all the medial cells touch both boundary arcs (so “P ∗ = Q∗”). Since
G∗ is in the middle of the factorization, the maximum connection between the
two boundary arcs is the same for G∗ as for G, that is the number of vertices of
G∗. Each cell in G∗ has either one or two strands on its boundary, and the cells
with one strand correspond exactly to P ∩Q. From this (c) follows.

7.4 B-graphs on the Half-Plane

Consider a B-graph G embedded in the upper half-plane H ⊂ C with a compat-
ible medial graph such that

• Each medial strand begins and ends on R rather than going off to ∞.

• The medial graph is lensless.

These are the graphs [10] calls supercritical. Fix t ∈ R which is not the endpoint
of any strand. Define an orientation Ot as follows: If a strand s has endpoints
x and y ∈ R with x < y, then we orient s from y to x if y < t and from x to y
if y > t. I claim Ot induces a scaffold on G.

To show Ot is acyclic, choose a linear fractional transformation F map-
ping the half-plane onto the disk and suppose t 7→ eiθ and ∞ 7→ eiφ. Any
oriented loop is formed by finitely many strands s1, . . . , sn. By construction,
F (s1), . . . , F (sn) are strands on the disk oriented according to Oθ,φ, and hence
they cannot form an oriented loop by Lemma 7.1. The same argument shows
that the behavior of the boundary of each medial cells is the same as it was for
the disk.

Thus, we only have to prove

Lemma 7.5. In the order induced by Ot, every set of medial vertices has a
minimal element.

Proof. Each strand s divides H into two components, a bounded component
which we will call the inside and an unbounded component which we will call
the outside. As on the disk, we will divide the strands into three categories:
reentrant on (−∞, t), reentrant on (t,+∞), and transverse.

I claim there exists a strand s0 such that no other strand s crosses from the
outside to the inside of s0. There are two cases:

• If there are any (−∞, t)-reentrant strands, let s0 be the one with right
endpoint y0 closest to t (to the left of t). (There are only finitely many
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endpoints of strands in any bounded interval.) Any (−∞, t)-reentrant
strand s that has its right endpoint left of x0 cannot cross s0, but if its
right endpoint is between x0 and y0, then it starts on the inside of s0

and hence cannot cross it from outside to inside. A transverse or (t,∞)-
reentrant strand ends on the outside of s0 and so cannot cross from outside
to inside.

• Otherwise, we choose s0 to have its right endpoint y0 closest to t (to the
right of t). Since all the other strands have their endpoints to the right of
y0, they end outside it and hence cannot cross from outside to inside.

The same argument shows that for any subcollection of strands, there exists
some s0 such that no other strand in the collection crosses from outside to
inside of s0.

To show that every set of medial vertices has a minimal element, it suffices to
show that any decreasing path in the medial graph must terminate. The collec-
tion of strands which form the path has an element s0 which no other strand in
the collection crosses from outside to inside. At some point the decreasing path
intersects s0. After that it can never move to the outside of s0. But there are
only finitely many medial vertices inside s0 or on s0 and there are no oriented
cycles, so the path must terminate.

Thus, by the same argument as for the disk, we have

Theorem 7.6. Any supercritical half-planar B-graph is totally layerable.

Remark. In [10], the networks have positive linear conductances and the network
is recovered from the boundary data of minimum power solutions only, rather
than all harmonic functions. The harmonic functions used for recovery of a
boundary spike or boundary edge e0 are thus chosen to be finitely supported.
The method of scaffolds in §6.4 will produce a finitely supported function if we
can arrange that only finitely many edges are � e0.

The scaffold produced by Ot does not do this. However, a slightly more
complicated version does work. Choose t0 and t1, and orient the strands as
follows:

• If a strand has endpoints x and y with t0 < x < y < t1 or x < t0 < t1 < y,
then the positive orientation moves from x to y.

• If a strand has one endpoint on (−∞, t0) ∪ (t1,+∞) and one on (t0, t1),
then the positive orientation moves from (−∞, t0) ∪ (t1,+∞) to (t0, t1).

• If a strand has endpoints x < y < t0 the positive orientation moves from
y to x.

• If a strand has endpoints t1 < x < y, the positive orientation moves from
x to y.
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The argument that this produces a scaffold is similar to what we have already
done but with more casework, which we leave to the reader.

For any edge e0, let s1 and s2 be the strands which meet at e0, with endpoints
x1 < x2 < y1 < y2. If we choose t0 and t1 such that x1 < t0 < x2 and y2 < t1,
then there will be only finitely many edges � e0 in the scaffold. The same holds
if we choose t0 < x1 and y1 < t1 < y2. One of the two choices make e0 vertical
and the other makes it horizontal.

8 A Theorem on Unique Connections

In the case of factorizations into type 1 and type 2 networks, the relationship
between connections, factorizations, and mixed problems is particularly strong,
yielding equivalence between algebraic and geometric conditions, and the unex-
pected implication (e) =⇒ (d):

Theorem 8.1. Let G be a finite B-graph and assume each interior vertex has
valence at least 2. Let B = P ∪Q and P ′ = P \Q and Q′ = Q\P . The following
are equivalent:

a. There is a unique connection between P ′ and Q′, and this connection uses
all the interior vertices.

b. There exists a scaffold S with b(VertS) = V \Q and t(VertS) = V \ P .

c. The IO-graph morphism P → Q represented by G admits a factorization into
type 1 and type 2 networks.

d. For any M and any network Γ given by bijective conductance functions, po-
tentials on P and net currents on P ′ determine a unique harmonic function
on Γ.

e. For any signed linear network Γ over R, potentials on P and net currents on
P ′ determine a unique harmonic function on the network.

Remark. Let (∗) be the condition that potentials on P and net currents on P ′

determine a unique harmonic function. In (2) and (3) it is important that (∗)
holds for all conductances. Even if it holds for most signed linear conductances,
the stubless layering may not exist.

Proof. (b) =⇒ (c) =⇒ (d) follows from the general theory developed so far,
and (d) =⇒ (e) is trivial.

To prove (e) =⇒ (a), note that tor signed linear conductances {ae}, (∗)
is equivalent to the submatrix KP ′∪I,Q′∪I being invertible. If this holds for all
signed linear conductances, then F(P,Q) has exactly one element by Proposition
3.4. Let F be this element. Each component contains either one vertex in P ∩Q,
or it contains one vertex in P ′ and one in Q′. Each component is a tree, but
I claim that each component is actually a path. Otherwise, there would be an
interior vertex p with only one edge e in F incident to it. By assumption, there

54



is another edge e′ incident to p. The other endpoint of e′ is in some component
of F , so F \ {e} ∪ {e′} is another grove. The components of F thus provide a
connection from P to Q. The connection is unique because if there were another
connection, then we could add edges to complete it to a different grove.

(a) =⇒ (b). There is a unique connection between P ′ and Q′ if and only if
there is a unique connection between P and Q, as a simple consequence of our
definition of connection. We define a scaffold S as follows:

1. The vertical edges are the edges in the paths of the connection, and the
“increasing” orientation is the same as their orientation in the path.

2. We define ≺ by setting e ≺ e′ if e ∈ VertS and e′ are incident at t(e)
and e � e′ if e ∈ VertS and e′ are incident at b(e), and then taking the
transitive closure.

By construction this satisfies the conditions in (b), and every interior vertex
is both the top and bottom endpoint of a vertical edge. The only thing left
to check is that ≺ defines a partial order. It suffices to show that there is no
“precedence loop”

e1 ≺ e2 ≺ · · · ≺ eK ≺ e1,

in which each pair of edges is comparable by the primitive relations given in
(2); let’s assume each e1 is an oriented edge such that e1, . . . , eK is a path. The
basic idea is that if we had such a loop, then we could construct a different
connection between P and Q as indicated in Figure 3.

To make this rigorous, consider the precedence loops with the minimal num-
ber of horizontal edges, and from those choose one with the minimal number of
edges. Let α1, . . . , αn be the paths in the connection. Then observe:

• Any precedence loop must contain horizontal edges, since otherwise it
would have to be contained in one of the αm’s, which is impossible. We
also cannot have two horizontal edges in a row since the primitive relations
do not compare horizontal edges.

• In the loop which we chose, e1, . . . , eK must be distinct, since otherwise we
could find a loop with either fewer horizontal edges or the same number
of horizontal edges and fewer vertical edges.

• Suppose there are some i < j < k with ej horizontal and ei and ek vertical
edges in the same path αm, and that ei comes before ek in the path αm.
If we replace the segment ei+1 . . . ek−1 of the loop with the segment of αm
from ei to ek, then we get a precedence loop with fewer horizontal edges.
Thus, this cannot happen in our chosen loop. The same reasoning holds
for any cyclic permutation of the indices 1, . . . ,K. Thus, the loop must
intersect each path in an “interval”; that is, Im = {k : ek ∈ αm} is of the
form {1, . . . , k} after some cyclic permutation of the indices.

Hence, our loop has the following form: It move upward along some path of the
connection (which we will call α1 after reindexing), then crosses by a horizontal
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Figure 3: Proof of Theorem 8.1: (a) =⇒ (b)
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edge to some other α2, and it continues in the same way until it crosses from
some α` back to α1. The paths α1, . . . , α` are distinct. It follows that the vertices
in our loop must be distinct and the loop looks essentially like the one portrayed
in the Figure except that it might not visit every path. If the remaining paths
are α`+1, . . . , αn, then we construct our new connection as follows: α′j = αj for
j = `+ 1, . . . , n. For j = 1, . . . , `, α′j follows αj until it meets an endpoint of a
horizontal edge from the loop, then it crosses to αj−1 following this horizontal
edge in the reverse orientation from the loop, and it continues along αj−1 until
it reaches Q (indices written mod `). So (b) is proved.

9 Box Products and Weak B-graph Morphisms

A standard construction in graph theory is the box product ; for B-graphs G and
H, we define G�H as follows:

• V (G�H) = V (G)× V (H).

• I(G�H) = I(G)× I(H).

• E(G�H) = E(G)× V (H)
∐
V (G)× E(H).

• e× p = e× p and p× e = p× e.

• ι(e× p) = ι(e)× p and ι(p× e) = p× ι(e).

A natural question is whether the box product of solvable or totally layerable
B-graphs is solvable or totally layerable. This would for instance provide an
easy to way to show that variants of a rectangular lattice are recoverable over
BZCF.

We want to pull back scaffolds on G1 and G2 to scaffolds on G1�G2 via
the projection maps π1, π2 from G1�G2 to G1 and G2 that sends an element of
V (G1�G2)

∐
E(G1�G2) to the first or second coordinate. However, this is not

a B-graph morphism since it does not even map edges to edges–by construction,
the first or second coordinate of an edge in E(G1�G2) could be a vertex in G1

or G2.
Thus, we make the following definition: A weak B-graph morphism f : G→

H is a function V (G)
∐
E(G)→ V (H)

∐
E(H) such that

• A vertex maps to a vertex.

• An interior vertex maps to an interior vertex.

• If e ∈ E(G) and f(e) is an oriented edge, then f(e) = f(e) and ι(f(e)) =
f(ι(e)).

• If e ∈ E(G) and f(e) is a vertex, then f(e) = f(e) and f(ι(e)) = f(e).

• If p is any vertex, then the map ι−1(p)\f−1(f(p))→ ι−1(f(p)) is injective,
and if p is interior then it is bijective.
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Exercise. The projections G1�G2 → G1 and G1�G2 → G2 are weak B-graph
morphisms.

Exercise. The composition of weak B-graph morphisms is a weak B-graph mor-
phism, so the B-graphs with weak morphisms form a category.

Exercise. Define a weak network morphism. Suppose f : Γ1 → Γ2 is a weak
network morphism, and that (0, 0) ∈ Θe for each edge in Γ1. If (u, c) is harmonic
on Γ2, show that (f∗u, f∗c) = (u ◦ f, c ◦ f) is harmonic on Γ1, where we define
f∗ce = 0 if f(e) is a vertex.

If f : G→ H is a weak B-graph morphism and H ′ is a subgraph of H, then
we define f−1(H ′) as follows:

V (f−1(H ′)) = V (G) ∩ f−1(V (H ′)),

E(f−1(H ′)) = f−1(V (H ′) ∪ E(H ′)), I(f−1(H ′)) = f−1(I(H ′)) ∩ I(G).

Now that we allow edges to map to vertices, we must modify the definition
of scaffold to make the partial order include the vertices. An extended scaffold
on a B-graph G consists of

• A strict partial order ≺ on V (G)
∐
E′(G).

• A partition of E′(G) into horizontal and vertical edges.

• An assignment of a top vertex t(e) and bottom vertex b(e) for each vertical
edge e.

such that

1. Every subset has a minimal element.

2. If e ∈ VertS, then b(e) ≺ e ≺ t(e).

3. If e ∈ VertS and e′ are incident at t(e), then e ≺ e′.

4. If e ∈ VertS and e′ are incident at b(e), then e′ ≺ e.

5. If p1 and p2 are interior vertices incident to e1 and e2 respectively, with
e1 � e2, then either p1 ∈ b(VertS) or p2 ∈ t(VertS). The same holds if
p1 � p2 or p1 ≺ e2 or e1 ≺ p2.

Any extended scaffold defines a scaffold when ≺ is restricted to the edges.
Conversely, any scaffold can be completed to an extended scaffold by setting
b(e) ≺ e ≺ t(e), then taking the transitive closure. To show this is a partial
order, we only have to show there is a no loop x1 ≺ · · · ≺ xn ≺ x1 for xj ∈
V (G)

∐
E′(G), where each of the comparisons is one of the relations in our

original scaffold or one of the relations b(e) ≺ e ≺ t(e). If a sequence of the form
e ≺ p ≺ e′ occurs in the loop, then e and e′ must be vertical and t(e) = p = b(e′).
Hence, e ≺ e′ and we can delete p from the loop. Thus, any loop in the new
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order could be shortened to a loop in the original order, which shows there
cannot be a loop.

To show every subset has a minimal element, consider S ⊂ V (G)
∐
E′(G).

Let S′ be the set of edges which are in S or incident to vertices in S. Because
S′ has a minimal element by assumption, we can deduce by some casework that
S has a minimal element. (2) and (3) follow from the corresponding conditions
for scaffolds and (5) is easy to verify by casework.

Suppose that f : G→ H is a weak B-graph morphism and S is an extended
scaffold on H, then we define f∗S on G as follows:

• e is vertical if and only if f(e) is a vertical edge.

• In that case, t(e) and b(e) are chosen with f(t(e)) = t(f(e)) and f(b(e)) =
b(f(e)).

• x ≺ y if and only if f(x) ≺ f(y).

The reader may verify that this defines a scaffold and is functorial. Then we
have

Theorem 9.1.

a. If G and H are totally layerable, then so is G�H.

b. If f : G → H is a weak B-graph morphism, H is solvable, and G has no
self-loops are parallel edges, then G is solvable.

Proof. For (a), choose an edge e× p ∈ E′(G�H). There is an extended scaffold
on G where e is a vertical / horizontal middle edge and this induces a scaffold
on E′(G�H). The case for p× e ∈ E′(G�H) is symmetrical.

For (b), let H = H0, H1, . . . be a solvable filtration of H and assume without
loss of generality that each step only includes one type of reduction operation
(contracting non-degenerate spikes, deleting boundary edges, deleting isolated
boundary vertices). Then consider three cases:

1. Suppose Hn is obtained from Hn−1 by deleting boundary edges. Then
f−1(Hn) is obtained from f−1(Hn−1) by deleting boundary edges. For any
boundary edge e that is removed from Hn−1, we have an extended scaffold
in which it is a middle vertical edge. This pulls back to an extended
scaffold where the edges in f−1(e) are middle vertical edges.

2. Suppose Hn is obtained from Hn−1 by contracting non-degenerate bound-
ary spikes. Then f−1(Hn) is obtained from f−1(Hn−1) in two steps:

A. Delete the edges in f−1(p) for any boundary vertex p at the end of a
spike; these are necessarily boundary edges.

B. Contract the edges in f−1(e) for each boundary spike e contracted in
Hn−1; the edges f−1(e) are now boundary spikes.
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To create the extended scaffolds for step (A), choose a spike e with bound-
ary vertex p, and let S be an extended scaffold on Hn−1 where e is a middle
horizontal edge. We assume S is obtained from an ordinary scaffold in the
manner described above, and so p is not comparable to anything in the
partial order. Then in f∗S, the edges in f−1(p) are horizontal and not
comparable to anything else. Pick an edge ε ∈ f−1(p). We modify the
scaffold as follows:

• Change ε vertical, and choose a distinct top and bottom vertex (it
does not matter which). This is possible becauseG has no self-looping
edges.

• If ε′ ∈ f−1(e) is incident to ε at the top endpoint, set ε′ � ε and do
the symmetrical thing at the lower endpoint. We assume G has no
parallel edges, so we will not have to make ε′ ≺ ε ≺ ε′.

• Let η be the edge in f−1(e) incident to t(ε). Set ε ≺ η and everything
which is greater than η, and do the symmetrical thing at the lower
endpoint of ε. Since ε was not comparable to anything originally, we
still have a partial order, and since η was in the middle of the orginal
scaffold, ε is in the middle of the new one.

For step (B), we use the extended scaffold f∗S for the edges f−1(e) for
each spike e removed.

3. Suppose Hn is obtained rfom Hn−1 by deleting isolated boundary vertices.
Let p be such a vertex. Since Hn is solvable, it has some extended scaffold
S on it (in the case where Hn has no edges, it has a scaffold trivially).
The extended scaffold f∗S on f−1(Hn) can be extended to an extended
scaffold on f−1(Hn−1) since it is the disjoint union of f−1(Hn) and some
components with only boundary vertices, and no loops or parallel edges.
Similar to case (2) we can arrange that any given edge in f−1(p) is vertical.
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