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Abstract

I consider electrical networks formed by conducting plates in an
annular region of the plane. These networks are mathematically sim-
ilar to electrical networks on a graph with vertices and edges which
is embedded in an annulus. I describe how to remove lenses from
the medial graph by Y -∆ transformation. By partitioning the net-
work into subnetworks, I prove analogues of the cut-point lemma with
corresponding algebraic statements. I prove recoverability for certain
classes of networks.
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1 Introduction

1.1 Annular Plate Networks

Let Sinner and Souter be the regions of the plane contained in piecewise-
smooth simple closed curves Cinner and Couter respectively, with Sinner ⊂
Souter, and let S = Souter \Sinner. Let plates P1, . . . , PN be compact, simply
connected subsets of S bounded by piecewise smooth curves such that

• The intersection of two plates is either empty or a single point,

• The point of intersection between two plates does not lie on a boundary
curve,

• PI ∩Cinner is either a empty or an interval of Cinner and PI ∩Couter is
either empty or an interval of Couter.

S is called the region of embedding. We will call it an annular region even
though it is not technically an annulus, only homeomorphic to an annulus.
Cinner and Couter are called the inner and outer boundary curves respectively.
Sinner is called the hole.

If two plates P and Q intersect at a point x, they are called adjacent,
we write P ∼ Q, and x is called a juncture between P and Q and is denoted
PQ. A directed juncture P → Q is a juncture with specified order of the
adjacent plates P and Q. The intersection of a plate and a boundary curve
is called a boundary interval. If a plate intersects the boundary curve, we
say it touches the boundary curve.
P is the collection of all plates, J is the collection of all directed junctures

between adjacent plates, I is the collection of all boundary intervals. For
each plate P , I(p) is the set of boundary intervals for P (I(P ) contains
either zero, one, or two elements). Let ∂P be the collection of boundary
plates (plates touching any boundary curve), and let intP be the collection
of interior plates (plates not touching a boundary curve). Let Pinner and
Pouter be the plates touching the inner and outer boundary respectively. A
plate may be in both Pinner and Pouter. Let Iinner and Iouter be the boundary
intervals on the inner and outer boundaries respectively.

Together, S, P, J , and I form an annular plate network Γ. Of course, we
can define plate networks on any planar region bounded by disjoint simple
closed curves. In particular, we will sometimes need to consider networks in a
simply connected region with one boundary curve. We will call them circular
planar in accordance with standard terminology, even if the boundary curve
is not strictly speaking a circle. For circular planar networks, it is reasonable

3



Figure 1: An annular plate network.

Cinner

Couter

to assume each plate only intersects the boundary in one interval, although
often we will allow two boundary intervals.

1.2 Conductivity Functions, Feasible Boundary Data, and
Recovery

A conductivity function is a function γ which assigns a positive number,
called the conductance, to each juncture, such that γ(PQ) = γ(QP ). We
may think of γ as defined on undirected or directed junctures. If P and Q
are not adjacent, we say γ(PQ) = 0.

A voltage function is a function v : P → R; the value assigned to each
plate is a voltage. A current function is a function c : J ∪ I → R. An
electrical function f = (v, c) consists of a voltage and a current function
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such that for every juncture P → Q,

c(P → Q) = γ(PQ)(v(P )− v(Q)).

An electrical function is called γ-harmonic if for every plate P ,∑
Q∼P

c(Q→ P ) +
∑

I∈I(P )

c(I) = 0.

For a boundary interval, positive current means current flowing into the
plate P . If f1 and f2 are γ-harmonic, then so is af1 + bf2 for any a, b ∈ R.

Suppose ∂P = {P1, . . . , PK} and I = I1, . . . , IL. A vector x ∈ RK+L

is called feasible boundary data if there exists a γ-harmonic function with
v(Pk) = xk for each k and c(I`) = xK+` for each `. The space of all vectors
which are feasible boundary data will be denoted F .

Suppose we are given a network Γ with a fixed conductivity function γ.
We do not know γ, and we want to determine γ knowing only F . If γ can be
determined from F , then γ is called recoverable. If any conductivity function
γ can be recovered, we say the network Γ is recoverable. The problem of
recovering the conductances of Γ is called the inverse problem.

1.3 Paths and Connections

A path is a sequence of plates P1, . . . , PN such that Pn ∼ Pn+1; it may
equivalently be viewed as a sequence of junctures. A 1-connection α between
two boundary cells q1 and q2 is a path P1, . . . , PN with P1 = q1, PN = q2,
and all other Pn interior cells, such that Pi 6= Pj for all i 6= j. A path with
one boundary cell q is considered a connection from q to q. A k-connection
is a set of k disjoint 1-connections.

A network is connected if there exists a path between any two plates.
Here we do not assume the network is connected. However, we assume that
for every plate P , there exists a path from P to a boundary plate.

Suppose U and V are subsets of ∂P. Let M(U ,V) signify the largest k
such that there is a k-connection between U and V.

1.4 Subnetworks

Suppose U is an open proper subset of the region of embedding, such that
∂U consists of one or two nonintersecting, piecewise-smooth simple closed
curves. Suppose no junctures of Γ lie on ∂U . Suppose that each plate P of
Γ is either contained in U , it is contained in S \U , or ∂U divides P into two
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Figure 2: A layer of Γ.

or more smaller regions (called subplates). Suppose that for each subplate
Q, ∂U ∩Q is either empty or an interval of Q.

Then we can form a plate network Γ′ with region of embedding U , whose
plates are the plates and subplates of Γ contained in U . Γ′ is called a
subnetwork of Γ. A layer of Γ is subnetwork Γ′ such that

• the region of embedding U is bounded by two curves;

• Cinner(Γ) lies inside Cinner(Γ
′);

• either Cinner(Γ
′) and Cinner(Γ) are the same or they do not intersect;

• either Couter(Γ
′) and Couter(Γ) are the same or they do not intersect.

A partition of Γ into subnetworks is a collection of subnetworks Γ1, . . . ,ΓK
with regions of embedding S1, . . . , SK , such that Si ∩ Sj = ∅ for i 6= j and⋃
Sk = S.

Theorem 1.1. Let Γ1, . . . ,ΓK be a parition of Γ with feasible data sets
F1, . . . , FK . F of Γ can be determined from F1, . . . , FK .
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Proof. Any partition can be expressed in terms of partitions and subpar-
titions into two parts. Thus, by induction, it suffices to consider the case
where K = 2.

Suppose Γ is partitioned into Γ1 and Γ2. Let C be the curve or union
of curves ∂S1 ∩ ∂S2. Let P1, . . . , PN be the plates of Γ1 touching C and let
Q1, . . . , QN be the plates of Γ2 touching C. Let I1, . . . , IM and J1, . . . , JM
be the sets of boundary intervals of Γ1 and Γ2 which are subsets of C. (If
Pn and Qn form a boundary plate of Γ, then their boundary intervals in Γ1

and Γ2 are not included in {Im} or {Jm}.)
Let vectors x1 and x2 represent boundary data on Γ1 and Γ2. Let g1(x1)

be the restriction of x1 to P1, . . . , PN and I1, . . . , IM (We can think of re-
striction as a function). Define g2(x2) be function which restricts x2 to
Q1, . . . , QN and J1, . . . , JM and in addition changes the signs of the current
entries. Define h : F1 × F2 → RN+M by

h(x1,x2) = g1(x1)− g2(x2).

If h(x1,x2) = 0, the voltage on Pn is equal to the voltage on Qn. If
Pn and Qn form an interior plate of Γ, then the net current on the plate
Pn ∪Qn is zero. We assumed that x1 and x2 were boundary data for some
γ-harmonic functions f1 and f2 on Γ1 and Γ2. We can combine f1 and f2
into a γ-harmonic function f on Γ. Of course, if h(x1,x2) 6= 0, we cannot
find such a γ-harmonic function on Γ.

We can compute the boundary data for f from x1 and x2. For plates
other than Pn and Qn, this is obvious. Suppose Pn and Qn form a boundary
plate of Γ with boundary interval I. It is obvious how to find the voltage of
Pn ∪Qn. The current on I can be found from the boundary currents on Pn
and Qn. Hence, we can define a function w “restricting” x1 and x2 to the
boundary of Γ. Then F = w(h−1(0)).

Theorem 1.2. If a subnetwork of Γ is not recoverable, then Γ is not recov-
erable.

Proof. Suppose Γ has a nonrecoverable subnetwork. Let Γ1, . . . ,ΓK be a
partition of Γ where Γ1 is not recoverable. Let g be a function mapping the
sets F1, . . . , FK to the set F ; this function exists by the previous theorem.
Let L be the function mapping γ to F . Γ is recoverable if and only if L
is injective. Let γk be the restriction of γ to the junctures of Γk, and let
Lk(γk) be the function mapping γk to Fk. Then

L(γ) = g(L1(γ1), . . . , LK(γK)).
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Since Γ1 is not recoverable, we know L1 is not injective, and so L is not
injective either.

1.5 Electrical Similarity and Equivalence

Two networks Γ and Γ′ with conductivity functions γ and γ′ are electrically
similar if there is a one-to-one correspondence M mapping each boundary
plate or boundary interval of Γ to a boundary plate or boundary interval of
Γ′ such that

• P is an inner/outer boundary plate of Γ if and only if M(P ) is an
inner/outer boundary plate of Γ′;

• I is an inner/outer boundary interval of Γ if and only if M(I) is an
inner/outer boundary interval of Γ′;

• I is a boundary interval of P if and only if M(I) is a boundary interval
of M(P );

• M preserves the counterclockwise ordering of the inner/outer bound-
ary plates;

• The set F is the same for Γ, γ and Γ′, γ′.

They are called electrically equivalent if in addition

• Γ and Γ′ have the same region of embedding.

• For each boundary interval I, M(I) and I are the same curve.

The definitions of electrical similarity and equivalence for circular planar
networks are similar except that there is only one boundary curve.

Electrical similarity and equivalence are transitive. As a consequence of
Theorem 1.1,

Theorem 1.3. Let Γ1, . . . ,ΓK and Γ′1, . . . ,Γ
′
K be a partitions of Γ and Γ′

into subnetworks. If Γk and Γ′k are electrically equivalent for each k, then Γ
and Γ′ are electrically equivalent.

1.6 Comparison to Graph-Based Networks

The plate-based networks described here are similar to the graph-based elec-
trical networks discussed by [1] and others. In a planar vertex-based network
(and in particular, an annular planar network), we can construct the medial
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Figure 3: A plate network and equivalent graph-based network.

graph and color the cells white and black, such that each black cell contains
a vertex of the primal graph. The plates described here correspond to the
black cells.

There are important differences between the two constructions:

• A plate can touch both boundary curves, but a vertex must lie on one
or the other.

• Unlike a vertex, a plate can have multiple boundary currents.

• We discuss trivial connections: A plate is considered to be connected
to itself.

• We do not make the usual assumption that the network is connected,
only that each plate has a path to the boundary.

With these changes, we will be able to consider subnetworks which would
be too small to make sense in the graph-based system.

Graph-based and plate-based networks are algebraically equivalent when
a plate does not touch both boundaries. Thus, many of the results about
graph-based networks for [1] and others carry over to plate-based networks.

For instance, we know that the Dirichlet problem has a nearly unique
solution. That is, for given voltages on ∂P, the voltages on the network are
uniquely determined. Boundary currents for each plate are uniquely deter-
mined except when the plate touches both boundary curves, in which case,
the sum of its two boundary currents is uniquely determined. Similarly, the
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Neumann problem has a unique solution for plate networks, that is, for every
set of boundary currents which sum to zero on each connected component of
the network, there is a γ-harmonic function with those boundary currents,
which is unique up to an additive constant.

As with graph-based networks, we can discuss the Kirchhoff matrix : if
each plate is assigned an index, then we define a |P| × |P| matrix K by

κPQ =

{
−γ(PQ), P 6= Q∑

R∼P γ(PR), P = Q.

The response matrix Λ is the Dirichlet-to-Neumann map, that is, if φ is
a vector representing boundary voltages, then Λφ is a vector representing
(sums of) boundary currents for the γ-harmonic function with boundary
voltages φ. Λ is given by a Schur complement of K. The set F is equivalent
information to Λ

Minors of Λ are related to connections in the graph by the determinant-
connection formula (Lemma 3.12 of [1]). If U and V are disjoint sets of
boundary plates P1, . . . , Pk and Q1, . . . , Qk, and α is a k-connection between
U and V, then τα is the permutation of the symmetric group Sk such that
a 1-connection in α connects Pn and Qτ(n) for each n. We define Wα as
the collection of plates which are not used in any 1-connection of α and let
Dα = detK(Wα;Wα). The determinant-connection formula says that

det Λ(U ;V) · detK(intP; intP) = (−1)k
∑
τ∈Sk

sgn(τ)
∑
α

τα=τ

∏
PQ∈Jα

γ(PQ)Dα,

where the second sum is taken over k-connections which exist between U
and V.

2 Geodesics and Network Modifications

2.1 Geodesics and Lenses

Suppose ∂P is the boundary of a plate P and T is the union of the boundary
intervals. The junctures of P divide ∂P \T into smaller curves, called edges.
At a juncture y, four edges meet (two edges from each of two plates). If
these edges are eA, eB, eC , and eD in counterclockwise order about y, then
eA is opposite eC and eB opposite eD. Two edges are adjacent if they share
a juncture.

Suppose that e1, e2, . . . , eK is a sequence of edges such that ei 6= ej for
all i 6= j and ek is opposite ek+1 for all k. If either
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Figure 4: Some geodesics.
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Figure 5: Types of geodesics.

Type 0 Type 1 Type 2

• e1 touches a boundary curve and eK touches a boundary curve, or

• e1 is opposite eK ,

then e1 ∪ e2 ∪ · · · ∪ eK is called a geodesic.
The intersection between two geodesics is also called a crossing. There

are three types of geodesics:

• Type 0 geodesics are self-loops with no endpoints on a boundary curve.

• Type 1 geodesics have both endpoints on one boundary curve.

• Type 2 geodesics have one endpoint on each boundary curve.

G0, G1, and G2 signify the collections of type 0, type 1, or type 2 geodesics.
Type 1 geodesics are further divided into type inner (Ginner) and type 1 outer
(Gouter) according to where their endpoints are.

When parametrizing a geodesic, we assume the following: A type 1 or
type 2 geodesic g can be parametrized by a continuous function φ : [0, 1]→
C. Assume φ(0) and φ(1) are the endpoints of g and φ is injective except at
self-intersections of g. When parametrizing a type 0 geodesic, φ(0) = φ(1)
and φ is injective on [0, 1) except at self-intersections of g.

Suppose e1, . . . , eK is a sequence of edges with ei 6= ej for each i 6= j,
ek and ek+1 are adjacent for each k, and e1 is adjacent to eK . The curve
e1 ∪ · · · ∪ eK is called a lens if one of the following conditions is satisfied:

• In a zero-pole lens, each ek is opposite ek+1 and e1 is opposite ek.

• In a one-pole lens, each ek is opposite ek+1, but e1 and ek are not
opposite. The juncture between e1 and eK is the pole of the lens.
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Figure 6: A two-pole lens.

• In a two-pole lens, each ek is opposite ek+1 for k 6= J ; e1, eK and eJ ,
eJ+1 are not opposite. The junctures between e1, eK and eJ , eJ+1 are
the poles.

A lens is a closed curve formed by arcs of one or two geodesics.

2.2 Y -∆ Transformations

A wye (or Y ) is a circular planar network with four plates, P0, P1, P2, P3

such that the boundary plates are P1, P2, and P3, and the junctures are
P0P1, P0P2, and P0P3. A delta (or ∆) is a circular planar network with
three plates Q1, Q2, Q3; all the plates are boundary plates, and all the
plates are adjacent.

Given a wye, it is always possible to find an electrically equivalent delta
and vice versa. Suppose that in the wye, γ(P0P1) = a, γ(P0P2) = b, and
γ(P0P3) = c, and that in the delta, γ(Q2Q3) = a′, γ(Q1Q3) = b′, and
γ(Q1Q2) = c′. Then the wye and the delta are electrically equivalent (with
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Figure 7: A wye and a delta.

P1

P2

P3

P0
a

b

c

g1

g2

g3

Q1

Q2

Q3

a′

b′

c′

g1

g2

g3

M(Pj) = Qj for j = 1, 2, 3) if and only if

a′ =
bc

a+ b+ c
, b′ =

ac

a+ b+ c
, c′ =

ab

a+ b+ c

if and only if

a =
a′b′ + b′c′ + a′c′

a′
, b =

a′b′ + b′c′ + a′c′

b′
, c =

a′b′ + b′c′ + a′c′

c′
.

Suppose Γ is a network with a subnetwork Σ which is a wye. Let Γ′ be a
network obtained from Γ by replacing Σ with a delta Σ′. The modifications
changing Γ to Γ′ and Γ′ to Γ are called Y -∆ transformations.

A Y -∆ transformation may produce a network which does not fit our
original definition of a plate network because multiple junctures join the
same two plates or a plate has a self-juncture. For the purposes of this
section, we extend our definition to allow such networks.

Two networks are Y -∆-equivalent if one can be transformed into the
other by Y -∆ transformations. If Γ and Γ′ are Y -∆ equivalent and we are
given the conductivity function γ, we can compute γ′. As a result, Γ is
recoverable if and only if Γ′ is recoverable.

A Y -∆ transformation alters the geodesics by changing the order in
which they intersect one another. In a Y or ∆ subnetwork, three geodesics
meet; call them g1, g2, g3. A Y -∆ transformation moves the crossing of g1
and g2 to the other side of g3.

2.3 Juncture Removals and Trivial Modifications

A single-juncture network is a circular planar (sub)network with two plates,
and one juncture, and one boundary interval on each juncture.
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Figure 8: Juncture removals.

Contraction: −→

Deletion: −→

A juncture deletion removes a juncture from the network by replacing a
single-juncture subnetwork with a network with two plates, one boundary
interval on each plate, and no juncture. A juncture contraction replaces a
single-juncture subnetwork with a network with one plate which has two
boundary intervals and no junctures. Both these transformations are called
juncture removals.

If two geodesics meet a juncture, then a juncture removal uncrosses
them. If the geodesics g1 and g2 in the original network had endpoints x1
and y1, x2 and y2 respectively, then the geodesics in the modified network
have endpoints x1 and y2, x2 and y1.

If a plate has a self-juncture, no current can ever flow across the juncture.
Thus, changing the conductance of the juncture will not affect F , so the
network is not recoverable. Deleting the juncture while keeping all other
conductances the same will produce an electrically equivalent network.

An interior plate with only one juncture is called an interior spike. No
current can flow across the juncture, so the network is not recoverable,
and contracting this juncture (or contracting the spike) will produce an
electrically equivalent network.

A parallel network is circular planar network in which there are two
plates, both of which are boundary plates, and two junctures between the
plates. A parallel network with conductances a and b is electrically equiv-
alent to a network with only one juncture, with conductance a + b. A
parallel network is not recoverable because any conductances a′ and b′ with
a′ + b′ = a+ b will produce the same F .

A series network is a circular planar network with three plates, P0, P1,
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and P2, where P1 and P2 are boundary plates, and there are two junctures
P0P1 and P0P2. A series network with conductances a and b is electri-
cally equivalent to a network with only two plates and one juncture, with
conductance ab/(a + b). A parallel network is not recoverable because any
conductances a′ and b′ with a′b′/(a′ + b′) = ab/(a+ b) produce the same F .

Trivial modifications are the following network transformations:

• Deleting a self-juncture.

• Contracting an interior spike.

• Replacing a parallel with a single-juncture subnetwork.

• Replacing a series with a single-juncture subnetwork.

Self-junctures and interior spikes correspond to empty one-pole lenses.
Parallel and series connections correspond to empty two-pole lenses.1 A
trivial modification removes the lens.

A lens is called removable if it can removed from the network by Y -∆
transformations and trivial modifications. Any network on which we can
perform a trivial modification is unrecoverable (in fact, the inverse problem
has infinitely many solutions). Since Y -∆ transformations preserve recov-
erability properties, we know that any network with removable lenses is
unrecoverable.

2.4 Lens Removal I

Because removable lenses make a network unrecoverable, we want to deter-
mine what kinds of lenses are removable. We begin with the easiest case.
A lens is called simply connected if it is contained within some simply con-
nected subset of the region of embedding.

Theorem 2.1. Every simply connected lens is removable.

Proof. A simply connected lens is contained within some subnetwork in a
simply connected region. Theorem 8.3 of [1] shows that all lenses can be
removed from a circular planar network. The proof is similar but simpler
than the later lens removal arguments of this paper.

1An empty zero-pole lens would either be an interior plate with no junctures or a
junctureless hole in a plate. We assume that these configurations do not exist in the
original network, and we know they cannot be produced by Y -∆ transformations.
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Figure 9: Trivial modifications.

−→

−→

−→

−→
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Figure 10: Proof of Lemma 2.2.

S[−1] S[1] S[2]S[0]
g[0]

Lemma 2.2. A self-intersecting type 2 geodesic forms a simply connected
lens.

Proof. We will use the universal cover of the annulus, which is a strip ex-
tending infinitely to the left (clockwise) and right (counterclockwise). For
a geodesic g or region R in the annulus, we use choose one “copy” in the
universal cover to be g[0] or R[0], and we index the other “copies” from left
to right by the integers as g[n] or R[n].

Suppose g is a self-intersecting type 2 geodesic with parametrization φ
such that φ(0) is on the inner boundary and φ(1) is on the outer boundary.
Let φ0 be the corresponding parametrization of g[0] in the universal cover.
Choose the smallest t1 such that φ([0, t1]) intersects itself and the t0 ∈ (0, t1)
such that φ(t0) = φ(t1). Let A = φ([0, t0]) and B = φ([t0, t1]). Let A[0] and
B[0] be the corresponding arcs of g[0] in the universal cover.

If the self-loop φ([t0, t1]) does not encircle the hole, it is a simply con-
nected lens. Suppose φ([t0, t1]) encircles the hole, and assume without loss
of generality that it is counterclockwise. In the universal cover, A[0], B[0],
and A[1] together with the inner boundary enclose a region S[0]. For small
positive ε, φ0(t1 +ε) ∈ S[1]. To reach the outer boundary, φ0 must exit S[1],
but it will form a simply connected lens unless it exits along A[2], entering
S[2]. Continuing inductively, we see φ0 must enter S[n] for all positive n,
which is a contradiction.

Lemma 2.3. If a type 1 inner and a type 1 outer geodesic intersect, they
form a simply connected lens.

Proof. Suppose g1 ∈ Ginner with parametrization φ and g2 ∈ Gouter with
parametrization ψ intersect. Let t∗ be the first time ψ(t) intersects g1 and
let u∗ be the value such that φ(u∗) = ψ(t∗).

Since ψ([0, t∗)) does not intersect g2, we can assume without affecting
the lenses formed by g1 and g2 that ψ([0, t∗]) does not intersect itself. If
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φ([0, u∗]) intersects itself, we can join φ([0, u∗]) and φ([0, t∗]) into a self-
intersecting curve from the inner boundary to the outer boundary, which
must have a simply connected lens by the previous lemma. No pole of this
lens can lie on ψ([0, t0]) by assumption, so g1 forms a simply connected lens.
Therefore, suppose φ([0, u∗]) does not intersect itself.

If g1 is not self-intersecting, the proof is easy, so assume g1 is self-
intersecting. Choose the smallest u1 such that φ([0, u1]) is self-intersecting.
Assume the loop winds counterclockwise; the other case is similar. Let
u0 be the number in [0, u0) with φ(u0) = φ(u1). Let A = φ1([0, u0]) and
B = φ2([u0, u1]). In the universal cover, A[0], B[0], and A[1] enclose a region
S[0]. For small positive ε, ψ0(t

∗ + ε). As in the previous lemma, ψ0 must
eventually hit the outer boundary, but cannot exit S[n] without forming a
simply connected lens except by passing across A[n+ 1] into S[n+ 1].

Lemma 2.4. If two type 2 geodesics g and h intersect without forming a
simply connected lens, then g always crosses h in the same direction (always
counterclockwise or always clockwise).

Proof. Suppose g[0] crosses h[0] counterclockwise; the other case is similar.
Let S[n] be the fundamental domain between h[n] and h[n + 1]. After
entering S[0], g[0] cannot exit along h[0] without forming a simply connected
lens. Thus, it must either reach the outer boundary from S[0] or enter S[1].
By the same argument, if g[0] enters S[n], it cannot exit clockwise across
h[n]. Eventually, g[0] reaches the outer boundary, and it has never crossed
any h[n] clockwise.

Definition 2.5. Let i(g) be the number of self-intersections of a geodesic
or curve g. Let i(g1, g2) for g1 6= g2 be the number of intersections between
g1 and g2.

Definition 2.6. A type 0 geodesic can be parametrized in two directions
and has a well-defined winding number around the hole for each one. Let
w(g) be the nonnegative winding number.

Lemma 2.7. If a type 0 geodesic g does not form a simply connected lens,
then w(g) = i(g) + 1.

Proof. Let x be a point on g such that two curves C1 and C ′1 connect the
inner boundary to x without intersecting g or each other except at x. Let
y 6= x be a point on g such that two curves C2 and C ′2 connect the outer
boundary to x without intersecting g or each other except at y. Parametrize
g by a function φ with φ(0) = φ(1) = x. Let t0 = φ−1(y) and let h =
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Figure 11: Proof of Lemma 2.7.

h

C2

C1

h′

C ′2

C ′1

φ([0, t0]) and h′ = φ([t0, 1]). C1, C
′
1, h, and h′ meet at x. Assume without

loss of generality that C1 is opposite h and C ′1 is opposite h′ at x. Assume
also that at y, C2 is opposite h and C ′2 is opposite h′.

Let C = C1 ∪ h ∪ C2 and C ′ = C ′1 ∪ h′ ∪ C ′2. If C and C ′ form a simply
connected lens, then so does g. This is obvious if the poles of the lens are
not x or y. If x or y is the pole of a lens of C and C ′ and the other pole is
not y or x, then there is a simply connected one-pole lens in g. If x and y
are the poles of a simply connected lens, then g forms a simply connected
zero-pole lens.

Suppose g does not form a simply connected lens; then neither do C
and C ′. By Lemma 2.2, C and C ′ do not have self-intersections, so i(g) =
i(C,C ′) − 2. By Lemma 2.4, one of C and C ′ always crosses the other
counterclockwise, so w(g) = i(C,C ′)− 1.

20



Before removing other types of lenses, we must discuss empty boundary
triangles and stubs.

2.5 Empty Boundary Triangles and Stubs

An empty boundary triangle is a triangle formed by two edges of plates and
an interval of a boundary curve. For an empty boundary triangle, there are
two possibilities:

1. The triangle is a plate. In this case, the plate is called a boundary
spike.

2. The triangle is adjacent to two plates. Then, the juncture at the vertex
of the triangle is called a boundary juncture.

A type 1 geodesic is called empty if it does not intersect any other geodesics.
A stub is a boundary plate which touches only one boudary curve and is not
adjacent to any other plates; its edge is an empty geodesic. Since we assumed
that a plate intersects the each boundary curve in at most one interval, there
cannot be an empty geodesic which is not the edge of a stub.

Here we prove the existence of an empty boundary triangles or stubs in
certain families of geodesics, which is an essential step for the rest of this
paper’s arguments.

Lemma 2.8. Suppose g be a type 1 inner geodesic which does not form a
simply connected lens. Suppose that at a juncture point y, two opposite edges
e1 and e2 are in g and another edge e3 touches the inner boundary. Then
e3 forms a triangle with some arc of g and some arc of the inner boundary.

Proof. The juncture point y splits g into two segments (possibly intersect-
ing). Choose a curve C which begins at the outer boundary and ends at a
non-juncture point z on g such that C only intersects g once. Parametrize
g by φ such that φ(t0) = y and φ(t1) = z with t0 < t1. Then C ∪ φ([0, t1])
forms a curve from the inner boundary to the outer boundary. By Lemma
2.2, the curve cannot intersect itself without forming a simply connected
lens, but we know no pole of such a lens can lie on C. Hence, φ([0, t1]) does
not intersect itself, so φ([0, t0]) and e3 form a triangle with some arc of the
boundary.

Definition 2.9. A family of geodesics F is connected if

• For any two points x on g ∈ F and y on h ∈ F , there is a path from
x to y along arcs of geodesics in F .
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• If g and h intersect and g ∈ F , then h ∈ F .

Theorem 2.10. Suppose F is a family of type 1 inner and type 2 geodesics
with no simply connected lenses and at least one intersection or at least
one type 1 inner geodesic. There is an empty boundary triangle or empty
geodesic on the inner boundary.

Proof. First, consider the case where the family of geodesics is connected.
Let g0 be a geodesic which intersects some other geodesic. By hypothesis,

g0 has one endpoint x0 on the inner boundary. Orient g0 so that the positive
direction moves from x to g0’s other endpoint. Let y0 be the first juncture
along g0, let g1 be the other geodesic at y0, and let x̂0y0 be the open arc of
g0 from x0 to y0. If g1 is type 2, it cannot intersect itself, and so it must
form a triangle on the inner boundary with g0. If g1 is type 1, then by the
previous lemma, it forms a triangle with g0.

In either case, let T0 be the triangle, let x1 be an endpoint of g1 on the
inner boundary which is the vertex of the triangle, and let x1y0 be the open
arc of g1 from x1 to y0.

If T0 is not empty, let y1 be the first intersection point along g1, and let
g2 be the other geodesic intersecting g1. There is an arc s2 of g2 which lies
inside T0 and has both endpoints on the boundary of T1. Since s2 cannot
intersect x0y0 and it cannot intersect x1y0 more than once without forming
a simply connected lens, s2 must have its other endpoint on R0. Letting
x2y1 = s2, we have a triangle T1 formed by x2y1, x1y1, and an arc of the
boundary curve R1, and T1 ( T0.

If T1 is not an empty boundary triangle, repeat the above construction
to find T2, T3, . . . . There are only finitely many junctures, so eventually Tn
will be an empty boundary triangle.

Now consider the case where there are multiple connected families of
geodesics. Since one them must have an intersection or type 1 inner geodesic,
one of them has a boundary triangle which is empty with respect to other
geodesics in that family. If the triangle is not completely empy, then it
contains some other connected family of geodesics (which must all be type
1). In that case, we can repeat the argument. We will eventually reach an
empty boundary triangle or empty geodesic.

Corollary 2.11. Suppose F is a lensless family of geodesics in a simply
connected region with at least one crossing. Suppose R is an arc of the
boundary curve such that every geodesic has an endpoint on R. Then there
is an empty boundary triangle or empty geodesic on R.
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Proof. Suppose g and h intersect. Then an arc of g, an arc of h, and an arc
of R form a triangle. By the previous argument, this triangle must contain
an empty boundary triangle or empty geodesic.

Corollary 2.12. Suppose F is a family of type 1 and type 2 geodesics with
no simply connected lenses at least one type 1 inner geodesic. There is an
empty boundary triangle or empty geodesic on the inner boundary.

Proof. By Lemma 2.3, we know the type 1 inner and type 1 outer geodesics
do not intersect. We can construct a curve which partitions the network
into two layers, one of which contains all the type 1 inner geodesics. Then
apply the lemma to the subnetwork.

2.6 Lens Removal II

Definition 2.13. For a point x, let w(x) be the sum of the winding numbers
about x of all type 0 geodesics, parametrized counterclockwise.

Lemma 2.14. Suppose a type 2 geodesic g is parametrized by φ with φ(0) on
the inner boundary and φ(1) on the outer boundary. If there are no simply
connected lenses, then w(φ(t)) is weakly decreasing.

Proof. Consider the case with only one type 0 geodesic h. Let t0 and t1
be the first and last times φ crosses h; let x = φ(t0) and y = φ(t1). Then
h can be broken into two curves A and B which each begin at x and end
at y, parametrized by ψA and ψB. By the argument for Lemma 2.7, we
know A and B are not self-intersecting and by the argument of Lemma 2.4,
we know that one of them, say ψA, always crosses g counterclockwise and
the other, ψB, always crosses g clockwise. Orienting h counterclockwise
gives the same orientation as ψA and the opposite orientation from ψB,
which implies h always crosses g counterclockwise. Hence, h always crosses
g counterclockwise, which implies w(φ(t)) is weakly decreasing.

If there are several type 0 geodesics h1, . . . , hN , then w(φ(t)) is the sum
of weakly decreasing functions wn(φ(t)), where wn(x) is the winding number
of hn about x.

Definition 2.15. LetA be a continuous oriented curve consisting of oriented
arcs A1, . . . , AN of type 0 geodesics h1, . . . , hN . We say A is a counterclock-
wise (respectively clockwise) curve if the orientation of each An matches the
counterclockwise (respectively clockwise) orientation of hn.

Lemma 2.16. If a type 1 and type 0 geodesic intersect, there is a removable
lens.
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Proof. Assume there are no simply connected lenses. Suppose a type 1 inner
geodesic intersects a type 0 (the other case is similar). The type 0 geodesics
h0, . . . , hN divide the region of embedding into simply connected or annular
subregions S1, . . . , SK . Order the subregions by weakly decreasing w(Sk)
(“innermost to outermost”). S0 is the region touching the inner boundary,
and SK is the region touching the outer boundary.

For 0 < k < K, I claim that ∂Sk oriented positively can be partitioned
into a counterclockwise curve and a clockwise curve. Consider uncrossing all
the type 0 geodesics without changing the orientation of any arc. At each
intersection x, four edges e1, e2, e3, and e4 meet. If e1 comes before e2 in
counterclockwise order along one geodesic, and e3 comes before e4 on the
other, then uncross to join e1 with e4 and e2 with e3. When all crossings
are removed, the type 0 geodesics are nonintersecting simple closed curves
which each wind around the hole once. In the modified network, the claim is
clearly true, (although the subregions have changed), and the claim remains
true when we reverse each uncrossing.

Let g1, . . . , gM be the type 1 inner geodesics which intersect type 0
geodesics. Let J be the first positive number such that

⋃J
k=0 Sk fully con-

tains some gm. We will show that all crossings of type 1 and type 2 geodesics
can be removed from S1, . . . , SJ−1.

If 1 < J , divide ∂S1 into a clockwise curve A and a counterclockwise
curve B. All geodesics which enter S1 across A must exit across B. Consider
a subnetwork Σ1 whose region of embedding lies inside S1 and which contains
all the junctures inside S1. The boundary of Σ1 consists of two curves A′1
and B′1 which cross the same geodesics as A1 and B1 respectively. By either
Lemma 2.10 or Corollary 2.11, Σ1 has an empty boundary triangle along A′1
(it cannot have a stub because there are no “type 1” geodesics in Σ1). This
implies that two geodesics in Γ form an empty triangle with A1. A1 must
consist of a single geodesic arc by construction of S1. Thus, the crossing at
the vertex of the triangle can be moved out of S1 by a Y -∆ transformation.

Continue the process until all crossings are removed from S1. Then
consider S2, A2, and B2. By the same argument, two geodesics g1 and g2
which cross within S2 form an empty triangle with A2. There may be a
crossing of some hn1 and hn2 on the side of the triangle along A2. In that
case, because there are no crossings within S1, the crossing of hn1 and hn2

can be freely moved across g1 or g2, so that the A2-side of the triangle formed
by g1, g2, and A2 contains no crossings. Move the crossing of g1 and g2 out
of S2 and into either S0 or S1. If the crossing is in S1, move it into S0 by
the procedure of the previous paragraph.

Continue inductively until S1, . . . , SJ−1 contain no crossings. Let ΣJ be
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Figure 12: The regions S1, . . . , SK in Lemma 2.16. Darker color indicates
higher w(Sk).

the subnetwork inside SJ . By Lemma 2.12, ΣJ will always have an empty
boundary triangle or empty geodesic on A′J . Move crossings out of ΣJ as
in the previous paragraph until there is an empty geodesic g0 of ΣJ with
endpoints on A′J , and the AJ -side of the “biangle” formed by g0 and AJ
contains no crossings. The lens can be removed by a trivial modification.

Lemma 2.17. If two type 0 geodesics intersect, there is a removable lens.

Proof. Let F1, . . . ,FK be the connected families of type 0 geodesics (where
“connected families” is defined by considering only type 0 geodesics, not
type 1 or 2). Let FJ be the innermost family with more than one geodesic.
Consider a layer Σ which contains FJ and no other Fk.

Let h be a geodesic of FJ such that there exists a curve C from some
point of h to the inner boundary of Σ which does not cross any other type 0
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geodesic. Construct a curve D which begins at the inner boundary, crosses
h once, crosses back across h, then returns to the inner boundary, such that
D does not intersect a type 0 geodesic anywhere else and D partitions Σ
into two subnetworks. Then one of the subnetworks Σ′ is annular and has a
type 1 geodesic h′ which is an arc of h. In Σ′, h′ is a type 1 geodesic which
intersects a type 0 geodesic, so Σ′ has a removable lens.

Theorem 2.18. A network with no removable lenses can be partitioned into
three layers such that

• the first layer contains all type 1 inner geodesics;

• the second layer contains all type 0 geodesics;

• the third layer contains all type 1 outer geodesics.

Proof. It follows from the previous lemmas.

2.7 Layered Form

Definition 2.19. A network is in layered form if it can be partitioned into
four layers such that

• the first layer contains all type 1 inner geodesics;

• the second layer contains all crossings between type 2 geodesics;

• the third layer contains all type 0 geodesics;

• the fourth layer contains all type 1 outer geodesics.

Theorem 2.20. A network with no removable lenses can be put into layered
form by Y -∆ transformations.

Proof. By the previous theorem, we only have to show that all crossings of
type 2 geodesics can be moved into one layer. Assume there are at least two
type 2 geodesics (there must be an even number).

Consider moving them out of the layer with type 1 inner geodesics. For
each type 1 geodesic in the universal cover, let R(g[n]) be the bounded region
enclosed by g[n] and one of the boundary curves. Choose a g such that no
geodesic is fully contained in R(g[0]). This is possible because otherwise
we could construct an infinite sequence of geodesics gn with R(gn[0]) (
R(gn−1[0]). If R(g[0]) contains no crossings of type 2 geodesics, then g[0] is
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Figure 13: Geodesics of a network in layered form.
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irrelevant for the proof, and we can work on a subnetwork which is outside
of R(g[n]) for all n.

So suppose R(g[0]) contains some crossings. Consider a subnetwork Σ in-
side R(g[0]) which contains all the junctures in the region. In Σ, all geodesics
have one endpoint on the upper boundary and one on C. By Corollary 2.11,
there is an empty boundary triangle of Σ along C, which means that in Γ
some geodesics form a triangle with g. By a Y -∆, we can move the crossing
out of R(g[0]). The crossing will not enter R(g[n]) for any integer n and type
1 geodesic g. The Y -∆ transformation in the universal cover corresponds to
one in the annulus, and so we can apply the same transformation at each
period in the universal cover. By repeating this argument, we can move all
crossings out of R(g[0]), which includes crossings of type 2 geodesics.

Repeat the last two paragraphs until crossings of type 2 geodesics are
removed from R(g[0]) for all g ∈ Ginner. Then apply the same argument to
the outer boundary. To move the crossings of type 2 geodesics inside the
layer of type 0 geodesics, use the same argument as in Lemma 2.16.

3 The Relationship between the Two Boundaries

The cut-point lemma of [1] is a geometric statement relating connections and
geodesics, but it has clear algebraic implications by way of the determinant-
connection formula. Ian Zemke in fact uses linear algebra to prove a cut-
point lemma for infinite graphs [5]. Here I develop an analogue of the cut-
point lemma in which the partition of the boundary separates the inner and
outer boundaries. Both geometric and algebraic statements are proved using
partitions into elementary networks.

3.1 Solution Spaces

Let P1, . . . , PN be the plates of Pinner in counterclockwise order and let
I1, . . . , IN be the corresponding inner boundary intervals. For each γ-harmonic
function f , let finner be the restriction of f to Pinner and Iinner (finner assigns
a voltage to each Pn and a current to each In). Let finner be written as a vec-
tor in x ∈ R2|PI | where x1, x2, . . . , xN represent the voltages on P1, . . . , PN ,
and xN+1, xN+2, . . . , x2N represent the currents on i1, . . . , iN .

A vector x ∈ R2N is called feasible inner boundary data if there exists a γ-
harmonic function f with finner = x. Let Finner be the set of vectors which
are feasible inner boundary data, and let Fouter, the set of feasible outer
boundary data, be defined similarly. A vector x ∈ Finner and y ∈ Fouter

are compatible if there exists a γ-harmonic function with finner = x and
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fouter = y. An x ∈ Finner is called zero-compatible if it is compatible with
0 ∈ Fouter, and a similar definition holds for y ∈ Fouter. Let Zinner be the
set of zero-compatible vectors in Finner and let Zouter be the set of zero-
compatible vectors in Fouter.

Obviously, Finner, Fouter, Zinner, and Zouter can be determined from F .
All these sets are examples of what I will call solution spaces for the network,
and I will discuss other solution spaces later. An immediate, purely algebraic
fact about these solution spaces is

Theorem 3.1. dimFinner − dimZinner = dimFouter − dimZouter.

Proof. Let N = |Pinner| and M = |Pouter|. Finner and Zinner are linear sub-
spaces of R2N and Fouter and Zouter are linear subspaces of R2M . Let Z⊥inner
be the orthogonal complement of Zinner in R2N with respect to the stan-
dard basis and inner product and let Z⊥outer be the orthogonal complement
of Zouter in R2M . Let U = Z⊥inner ∩ Finner and V = Z⊥outer ∩ Fouter.

There is a one-to-one correspondence between vectors in U and vectors
in V . For suppose x ∈ U . Then there is a γ-harmonic function f such that
finner = x. Then u = fouter is in Fouter and can be written uniquely as the
sum of some v ∈ Zouter and some y ∈ Z⊥outer. Since u and v are in Fouter,
so is y, and so y ∈ V . To show y is unique, suppose y1 and y2 are both in
V and compatible with x. Then y1 − y2 is compatible with zero, and it is
in V because V is a linear subspace of R2N . Thus, y1 − y2 is in both Zouter

and Z⊥outer. Hence, y1 = y2.
A similar argument shows that for each y ∈ V , there is a unique com-

patible x ∈ U . Thus, there is a bijection between U and V . This bijection
is obviously linear because if x1,x2 ∈ U have compatible vectors y1,y2 ∈ B,
then ax1 + bx2 ∈ U is compatible with ay1 + by2 ∈ V because the sum of
two γ-harmonic functions is γ-harmonic. Therefore, dimU = dimV . But
dimU = dimFinner − dimZinner and dimV = dimFouter − dimZouter.

Statements about solution spaces like Finner, Zinner, Fouter, and Zouter

have interpretations in terms of the response matrix. For example, if no
plate touches both boundaries, then Pinner and Pouter are a partition of ∂P
and we can write Λ in block form as

Λ =

(
ΛII ΛIO
ΛOI ΛOO

)
,

where the first row/column deals with the inner boundary and the second
row/column deals with the outer boundary. Then
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Proposition 3.2.

dimZinner = dim ker ΛOI , dimFinner = |Pinner|+ rank ΛOI .

Proof. A vector x = (xv,xc) is in Zinner if and only if(
ΛII ΛIO
ΛOI ΛOO

)(
xv
0

)
=

(
xc
0

)
,

which is true if and only if xv ∈ ker ΛOI and xc = ΛIIxv. Hence, there is
a bijective linear transformation from x ∈ Zinner and xv ∈ ker ΛOI , so that
dimZinner = dim ker ΛOI .

Let U be the set of all y such that(
ΛII ΛIO
ΛOI ΛOO

)(
yv
0

)
=

(
yc
∗

)
.

Then U is a linear subspace of R2N , where N = |Pinner|. For any yv, there is
a unique yc which satisfies the above equation, namely yc = Λiiyv. Hence,
dimU = N . Let V be the set of all z = (0, zc) such that(

ΛII ΛIO
ΛOI ΛOO

)(
0
w

)
=

(
zc
∗

)
for some w. V is isomorphic to the image space of ΛOI , so dimV = rank ΛOI .
Every vector in Finner can be uniquely written as y + z where y ∈ U and
z ∈ V . Hence, dimFinner = |PI |+ rank ΛOI .

3.2 Partition into Elementary Networks

To get deeper results about solution spaces and connections, we can partition
the network into specific types of subnetworks. An elementary network is
any of the following four types:

1. An elementary boundary-juncture network is a network in which

• every plate touches both boundaries,

• there is exactly one juncture.

2. An elementary spike network is a network in which

• every plate touches the inner boundary except one plate P

• every plate touches the outer boundary except one plate Q
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• there is a juncture point between P and Q

• there are no other junctures.

3. An elementary inner-stub network is a network in which

• every plate touches the inner boundary

• every plate except one (a stub) touches the outer boundary

• there are no junctures.

4. An elementary outer-stub network is a network in which

• every plate touches the outer boundary

• every plate except one (a stub) touches the inner boundary

• there are no junctures.

5. A trivial network is a network in which

• Every plate touches both boundaries.

• There are no junctures.

6. A zigzag network is a network in which

• There are 2N plates, each of which touches exactly one boundary
curve.

• The inner boundary plates are P1, . . . , PN in counterclockwise
order, the outer boundary plates are Q1, . . . , QN .

• The junctures in the network are PnQn and PnQn+1 for n =
1, . . . , N with indices reduced modulo N .

Any network can be partitioned into elementary networks of the first
four types, but for our purposes, the most important fact is

Lemma 3.3. Suppose Γ has no removable lenses and all geodesics are type
1 inner or type 2. Then Γ can be partitioned into elementary boundary-
juncture, spike, and inner-stub networks. The number of inner-stub net-
works is equal to the number of type 1 geodesics.

Proof. Let Σ0 = Γ. We will define subnetworks Σ0,Σ1, . . . inductively. Each
Σm will be partitioned into an elementary network Γm+1 and a layer Σm+1,
where Γm+1 is next to the inner boundary of Σm and Σn+1 is next to the
outer boundary.
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Figure 14: Elementary networks.

Boundary-juncture Spike

Inner-stub Outer-stub

Trivial network Zigzag
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If Σm is not the trivial network, there are three cases. Let Sm be the
region of embedding for Σm. The cases are not mutually exclusive, but
they should be considered in the order given here (if more than one case is
satisfied, follow the directions on the case listed first):

1. There is a stub on the inner boundary. Let P be the stub. Let C be
the inner boundary of Sm \ P . Choose C ′ on the outside of C and so
close to C that no junctures lie between C and C ′ and C ′ does not
intersect any edges not intersected by C. Then C ′ partitions Σm into
Γm+1 and Σm+1, where Γm+1 is an inner-stub network.

2. There is a boundary-juncture on the inner boundary. Let T be the in-
ner boundary triangle at the juncture, and let C be the inner boundary
of Sm \ T . Construct C ′, Γm+1, and Σm+1 from C as in the previous
case. Γm+1 is an elementary boundary-juncture network.

3. There is a spike on the inner boundary. Let P be the spike and Q be
the adjacent plate. We assume since P is a spike that it does not touch
the outer boundary. Since we assumed there was no inner-boundary
juncture, we know Q does not touch the inner boundary. Let C be the
inner boundary of Sm \ P and construct Γm+1 and Σm+1. Γm+1 is a
spike network.

These are the only three cases because by Theorem 2.10, a nontrivial network
with only type 1 inner and type 2 geodesics has an empty boundary triangle
or stub and because if Σm has only type 1 inner and type 2 geodesics, then
the same is true of Σm+1.The construction will continue until ΣM is the
trivial network. Then Γ1, . . . ,ΓM−1,ΣM−1 are the desired partition.

The number of geodesic endpoints on each boundary is twice the number
of plates. If K is the number of inner-stub networks, then there are K
more plates on the inner boundary than the outer boundary. Since all the
geodesics are type 1 inner or type 2, the number of type 1 inner geodesics
is K, which is the same as the number of inner-stub networks.

3.3 Geodesics and Connections

Lemma 3.4. Suppose Γ has no removable lenses, and all geodesics are type
1 inner or type 2. Then 2 ·M(Pinner,Pouter) = |G2|. The same is true if all
geodesics are type 1 outer and type 2.
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Figure 15: A network partitioned into elementary boundary-juncture, spike,
and inner-stub networks.

34



Proof. Consider the case where all geodesics are type 1 inner or type 2. The
other case is symmetrical.

Γ can be partitioned into elementary boundary-juncture, spike, and
inner-stub networks Γ1, . . . ,ΓM . Let P1,1, P2,1 . . . , PN,1 be the outer bound-
ary plates. Define sequences {P1,k}, . . . , {PN,k} inductively as follows:

For each n, k, let Γn,k be the innermost subnetwork of the partition which
includes a subplate of Pn,k. Then Γn,k must be a spike, boundary-juncture,
or inner stub network. If Pn,k touches the inner boundary of Γn,k, then Pn,k
touches the inner boundary, and we let Pn,k be the last plate of its sequence.
Otherwise Γn,k is a spike network and Pn,k has a juncture in Γn,k. We let
Pn,k+1 be the plate which meets Pn,k at this juncture.

The sequences {P1,k}, . . . , {PN,k} define N disjoint paths from the outer
to the inner boundary. They form an N -connection using all the plates of
the outer boundary, so there cannot be any larger k-connection. N is half
the number of type 2 geodesics.

Lemma 3.5. Suppose Γ has no removable lenses, and all geodesics are type
2 or type 0. Then 2 ·M(Pinner,Pouter) = |G2|.

Proof. As in the proof of Lemma 2.16, we can uncross the type 0 geodesics,
so as to preserve the orientation of each arc of a type 0 geodesic. We are
left with a network Γ′ in which all the type 0 geodesics are simple closed
curves winding once about the hole. Removing junctures cannot create
any connections, only break them. Hence, if we can show that Γ′ has a
k-connection between all vertices on the inner boundary and all vertices on
the outer boundary, the proof will be complete.

For each type 0 geodesic g, draw a closed curve along the inside of g
so close to g that there are no junctures between g and the curve. Draw
another closed curve along the outside of g. We can create such curves next
to every type 0 geodesic in such a way that the curves do not intersect. The
curves partition Γ′ into Γ1, . . . ,ΓM , where each Γm is either a zigzag or has
only type 2 geodesics.

It is obvious that a zigzag has a k-connection between all inner and all
outer boundary plates. If Γm is not a zigzag, then the previous lemma shows
that it has such a k-connection. By similar reasoning as in the previous
lemma, we join the k-connections of the subnetworks into a k-connection of
Γ′ with the desired size.

Theorem 3.6. If Γ has no removable lenses, 2 ·M(Pinner,Pouter) = |G2|.

Proof. By Theorem 2.18, Γ can be partitioned into three layers Γ1, Γ2, and
Γ3, where Γ1 contains the type 1 inner geodesics, Γ2 contains the type 0,
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and Γ3 contains the type 1 outer. By the preceding lemmas, Γ1 has a k-
connection from some plates of the inner boundary to all plates of the outer
boundary, Γ2 has a k-connection from the whole inner boundary to the whole
outer boundary, and Γ3 has a k-connection from the whole inner boundary
to some subset of the outer boundary. The theorem follows.

3.4 Geodesics and Solution Spaces

Lemma 3.7. If Γ is an elementary boundary-juncture or spike network with
N boundary intervals on each boundary, then dimFinner = dimFouter = 2N
and dimZinner = dimZouter = 0.

Proof. Consider a boundary-juncture network with plates P1, . . . , PN and
juncture between P1 and P2. To show any data is feasible on the inner
boundary, suppose we are given inner boundary voltages and currents, and
we will find a γ-harmonic function with that boundary data. The voltages
are all determined. If In and Jn are the inner and outer boundary intervals
for Pn, then we let c(Jn) = −c(In) for n 6= 1, 2. We let c(P1 → P2) =
γ(P1P2)(v(P1) − v(P2)), and c(J1) = −c(I1) + c(P1 → P2) and c(J2) =
−c(I2) + c(P2 → P1).

On the other hand, if all the outer boundary data is zero, then no current
can flow across the juncture, and all the boundary currents are zero. Thus,
the only zero-compatible inner boundary data is 0. The arguments for Fouter

and Zouter are symmetrical.
The argument for a spike network is similar and is left to the reader.

Lemma 3.8. For an elementary inner-stub network with N + 1 plates,
dimFouter = 2N , dimZouter = 0, dimFinner = 2N + 1, and dimZinner = 1.

Proof. Obviously, any data on the outer boundary is feasible and if voltages
and currents are zero on the inner boundary, they must be zero on the outer
boundary. Any data on the inner boundary is feasible so long as the current
on the stub is zero. If voltages and currents on the outer boundary are zero,
then all voltages and currents on the inner boundary must be zero except
the voltage on the stub.

Lemma 3.9. Suppose Γ has no removable lenses, and all geodesics are type
1 inner or type 2. Then

dimFouter = |G2|, dimZouter = 0,

dimFinner = |G2|+ |Ginner|, dimZinner = |Ginner|.
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Proof. By Lemma 3.3, Γ can be partitioned into elementary boundary junc-
ture, boundary spike, and inner stub networks Γ1, . . . ,ΓM , ordered from out-
ermost to innermost. Let Σm be the subnetwork consisting of Γ1, . . . ,Γm.
We show that the theorem is true for each Σm by induction. The base case
follows from the previous lemmas. The induction step is broken into four
claims:

1. dimFouter = |G2|. Any outer boundary data which was feasible for Σm

is still feasible for Σm+1; it does not matter what the inner boundary
data of Σm is because any outer boundary data is feasible for Γm+1.

2. dimZouter = 0. Suppose that a γ-harmonic function on Σm+1 has
inner boundary data zero. Then the outer boundary data on Γm+1

must be zero. This implies that the inner boundary data on Σm is
zero, and so by inductive hypothesis, the inner boundary data on Σm

must be zero.

3. dimFinner = |G2| + |Ginner|. If Γm+1 is a boundary-juncture or spike
network, then there is a unique compatible vector of outer boundary
data for each vector of inner boundary data, so there is a linear iso-
morphism between Finner and Fouter of Γm+1. This implies that there
is a linear isomorphism between Finner of Σm+1 and Finner of Σm, so
dimFinner is the same for both networks.

If Γm+1 is an inner stub network, then the set of feasible voltages and
currents on the inner boundary plates and intervals of Σm+1 other than
the stub is exactly the same as Finner of Σm. Any voltage is feasible
on the stub, and it will not affect the rest of the network; however,
the current on the stub must be zero. Thus, dimFinner of Σm+1 is one
more than dimFinner of Σm. Σm+1 also has one more type 1 inner
geodesic than Σm.

4. dimZinner = |Ginner|. The argument is the same as the previous claim.

Theorem 3.10. If Γ has no removable lenses or type 0 geodesics, then

dimFinner = |G2|+ |Ginner|, dimZinner = |Ginner|,
dimFouter = |G2|+ |Gouter|, dimZouter = |Gouter|.

37



Proof. Γ can be partitioned into a network Γ1 with only type 1 inner and
type 2 geodesics and Γ2 with only type 1 outer and type 2. We apply the
previous lemma to these networks (we can switch roles of the inner and
outer boundaries and the lemma is still true). Since any data is feasible on
the inner boundary of Γ2, Finner is the same for Γ as for Γ1. Since the only
zero-compatible data on the inner boundary of Γ2 is 0, Zinner is the same
for Γ as for Γ1. The argument for the other claims is symmetrical.

Theorem 3.11. Suppose Γ has no removable lenses, but has type 0 geodesics.
If 1

2 |G2| is odd, Theorem 3.10 holds.

Proof. We will use the determinant-connection formula. We know that no
plate touches both boundaries because there is a type 0 geodesic. By Theo-
rem 3.6, the maximum size k-connection between the inner and outer bound-
aries is K = 1

2 |G2|. Let U and V be sets of plates on the inner and outer
boundaries respectively such that there is a K-connection between U and
V. If α is any K-connection between U and V, then τα must be a cyclic
permutation of the form τα(n) ≡ n+ J mod K for some integer J . Other-
wise, the paths in α would intersect as a consequence of the Jordan curve
theorem. Since K is odd, all such permutations are even.

Thus, by the determinant-connection formula, det Λ(U ;V) is strictly neg-
ative. This implies rank ΛOI = K (the rank cannot be any larger because
no larger k-connections exist). By applying Proposition 3.2 and by counting
geodesics and boundary plates, we see

dimFinner = |Pinner|+ rank ΛOI = 1
2 |G2|+ |Ginner|+

1
2 |G2|

dimZinner = |Pinner| − rank ΛOI = 1
2 |G2|+ |Ginner| −

1
2 |G2|,

and the corresponding statements for ΛIO and the outer boundary.

Theorem 3.12. Suppose 1
2 |G2| is even. If Theorem 3.10 does not hold, then

dimFinner = |G2|+ |Ginner| − 1, dimZinner = |Ginner|+ 1,

dimFouter = |G2|+ |Gouter| − 1, dimZouter = |Gouter|+ 1.

Proof. There exists a K−1-connection from the inner to the outer boundary,
and K − 1 is odd, so by the argument in the previous theorem, rank ΛOI =
K−1, and the statements about dimensions follow from Proposition 3.2.

The preceding theorem shows that for annular networks the algebraic
versions of the cut-point lemma sometimes require stronger hypotheses than
the corresponding geometric statements. Dimensions of solution spaces are
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not always what we would expect based on the connection properties. How-
ever, in this case, the matrix is “almost” invertible:

Proposition 3.13. Suppose the network has no removable lenses. Suppose
K = 1

2 |G2| is even and there is at least one type 0 geodesic. Suppose there
exists a K-connection between U ⊂ Pinner and V ⊂ Pouter. Then every
K − 1×K − 1 minor of Λ(U ;V) is strictly negative.

Proof. Since K − 1 is odd, it suffices to show that every K − 1 connection
from a subset of U to a subset of V exists. Since Y -∆ transformations do
not affect connections, assume the network is in layered form. As in Lemma
3.5, uncross the type 0 geodesics until they have no self-intersections; this
cannot create any new connections. It now suffices to show that all K − 1-
connections exist in a single zigzag.

Suppose the plates on the inner boundary are P1, . . . , PK and on the
outer boundary Q1, . . . , QK such that there are junctures between Pn and
Qn and Pn and Qn+1 with indices reduced modulo K. Assume without loss
of generality that the inner-boundary plates in the desired connection are
P1, . . . , PK−1. Suppose we want to connect them with Qn for n 6= J . For
n < J , connect Pn and Qn. For n ≥ J , connect Pn and Qn+1.

A similar proof will show that, in general, if the sum of the winding
numbers of the type 0 geodesics is N , and if m is an odd integer with
K −N ≤ m ≤ K, then every m ×m minor of Λ(U ;V) is strictly negative.
This is true whether K is odd or even.

4 Cuts of One Boundary

4.1 Definitions

Let I1, . . . , IN be the boundary intervals of a network. A cut R of the
inner boundary is an arc of Cinner whose endpoints are not the endpoints
of any In. We will denote by RC the union of Couter and the arc in Cinner

which is complementary to R in Cinner. (For circular planar networks, RC

is simply the complementary arc of the boundary curve.) We assume that
R contains at least one endpoint of a geodesic, and does not contain all
geodesic endpoints on the inner boundary.

The boundary intervals of R (denoted IR) include any In which is a
subset of R, and the plates of R (denoted PR) include all plates with these
boundary intervals. The endpoint of R may fall within some boundary inter-
val J corresponding to a plate P . The endpoint divides J into two intervals
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JA and JB with JA ⊂ R and JB 6⊂ R. In that case, JA is considered a bound-
ary interval of R and JB is a boundary interval of RC . P is considered a
plate both of R and of RC .

The solution spaces of R are as follows. Let P1, . . . , PK be the plates
of a cut R. Let J1, . . . , JK be the corresponding boundary intervals of the
cut. Let x be a vector in R2K . We say x ∈ FR if there exists a γ-harmonic
function with voltages x1, . . . , xK on P1, . . . , PK and currents xK+1, . . . , x2K
on J1, . . . , JK . Suppose Jk is at one of the endpoints of R and that some
boundary interval I of Γ was split into Jk and J∗ ⊂ RC by an endpoint
of R. Then we consider c(I) = c(Jk) + c(J∗). An x ∈ FR may have any
current on Jk because we can always choose c(J∗) to make c(I) correct for
a γ-harmonic function on the whole network.

Define the maximum connection M(R) as M(PR,PRC ). Define the fam-
ily of reentrant geodesics RR as the collection of all geodesics with both
endpoints in R. A reentrant geodesic g forms a closed curve C with some
interval of R. C can be oriented and its winding number about the hole can
be computed. If the winding number is nonzero, g is called reentrant around
the hole.

4.2 Circular Planar Case

We can prove the cut-point lemma for circular planar graphs by “changing
the region of embedding into an annulus” and using the results of the previ-
ous section. Here we assume that each boundary plate of the given circular
planar graph has only one boundary interval.

Consider a cut R of the boundary of a circular planar network in a
region S. Let C1 be an arc of R which is slightly shorter at the endpoints,
but contains all the same geodesic endpoints. Let x1 and y1 be the endpoints
of C1. Let C2 be a similar arc of RC with endpoints x2 and y2. Construct
a curve C ′1 which connects x1 and y1 and remains outside S and a curve C ′2
which connects x2 and y2 which connects x2 and y2, such that C1 ∪C ′1 and
C2 ∪ C ′2 are nonintersecting simple closed curves which form the boundary
of an annular region S′, and such that C1 ∪ C ′1 is inside C2 ∪ C ′2.

Let Γ′ be the plate network in S′. Do not change the shape of any plates,
even if a plate contains an endpoint of R. For each plate of Γ which contains
an endpoint of R, Γ′ will have an extra “type 2” geodesic. Otherwise, the
geodesics will not change. FR of Γ is exactly Finner of Γ′, ZR is Zinner, M(R)
is M(Pinner,Pouter), and RR is Ginner.

By applying the results of the previous section to Γ′, we have

M(Pinner,Pouter) = |G2|, dimFinner = |G2|+|Ginner|, dimZinner = |Ginner|.
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The first two are not convenient formulae because we modified the number
of “type 2” geodesics. But we can express |G2| as

|G2| = 2|Pinner| − 2|Ginner| = 2|PR| − 2|RR|,

which yields

Theorem 4.1 (Cut-Point Lemma). Let Γ be a circular planar network and
let R be a cut of the boundary curve. Then

M(R) = |PR| − |RR|,
dimFR = 2|PR| − |RR|,
dimZR = |RR|.

We could have proved this directly by partitioning the simply connected
region into “elementary layers;” the proof given in [1] by uncrossing empty
boundary triangles can be interpreted as constructing such a partition.

4.3 Annular Case

In the annular case, the connections and solution spaces of a cut are not as
easy to describe. However, there are certain cases where the same formulas
hold:

Lemma 4.2. Suppose Γ has only type 2 and type 1 inner geodesics, no
removable lenses, and no self-intersecting geodesics, and that the type 2
geodesics do not intersect each other. Let R be a cut of the inner bound-
ary with no reentrant geodesics such that at least one type 2 geodesic does
not have an endpoint in R. Then M(R) = |PR|, dimFR = 2|PR|, and
dimZR = 0.

Proof. Let A and B be curves which begin at the clockwise and counter-
clockwise endpoints of R and ends at some points on the outer boundary,
such that

• A and B do not intersect themselves.

• A and B do not intersect each other.

• Neither one contains a juncture.

• Neither one intersects any type 2 geodesic. This is possible because
the type 2 geodesics do not intersect each other.

41



• Neither one intersects the same geodesic twice. This is possible because
of our assumptions about lenses.

(See Figure 16.)
Let U be the region of the annulus which is counterclockwise of A and

clockwise of B, and let V be the region which is counterclockwise of B and
clockwise of A. Let ΓU and ΓV be the subnetworks in these regions. Since
we assumed there was a type 2 geodesic with no endpoint on R, we know
that no plate of ΓV touches both A and B.

No geodesic of ΓU has both endpoints on R because no geodesic of Γ
does. On the other hand, all geodesics of ΓV have an endpoint on R′ by
the following argument: No geodesic of ΓV has both endpoints on the outer
boundary, on A, or on B by construction. A geodesic with an endpoint on
the outer boundary must have been a type 2 geodesic of Γ, so it must not
intersect A or B. If a geodesic had one endpoint on A and one on B, it
would been a type 1 geodesic of Γ, and would have both endpoints on R,
which is impossible.

Let C and C ′ be the arcs of the outer boundary along ΓU and ΓV respec-
tively. By Theorem 4.1, there is a k-connection α of ΓU from R to C∪A∪B
which uses all boundary plates of R. Similarly, there is a k-connection α′ of
ΓV from R′ to C ′ ∪A ∪B which uses all boundary plates of C ′ ∪A ∪B.

We construct a connection β in Γ from R to RC which uses all the plates
of R in the following way. Let P1, . . . , PN be the plates along R in ΓU . For
each Pn, let αn be the path in α connecting Pn to some plate Qn of ΓV . We
know Qn touches C ∪A ∪B. There are two cases:

• If Qn touches C, let βn = αn (except that if Qn is a subplate in Γ, we
replace it with the whole plate).

• If Qn touches A or B, but not C, there is a plate Q′n of ΓV such that
Qn∪Q′n forms one plate of Γ. Since Qn does not touch C, neither does
Q′n. Let α′n is the path of α′ connecting Q′n to some plate touching R′,
and join αn and α′n to form βn.

The paths β1, . . . , βN are distinct and form an N -connection from R to RC .
This proves the first assertion in the theorem.

For the other two claims, repeat the above argument using the theorems
about solution spaces instead of the theorems about connections.

Theorem 4.3. Suppose Γ has no removable lenses and no self-intersecting
type 1 inner geodesics. Let R be a cut of the inner boundary with no geodesics
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Figure 16: Curves in the proof of Lemma 4.2.
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reentrant around the hole, such that at least one type 2 geodesic does not have
an endpoint on R. Then M(R) = |PR| − |RR|.

Proof. We can assume that Γ is in layered form without changing the con-
nections or solution spaces.

Let C be a curve which begins at the clockwise endpoint of R and pro-
ceeds to the counterclockwise endpoint without intersecting itself, intersect-
ing the same geodesic twice, or including any junctures, such that the region
T bounded by R∪C is a simply connected subset of the annulus. Let ΓT be
the subnetwork in this region. Notice T contains all the reentrant geodesics
of R, and no geodesic of ΓT is reentrant for C.

Divide the rest of Γ into two layers ΓU and ΓV (in regions U and V )
such that ΓU contains all type 1 inner geodesics and ΓV contains all type 0
and type 1 outer geodesics and crossings between type 2 geodesics.

By Theorem 3.6, there is a k-connection between the plates touching the
inner boundary of ΓV and some subset of the plates on the outer boundary.
By the previous lemma, there is a k-connection between all the plates of ΓU
along C and some of the plates of ΓU in CC . Thus, we have a connection in
ΓU∪V from the plates touching C to the some of the plates in CC .

By Theorem 4.1, the maximum k-connection in ΓT from the plates along
R to the plates touching C is 2|PR| − |RR|. We can join the paths in a
maximal k-connections with the paths of the connections in the previous
paragraph. Thus, the maximum k-connection in Γ from the plates along R
to the plates along RC is the same size.

Theorem 4.4. Let Γ and R be in the previous theorem. Suppose that The-
orem 3.10 holds. Then

dimFR = 2|PR| − |RR|,
dimZR = |RR|.

Proof. Let ΓT , ΓU , and ΓV be as in the previous proof. For ΓV , any data is
feasible for the plates on the inner boundary because we assumed Theorem
3.10 holds. For ΓU , any data is feasible for the plates touching C. Hence,
for ΓU∪V , any data is feasible for the plates touching C. For ΓT , dimFR =
2|PR| − |RR| by Theorem 4.1. Hence, the same is true for Γ.

4.4 Partial Recovery by Removal of Type 1 Geodesics

We can recover boundary junctures and spikes in networks with type 1
geodesics using the algebraic “cut-point lemma.”
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Figure 17: Proof of Theorem 4.3. The black dashed curve divides U and V .
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Lemma 4.5. Suppose Γ has no removable lenses or self-intersecting type 1
inner geodesics and suppose Theorem 3.10 holds. Let P be a spike on the
inner boundary with juncture PQ connecting it to another plate Q. Suppose
that g, one of the geodesics touching P , is type 1 and is not part of a two-pole
lens. Suppose there is a type 2 geodesic which does not intersect g. Then
the conductance of PQ is recoverable.

Proof. The geodesics g splits the region of embedding into two subregions;
let T be the simply connected subregion. Let AT be the arc of the inner
boundary curve which is part of ∂T . Let R ⊃ AT be an arc which contains
the same geodesic endpoints as AT such that the endpoints of R are not
endpoints of a geodesic. Let C be a curve with endpoints at the endpoints
of R which remains close enough to g that no junctures lie between C and
g. Let C ′ be a curve with endpoints at the endpoints of R which remains
between g and C except that C ′ crosses g twice along the boundary of P .
C ′ enters P and then immediately exits P .

Let U be the region bounded by R and C ′, let V be the region bounded
by C and C ′, and let W be the annular region bounded by RC and C. Let
ΓU , ΓV , and ΓW be the subnetworks in these regions.

Consider the boundary value problem for Γ where all voltages and cur-
rents on RC are 0 and the voltage of P is 1. I claim this problem has a
solution and that the voltage of Q is 0.

For ΓW , C is a cut of the inner boundary with no reentrant geodesics.
Hence, by Theorem 4.4 the only zero-compatible data on C is zero. In
particular, the boundary data for our problem force the voltage of Q to be
zero. ΓV ∪W is the same as ΓW except with a stub P ′ on the inner boundary.
Thus, to have zero-compatible data on C ′, we need all voltages and currents
zero except that P ′ can have whatever voltage we want. Thus, we can set
the voltage of P ′ to 1.

Finally, notice that for ΓU , C ′ is a cut of the boundary with no reentrant
geodesics, so any boundary data is feasible, and in particular, we can have
zero voltage and current everywhere except voltage 1 on P ′. Thus, for Γ,
there is zero-compatible data on R with voltage 1 on P ′, which is the same
thing as voltage 1 on P .

Therefore, there is a boundary value problem which forces the voltage of
Q to be zero and the voltage of P to be 1. Knowing F , we can compute the
current on the boundary interval of P , and it is equal to the conductance of
PQ.

Lemma 4.6. Suppose Γ has no removable lenses or self-intersecting type 1
inner geodesics and suppose Theorem 3.10 holds. PQ be a juncture between
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inner boundary plates P and Q. Suppose that g, one of the geodesics at PQ,
is type 1 and is not part of a two-pole lens. Suppose there is type 2 geodesic
which does not intersect g. Then the conductance of PQ is recoverable.

Proof. Assume without loss of generality that P is inside g and Q is outside
g. Construct R, C, C ′, U , V , and W as in the previous proof. Consider
the boundary value problem with all voltages and currents zero on RC and
voltage 1 on P . By the same argument, this problem has a solution, and all
voltages and currents on ΓU are zero. In particular, the current is zero on
all junctures of Q other than PQ. Knowing F , we can find the boundary
current on Q, and it is negative the conductance of PQ.

Theorem 4.7. Let Γ be a network in layered form with no removable lenses
and no lenses involving type 1 geodesics. Suppose Theorem 3.10 holds. Sup-
pose that for every type 1 geodesic there is type 2 geodesic which does not
intersect it. Then all conductances in the layers with type 1 geodesics can
be recovered.

Proof. Consider the type 1 geodesics on the inner boundary first. Let Γinner

be the layer which contains all the type 1 inner geodesics. By Theorem
2.10, Γinner has an empty boundary triangle or stub. Remove all stubs from
the network. Then there is an empty boundary triangle, and one of the
geodesics must be type 1. By the previous two lemmas, the conductance of
the juncture at this triangle is recoverable.

Uncross the triangle and update the solution spaces (or response matrix)
to match the modified network. The modified network will still satisfy the
hypotheses of this theorem. Repeat the above argument and keep removing
stubs and uncrossing empty boundary triangles until all conductances in
the layer are recovered. The conductances in the layer with type 1 outer
geodesics can be recovered in the same way.

This theorem has implications for networks which are not in layered form
because any network with no removable lenses can be put into layered form
by Y -∆ transformations. Knowing the conductances of a Y -∆-equivalent
network is (theoretically) just as good as knowing the conductances of the
original network. However, at this point we have only partially recovered
the network. After removing the type 1 geodesics, we still have to recover
the conductances of the remaining network, and that is the focus of the next
section.
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5 Radial Networks

A radial network is an annular network with only type 2 geodesics. Radial
networks with no removable lenses have special properties, as we would
expect from the theorems of §3. They can be partitioned into elementary
boundary-juncture and spike networks (Lemma 3.3). There is a k-connection
from all the plates on the inner boundary to all plates on the outer boundary
(Theorem 3.6). Any data is feasible on the inner boundary or the outer
boundary, and the only zero-compatible data is zero (Theorem 3.10). Thus,
complete voltage and current data on one boundary curve determines a
unique γ-harmonic function on the network.

In this section, I explore the geometric and electrical properties of radial
networks in greater depth and prove recoverability for a certain class of
networks.

5.1 Structure

In a radial network, there is a canonical way to classify the junctures. Orient
all the geodesics so the positive direction moves from the inner to the outer
boundary. At each juncture point y, designate the four edges as

• a counterclockwise inner edge e1,

• a counterclockwise outer edge e2,

• a clockwise inner edge e3,

• a clockwise outer edge e4,

where e1 and e4 appear in that order on one of the geodesics, e2 and e3 appear
in that order on the other geodesic, and the counterclockwise ordering of the
four edges about the point y is e1, e2, e4, e3.

There are two possibilities:

1. e1 and e2 are edges of the same plate and e3 and e4 are edges of
the same plate. In this case, y is called a counterclockwise-clockwise
juncture.

2. e1 and e3 are edges of the same plate and so are e2 and e4. Then y is
called an inward-outward juncture.

By Lemma 3.3, a radial network with no removable lenses can be par-
titioned into boundary-juncture and boundary-spike networks. In any par-
tition, the counterclockwise-clockwise junctures are part of an elementary
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boundary-juncture network, and the inward-outward edges are part of an
elementary spike network. As a result,

Theorem 5.1. In a radial network with no removable lenses, there is ex-
actly one k-connection between Pinner and Pouter, and the junctures in the
connection are exactly the inward-outward junctures.

Proof. Let Γ0,Γ1, . . . ,ΓM be a partition of Γ where Γ0 is a trivial network
and Γ1, . . . ,ΓM are elementary boundary-juncture and spike networks listed
from innermost to outermost. Let Σm be the subnetwork consisting of
Γ0, . . . ,Γm. We prove the theorem by induction for each Σm. The base
case is trivial.

Suppose the theorem is true of Σm. If Γm+1 is a spike network, then
its juncture is inward-outward. There is exactly one k-connection from the
inner to the outer boundary of Σm. To find the k-connection for Σm+1, sim-
ply add the spike of Γm+1 to the appropriate path. If Γm+1 is a boundary-
juncture network, then its juncture is counterclockwise-clockwise. The junc-
ture cannot be used in an interboundary k-connection in Σm+1 because it
is a boundary juncture. Thus, the set of interboundary k-connections for
Σm+1 is the same as that of Σm.

Each path in this single connection will be called a ray (by analogy with
the “circles and rays” networks of [2]). We will index the rays 1, . . . , N
in some counterclockwise order. The collection of plates along the nth ray
will be called Pn, and the plates of Pn will be Pn,1, Pn,2, . . . Pn,Kn , ordered
from innermost to outermost. In the following sections, we assume that
the indexing of the inner and outer boundary plates is consistent with the
indexing of the rays. We label the inner boundary intervals I1, . . . , IN , and
the outer boundary intervals J1, . . . , JN .

5.2 Pseudo-Geodesics and Dominant Geodesics

Let y0 be a geodesic endpoint on the inner boundary. Let e1 be a plate edge
with endpoint y0. Let y1 the other endpoint of e1. For k = 1, 2, . . . , let ek+1

be the counterclockwise outer edge at yk, and let yk+1 be the other endpoint
of ek+1. Continue inductively until yK is on the outer boundary. The
curve formed by e1, . . . , eK is a counterclockwise outward pseudo-geodesic.
A clockwise outward pseudo-geodesic is defined in a symmetrical way. For
counterclockwise and clockwise inward pseudo-geodesics, we perform the
same process but begin at the outer boundary and choose counterclockwise
or clockwise inner edges.
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Figure 18: Geodesics in the universal cover. A counterclockwise outward
pseudo-geodesic is shown in blue. g2 and g8 are counterlclockwise-dominant;
g1, g4, g5, and g6 are clockwise-dominant.

. . . g1 g2 g3 g4 g5 g6 g7 g8 . . .

A geodesic is called counterclockwise-dominant if it is identical to a coun-
terclockwise outward pseudo-geodesic. Equivalently, g is counterclockwise-
dominant if for every geodesic h which crosses g, g crosses h counterclockwise
and h crosses g clockwise. Similarly, a geodesic is clockwise-dominant if it
is identical to a clockwise outward pseudo-geodesic.

The slant of a geodesic or pseudo-geodesic is defined as follows. Let the
geodesic endpoints on the upper and lower boundaries of the universal cover
be yj and zj for all integers j. Index them from left to right, and such that
yj and zj are on the same ray in the universal cover and the same side of
the ray. Let g be a (pseudo-)geodesic with endpoints yi and zj . The slant
of g is j − i.

The outward counterclockwise pseudo-geodesic beginning at y is the path
of maximal slant out of all paths consisting of positively oriented edges which
begin at y and end at the outer boundary.

As we will see in the next section, pseudo-geodesics and dominant geodesics
are important for analyzing information propagation and recoverability. To
do so, we need the following results:

Lemma 5.2. Let h be a counterclockwise outward pseudo-geodesic. Let
g1, . . . , gK be the geodesics which share edges with h, listed in outward order
along h. Then gK is counterclockwise-dominant; gK is either the same as
g1 or the first counterclockwise-dominant geodesic intersected by g1.
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Proof. Consider the geodesics in the universal cover. The lower endpoint
of h must lie to the left of the lower endpoint of each gk. If h crosses any
geodesic g, then h must cross g counterclockwise or g must intersect h in
an edge. Suppose that some geodesic g∗ intersects gK clockwise. Then the
endpoint of g∗ is to the left of the endpoint of gK , so g∗ must not intersect
h in an edge. Thus, g∗ must cross h counterclockwise, which is impossible.
Therefore, gK is counterclockwise-dominant.

Suppose g∗ is a counterclockwise-dominant geodesic such that g1 inter-
sects g∗ before gK . Then g∗ crosses h counterclockwise. The argument of
the previous paragraph shows this is impossible.

Corollary 5.3. The endpoints and slants of pseudo-geodesics are unaffected
by Y -∆ transformations.

Proof. The endpoint of h is determined by gK , the first counterclockwise-
dominant geodesic which is intersected by g1. No two counterclockwise-
dominant geodesics intersect because if they did, then one would cross the
other counterclockwise. Also, g1 must cross any counterclockwise-dominant
geodesic in the clockwise direction. Thus, Y -∆ transformations cannot
change the order in which g1 intersects these counterclockwise-dominant
geodesics. Therefore, they do not affect which geodesic is gK .

A symmetrical argument holds for the other types of pseudo-geodesics.

Lemma 5.4. Let g1, . . . , g2N be the geodesics of Γ, ordered counterclockwise
by their endpoints on the outer boundary. If Γ is not the trivial network,
there exists a j such that gj is counterclockwise-dominant and intersects gj−1
(indices reduced modulo 2N).

Proof. Suppose that no such geodesic exists. Let gJ be a geodesic of maximal
slant. If a geodesic h intersected gJ counterclockwise, then h would have
greater slant. Thus, gJ is counterclockwise-dominant. Since gJ−1 does not
intersect gJ , the slant of gJ−1 is greater than or equal to the slant of gJ , so
gJ−1 must also have maximal slant. Proceeding by induction, we see that all
the geodesics have maximal slant and are counterclockwise-dominant, which
is impossible unless Γ is the trivial network.

Lemma 5.5. A nontrivial radial network with no removable lenses is Y -∆
equivalent to one which has an empty boundary triangle on the outer bound-
ary, such that one of the geodesics forming the triangle is counterclockwise-
dominant.
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Proof. Let gj be a counterclockwise-dominant geodesic which intersects gj−1.
Let y be their point of intersection closest to the outer boundary. Then there
is a triangle T with a vertex at y formed be gj , gj−1, and an arc of the outer
boundary, such that T lies within a simply connected region of the network.
Any geodesic which intersects T must enter T along gj−1 and exit along gj .
By Y -∆ transformations, we can remove all crossings out of T . After that,
we can empty T of all geodesics. Then T is an empty boundary triangle.

5.3 Principal Electrical Functions

For any inner boundary plate Pj,1, there is a unique γ-harmonic function
f with v(Pj,1) = 1 and all other voltages and all currents on the inner
boundary equal to zero. We will call f the principal electrical function for
Pj,1.

Let yA and yB the the clockwise and counterclockwise endpoints of Ij .
Let hA be the outward clockwise pseudo-geodesic with endpoint yA and let
hB be the outward counterclockwise pseudo-geodesic with endpoint yB. Let
R be the arc of the inner boundary complementary to Ij . Let S be the
region of embedding.

For Pj,1, the zone of no propagation U is the component of S \ (hA∪hB)
which touches the inner boundary and does not intersect Pj,1. The zone of
propagation V is S \U . Let QA and QB be the outer boundary plates along
hA and hB. See Figure 19 (W is explained later).

The zone of propagation is called simple if it is simply connected and
QA 6= QB. This means that If either QA or QB is in U , then there must be
at least one geodesic endpoint outside of V .

Theorem 5.6. Let f be the principal electrical function for Pj,1. Suppose the
zone of propagation is simple and that the rays are indexed with QB = P1,K1.
If Pj,1 has at least two junctures, then

• If Pn,k intersects U , then v(Pn,k) = 0.

• If Pn,k ⊂ V , then (−1)n+jv(Pn,k) > 0.

• If the juncture Pn,kPn,k+1 ∈ U , then c(Pn,k → Pn,k+1) = 0.

• If Pn,kPn,k+1 ∈ V , then (−1)n+jc(Pn,k → Pn,k+1) < 0.

• If Jn ⊂ U , then c(Jn) = 0.

• If Jn intersects V , then (−1)n+j+1c(Jn) < 0.
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Figure 19: Zones of propagation for an inner boundary plate.
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Figure 20: The principal electrical function of a boundary plate.
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Otherwise, we make the following exceptions:

• If Pj,1 touches both boundaries and has no junctures, then c(J1) = 0.

• If Pj,1 is a boundary spike, then c(Pj,1 → Pj,2) = 0.

• If Pj,1 is a boundary spike, and Pj,2 is on the outer boundary and has
no junctures besides Pj,1Pj,2, then c(J1) = 0.

Roughly speaking, this means that f is zero in the zone of no propaga-
tion, and in the zone of propagation, the voltages are positive and increasing
or negative and decreasing on each ray, in an alternating pattern.
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Proof. Let Γ0, . . . ,ΓM be a partition of Γ where Γ0 is a trivial network and
Γ1, . . . ,ΓM are elementary boundary-juncture and spike networks. Let Σm

consist of Γ0, . . . ,Γm. Let Jn,m be the outer boundary interval for Σm on
the nth ray. Notice that the zone of no propagation for Σm is exactly the
part of U which intersects Σm’s region of embedding, and the same is true
for the zone of propagation.

We show that the theorem is true for Σm by induction. The base case is
trivial. Next, we show that if the theorem holds for Σm, it holds for Σm+1.

Suppose Γm+1 is a spike network with juncture Pn,kPn,k+1. There are
several cases:

1. Pn,k = Pj,1 and Pj,1 is a spike. In this case, c(Jn,m) = 0, so c(Pn,k →
Pn,k+1) = 0 and v(Pn,k) = 1 > 0.

2. Pn,k = Pj,2 and Pj,1 is a spike. We know that Pj,2 has junctures with
other plates besides Pj,1 and Pj,3 because otherwise it would form a
series connection, which corresponds to a removable lens. Thus, by
inductive hypothesis, c(Jn,m) < 0. For the rest of the argument, see
the next case.

3. Pn,kPn,k+1 ∈ V . Then (−1)n+jc(Pn,k → Pn,k+1) = (−1)n+j+1c(Jn,m),
which is negative by hypothesis because Jn,m intersects V . Also by hy-
pothesis, (−1)n+jv(Pn,k) ≥ 0, and (−1)n+jv(Pn,k+1) > (−1)n+jv(Pn,k)
because of the sign of c(Pn,k → Pn,k+1).

4. Pn,kPn,k+1 ∈ U . In this case, Jn,m ⊂ U , so its current is 0 by inductive
hypothesis. This implies c(Pn,k → Pn,k+1) = 0. Since Pn,k intersects
U , its voltage is zero, so v(Pn,k+1) = 0.

Suppose Γm+1 is a boundary juncture network with juncture Pn,kPn+1,k′

with 1 ≤ n ≤ N − 1. There are two cases:

1. In the case where Pn,kPn+1,k′ ∈ U , both plates intersect U , so their
voltages are zero. Thus, the outer boundary data of Σm+1 is the same
as that of Σm.

2. Suppose Pn,kPn+1,k′ ∈ V . The outer boundary voltages for Σm+1 are
the same as for Σm. By inductive hypothesis, (−1)n+jv(Pn,k) ≥ 0 and
(−1)n+j+1v(Pn+1,k′) ≥ 0. At least one of the plates is in the zone of
propagation, so at least one of the inequalities is strict. This implies
(−1)n+jc(Pn,k → Pn+1,k′) > 0. Both boundary intervals Jn,m+1 and
Jn+1,m+1 intersect V . Because of the sign of c(Pn,k → Pn+1,k′),

(−1)j+n+1c(Jn,m+1) > (−1)j+n+1c(Jn,m),
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which is nonnegative by hypothesis. Similarly,

(−1)j+nc(Jn+1,m+1) > (−1)j+nc(Jn+1,m) ≥ 0.

Finally, if Γm+1 is a boundary-juncture network with juncture PN,kP1,k′ ,
then the juncture is in U because of the zone of propagation is simple and
because of how we indexed the rays. This completes the induction argument
and hence the proof.

The principal electrical function for an inner boundary interval Ij is de-
fined similarly. It is the γ-harmonic function f with c(Ij) = 1 and all other
voltages and all currents on the inner boundary equal to zero. We let yA
and yB be the clockwise and counterclockwise endpoints of Ij . Counterin-
tuitively, hA is the clockwise outward pseudo-geodesic with endpoint at yB
and hB is the counterclockwise outward pseudo-geodesic with endpoint at
yA.

If Pj,1 touches both boundaries, then hA and hB do not intersect, and
we define the zone of no propagation as S and the zone of propagation as Jj .
Otherwise, hA and hB intersect at Pj,1Pj,2. We let h′A and h′B be the arcs of
hA and hB starting at Pj,1Pj,2 and ending at the outer boundary. Then U ,
the zone of no propagation, is the component of S \ (h′A∪h′B) which touches
the inner boundary, and V = S \ U . (The picture is the same as Figure 19
except that hA and hB are crossed at their inner endpoints.)

Then we have the following theorem. The proof is essentially the same
as for Theorem 5.6, so the details are left to the reader:

Theorem 5.7. Let f be the principal electrical function for Ij. Suppose the
zone of propagation is simple and that the rays are indexed with QB = P1,K1.
Then

• If Pn,k intersects U , then v(Pn,k) = 0.

• If Pn,k ⊂ V , then (−1)n+jv(Pn,k) < 0.

• If the juncture Pn,kPn,k+1 ∈ U , then c(Pn,k → Pn,k+1) = 0.

• If Pn,kPn,k+1 ∈ V , then (−1)n+jc(Pn,k → Pn,k+1) > 0.

• If Jn ⊂ U , then c(Jn) = 0.

• If Jn intersects V , then (−1)n+j+1c(Jn) > 0.

The last two theorems hold in more generality when N is even:
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Corollary 5.8. If N is even, Theorems 5.6 and 5.7 hold even if the zone
of propagation is not simple.

Proof. Examine the proof of Theorem 5.6. The only case that required
the assumption that the region of propagation was simple was the last case
where Γm+1 was a boundary-juncture network with juncture PN,kP1,k′ . If
we remove that assumption, PN,kP1,k′ may be in the zone of propagation.
If N is odd, v(PN,k) and v(P1,k′) have the same sign, so we do not know
the sign of c(PN,k → P1,k′). However, if N is even, the two voltages have
opposite signs, and we can apply the argument given in subcase 2 of the
case when Γm+1 is a boundary-juncture network.

For the odd case, the theorems do not hold in general, but there is
a subregion of the network for which they do hold. We define the zone
of simple propagation W as follows. If the zone of propagation is simple,
W = V . Otherwise, if the zone of propagation is simply connected but not
simple, then QA = QB and W is defined to be V minus the outer boundary
interval of QA. Otherwise, if the zone is for a plate, let h′′A and h′′B be the
arcs hA and hB from their first point of intersection to the outer boundary;
if the zone is for a boundary interval, let h′′A and h′′B be the arcs of hA and
hB from their second point of intersect to the outer boundary. Let X be
the component of S \ (h′′A ∪ h′′B) which touches the inner boundary, and let
W = X \ U .

Corollary 5.9. Theorems 5.6 and 5.7 hold in the zone of no propagation
and the zone of simple propagation.

Proof. If the whole zone of propagation is simple, then W = V , so we are
done. Otherwise, consider a subnetwork of Γ which intersects all the plates
and contains all the junctures in the zone of no propagation and the zone of
simple propagation, but no other plates and junctures. Apply the theorems
to this subnetwork.

5.4 Factorization of the Interboundary Map

For each y ∈ R2N representing data on one boundary, let ỹ be the vector
with the signs of the current entries changed. That is, if y = y1, . . . yN ,
yN+1, . . . , y2N , then ỹ = y1, . . . , yN ,−yN+1, . . . ,−y2N . The current entries
for y represent current entering the network; the current entries for ỹ rep-
resent current exiting the network.

Let x ∈ R2N be a vector representing voltage and current data on the
inner boundary of a radial network Γ with no removable lenses. There is a
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unique y representing data on the outer boundary which is compatible with
x. There is an invertible linear transformation Ξ mapping x to ỹ, which we
will call the interboundary map. By direct computation,

Proposition 5.10. In a radial network with no removable lenses, if no plate
touches both boundaries, then

Ξ =

(
−Λ−1IOΛII Λ−1IO

−ΛOI + ΛOOΛ−1IOΛii −ΛOOΛ−1IO

)
.

Each column of Ξ represents outer boundary data for one of the principal
electrical functions. Thus, the theorems of the previous sections provide sign
conditions on the entries of Ξ. Ξ behaves nicely with respect to partitions:

Theorem 5.11. Let Γ1, . . . ,ΓM be a partition of Γ into elementary boundary-
juncture and spike networks, with boundary plates indexed according to the
rays of Γ. Then Ξ = ΞMΞM−1 . . .Ξ1.

Proof. Let Γ1, . . . ,ΓM be a partition of Γ into elementary boundary-juncture
and spike networks. Let Σm consist of Γ0, . . . ,Γm. We prove the theorem
for each Σm by induction. The base case Σ1 is trivial.

Suppose the claim is true for Σm, and I will show it is true for Σm+1.
Let Qn,m and Jn,m be the outer boundary plate and interval for Σm on the
nth ray, and let Rn,m and In,m be the inner boundary plate and interval for
Γm.

Let x be a vector of inner boundary data for Σm+1, which determines a
unique γ-harmonic function f . Then ΞmΞm−1 . . .Ξ1x gives the data on the
outer boundary of Σm: voltages for Q1,m, . . . , QN,m and minus the current
on I1,m, . . . , IN,m. Since Qn,m and Rn,m+1 are subplates of the same plate
in Σm+1, we need v(Rn,m+1) = v(Qn,m) and c(In,m+1) = −c(Jn,m). Thus,
the data on the inner boundary of Γm+1 is ΞmΞm−1 . . .Ξ1x, so the data on
the outer boundary of Σm+1 is Ξm+1Ξm . . .Ξ1x.

We can think of Ξ as a matrix with rows and columns indexed by in-
tegers 1, . . . , 2N . Alternatively, we can index the rows and columns by the
boundary plates and the boundary intervals, where the plates correspond
to the voltage data and the intervals to the current data. That is, if the
inner and outer boundary plates are Rn = Pn,1 and Qn = Pn,Kn , then for
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k, ` = 1, . . . , N , we write

ξ`,k = ξ(Q`, Rk)

ξ`,N+k = ξ(Q`, Ik)

ξN+`,k = ξ(J`, Rk)

ξN+`,N+k = ξ(J`, Ik).

Partition into elementary networks corresponds to factorization of Ξ.
Each factor is a nearly-elementary matrix. For instance, consider an el-
ementary spike network with inner boundary plates where Rn = Qn for
n 6= 1 and R1 and Q1 are connected by a juncture with conductance γ. For
n 6= 1, we need v(Qn) = v(Rn). Since the currents on Rn must add up to
zero, c(Jn) = −c(In) for n 6= 1. Also, c(I1) = c(R1 → Q1) = −c(J1) and,
since c(R1 → Q1) = γ(v(R1)− v(Q1)),

v(Q1) = v(R1)−
1

γ
c(I1).

Thus, ξ(Qn, Rn) = 1 and ξ(Jn, In) = 1 for all n, ξ(Q1, I1) = −1/γ, and all
other entries of Ξ are zero. For example, when N = 3,

Ξ =



1 0 0 −1/γ 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Now consider an elementary boundary-juncture network where the junc-

ture connectes P1 and P2. Since Rn = Qn for all n, we need v(Rn) = v(Qn).
For n 6= 1, 2, c(Jn) = −c(In). Since c(I1) + c(R2 → R1) + c(J1) = 0 and
c(R2 → R1) = γ(v(R2)− v(R1)) for any γ-harmonic function, we have

−c(J1) = c(I1) + γv(R2)− γv(R1).

Similarly,
−c(J2) = c(I2) + γv(R1)− γv(R2).

Thus, ξ(Qn, Rn) = 1 and ξ(Jn, In) = 1 for all n, ξ(J1, R2) = ξ(J2.R1) = γ,
ξ(J1, R1) = ξ(J2, R2) = −γ, and all other entries of ξ are zero. For example,
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when N = 3,

Ξ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−γ γ 0 1 0 0
γ −γ 0 0 1 0
0 0 0 0 0 1

 .

If the juncture is at a different place, the matrix has a similar form, only
the rows and columns are permuted by shifting the indices some amount
modulo N .

Each “elementary” matrix has determinant 1, so det Ξ = 1.
When we modify Γ by contracting a spike or deleting a boundary junc-

ture, Ξ is easy to update. Suppose that Γ is partitioned into elementary net-
works Γ1, . . . ,ΓM where ΓM is an elementary spike network. Suppose that
Γ′ is obtained from Γ by contracting the spike. Then Ξ = ΞMΞM−1 . . .Ξ1,
and ΞM . Contracting the spike, or transforming Γ into Γ′, is equivalent
to replacing Γ with the subnetwork consisting of Γ1, . . . ,ΓM−1. Hence, the
interboundary map for Γ′ is

Ξ′ = ΞM−1ΞM−2 . . .Ξ1 = Ξ−1M Ξ.

If Q is the spike, PQ is its juncture, and I is the boundary interval, then
ΞM is an elementary matrix which corresponds to the row operation of sub-
tracting 1/γ(PQ) times row I to row Q. Ξ−1M corresponds to the reverse row
operation. Contracting a spike on the inner boundary is similar, except that
we right-multiply by the appropriate matrix (perform a column operation).

Deleting a boundary edge is similar. If ΓM is an elementary boundary-
juncture network, then ΞM has four off-diagonal entries, which correspond
to four row operations. Thus, the inverse matrix also corresponds to four
row operations.

5.5 Recovery

We can recover certain boundary edges and spikes using the interboundary
map and the principal electrical functions. Consider a boundary plate Pj,1.
Let hA and hB be the corresponding pseudo-geodesics, and let QA and QB
be as in §5.3, and let f be the principal electrical function for Pj,1. Suppose
that QB = Pi,Ki is a boundary spike. If the zone of propagation is simple,
then Pi,Ki−1 intersects the zone of no propagation, so its voltage is zero. But
we know by Theorem 5.6 that the voltage and current of Pi,Ki are nonzero.
Thus, we can determine the conductance of the spike.
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The outer boundary data for f is represented by the jth column of Ξ.
Thus,

γ(Pi,Ki−1Pi,Ki) =
c(Pi,Ki−1 → Pi,Ki)

v(Pi,Ki−1)− v(Pi,Ki)
=
−c(Ji)
−v(Pi,Ki)

= −
ξN+i,j

ξi,j
.

The conductance of the spike is the quotient of two entries of Ξ.
The same reasoning applies if f is the principal electrical function for Ij

and QB = Pi,Ki is a boundary spike. If the zone of propagation is simple,
then

γ(Pi,Ki−1Pi,Ki) = −
ξN+i,N+j

ξi,N+j
.

In fact, this method will work in a slightly more general case. If the zone
is propagation is not simple, but if Pi,Ki is the only plate not in the zone
of simple propagation, then Pi,Ki−1 will still have voltage zero. If Pi,Ki has
nonzero voltage (which will happen if N is even), then the above formulae
are still valid.

Now consider the case of a boundary juncture. Let f be the principal
electrical function for Pj,1. Suppose Pi,KiPi+1,Ki+1 is a boundary juncture
and QB = Pi,Ki , and that the zone of propagation is simple. Then Pi,Ki and
all junctures of Pi,Ki except Pi,KiPi+1,Ki+1 are in the zone of no propagation.
Thus, v(Pi,Ki) = 0 and c(Ji) = c(Pi,KI → Pi+1,Ki+1) 6= 0. Thus,

γ(Pi,KiPi+1,Ki+1) =
c(Ji)

−v(Pi+1,Ki+1)
=
ξN+i,j

ξi+1,j
.

Similarly, if f is the principal electrical function for an interval Ij instead of
a plate Pj,1, then

γ(Pi,KiPi+1,Ki+1) =
ξN+i,N+j

ξi+1,N+j
.

Unfortunately, this method does not work if the zone of propagation is
not simple. Even the “simplicity” requirement is stronger for the boundary
juncture than for the spike. If QB is on the clockwise side of hB as in
the case with the spike, then it merely requires that the outer endpoint
of hB is clockwise from the outer endpoint of hA (that is, clockwise as
we pass through the zone of no propagation). However, if QB is on the
counterclockwise side of hB, the endpoint of hB must be clockwise from the
outer endpoint of hA and there must be at least one geodesic endpoint in
between them.

To discuss recoverability globally, we use the lemmas of §5.2.
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Theorem 5.12. Let Γ be a radial network with no removable lenses. Sup-
pose that for each inner boundary plate and boundary interval, the zone of
propagation is simple. Then Γ is recoverable.

Proof. To determine the conductances of Γ, it is sufficient to determine the
conductances of a Y -∆ equivalent network. We recover conductances in the
following way:

1. Use Y -∆ transformations to change Γ into a network with an empty
boundary triangle at which one of the geodesics, g, is counterclockwise-
dominant. This is possible by Lemma 5.5. By Corollary 5.3, the end-
points of pseudo-geodesics are not affected by Y -∆ transformations,
so the zones of propagation are still simple.

2. Let Pj,1 be the plate at the inner endpoint of g. If Pj,1 is on the
clockwise side of g, we can use the principal electrical function of Pj,1
to recover the conductance of spike or boundary juncture at the empty
boundary triangle. If Pj,1 is on the counterclockwise side of g, then
we can use the principal electrical function of Ij .

3. Uncross the empty boundary triangle. Perform one or four row opera-
tions on Ξ to find the interboundary map of the modified network. In
the modified network the zones of propagation are still simple. This is
because uncrossing an empty boundary triangle can only decrease the
slant of counterclockwise outward pseudo-geodesics and increase the
slant of clockwise outward pseudo-geodesics.

4. Repeat the process. The modified network still satisfies the hypotheses
of the theorem.

Eventually, all junctures have been removed and all conductances re-
covered. Γ has been transformed into a trivial network, and Ξ has been
row-reduced to the identity matrix.

Of course, there is an analogous theorem with the roles of the inner and
outer boundaries reversed.

6 Open Problems

6.1 Recoverability

The recoverability results of this paper are incomplete in several ways. First
and most importantly, I have not dealt with networks which have type 0
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geodesics. For some results on a particular class of networks with type 0
geodesics, see [4]. For networks with type 0 geodesics, the inverse problem
may have finitely many solutions, something which does not happen in circu-
lar planar networks. In other words, the network is discretely unrecoverable.

I conjecture that

• If a type 0 geodesic intersects itself, then the inverse problem has
infinitely many solutions.

• If the network is discretely unrecoverable, then there are type 0 geodesics.

Second, Theorem 4.7 and 5.12 are incomplete as recoverability criteria.
There are recoverable networks in which type 1 geodesics form lenses. There
are recoverable radial networks which cannot be recovered by the method
described in this paper. However, I believe that networks which “flagrantly”
violate the hypotheses of these theorems are not recoverable.

Third, the recovery methods of this paper relied heavily on Y -∆ trans-
formations. More numerically efficient methods should be explored.

6.2 Nonlinear Conductances

We should consider a generalization to nonlinear conductance functions of
the type described by Will Johnson in [3]. Like Johnson’s geodesic closures,
partition into subnetworks provides a way to analyze how boundary-value in-
formation propagates through the network. And partition into subnetworks
does not rely on covoltages (which are problematic for non-simply-connected
regions).

Solution spaces are well-defined for nonlinear conductances. Certain
theorems of this paper state that any data is feasible and the only zero-
compatible data is 0 for a certain boundary curve or cut (such as Lemmas
3.9 and 4.2). I believe these theorems will hold for nonlinear conductances
with essentially the same proof. In other cases (Theorems 3.10 and 4.1),
it is difficult to define the dimension of a solution space, although we can
at least say that it has a continuous injective parametrization in a specified
number of variables.

I believe Theorem 4.7 (partial recovery by removal of type 1 geodesics)
will hold with essentially the same proof. However, widespread application of
the theorem requires the ability to perform Y -∆ transformations while com-
puting conductances which make the new network electrically equivalent. To
my knowledge, this has not yet been done for nonlinear conductances. The
same issue may interfere with the proof of Theorem 5.12 (recoverability of
certain radial networks).
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The theorems on the principal electrical functions for radial networks will
still hold. However, “factorization” of the interboundary map will require
care.

It is anyone’s guess what might happen when we put nonlinear conduc-
tances on discretely unrecoverable networks.

6.3 More Complicated Regions of Embedding

Consider a generalization to planar regions with an arbitrary number of
boundary curves. Such networks will require all the lens removal techniques
for annular networks and possibly more, although I suspect the most dra-
matic contrast is between networks in simply connected regions and networks
in non-simply-connected regions. There are probably analogues of Theorem
2.20 (layered form) and Theorem 4.7.

We might also consider networks on a surface. [5] has considered infinite
networks in a half-plane, but perhaps annular techniques can be applied to
networks in an infinite, non-simply-connected region.
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