
1. Basic Definitions and Conventions

When refering to a graph, we mean an undirected graph G with vertex set V broken down
into interior vertices (Vint) and boundary vertices (∂V ) where

(1) X is connected, finite, and has no loops
(2) There exists disjoint subsets, ∂V and Vint, of V where ∂V is nonempty and V =

∂V ∪ Vint
(3) When identifying vertices, all ∂V labels come before Vint.

When drawing such graphs, boundary nodes are represented by a solid black dot and interior
nodes by a open dot. Due to the inability to project three dimensional graphs onto paper,
we will often draw the same node more than once. If a node is drawn multiple times, it
will be denoted by the same number. The following graph in Figure 1 has multiple labelled
vertices.

 0  2  4  0

#6 #7 #8

 1  3  5  1

Figure 1. Blah for now

A conductivity on a graph G is a function γ which assigns to each edge e a positive real
number γ(e). Thus, a resistor network, Γ(G, γ), is a graph G with a conductivity function
γ [5]. The term resistor network is standard for a graph with resistors as edges. The
conductance of a resistor is defined as the reciprocal of the resistance.

Suppose Γ = (G, γ) is a resistor network with n vertices (v1, . . . , vn). Let

γij =
∑

all edges e
joining vi to vj

γ(e)

and γij = 0 if there is no edge between vi and vj. If n is the number of nodes in the network
(G, γ). then Kirchhoff Matrix is defined as

Kij =

{
γij i 6= j

−
∑

j 6=i γij i = j

We often write the Kirchhoff Matrix in its block form. Let’s assume that G has m boundary
vertices, then

K =

[
A B
BT C

]
where A is an m × m matrix and C is an n − m × n − m matrix. From [5], it is shown
that C is an invertible matrix. The definition of the Kirchhoff matrix leads to the following
characteristics:
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(1) The off-diagonal entries are positive or 0 (γij ≥ 0 for all i 6= j
(2) The row sums equal 0.
(3) K is symmetric.

Because of the symmetry of the Kirchhoff matrix, only the γij’s in the upper triangle need to
be found in order to define the entire K matrix. Moreove, there is a 1-to-1 correspondence
between any matrix that satisfies the above characteristics and a Kirchhoff matrix of a
network. (This will especially be useful later on in the paper.)

We now define Λ (m×m) to be the response matrix (G, γ):

Λ = A−BC−1BT = K/C.

Λ can be interpreted as the Schur complement of C in K. This new matrix, Λ, has the same
characteristics as the Kirchhoff matrix:

(1) The off-diagonals are greater than or equal to 0 (λij ≥ 0 for i 6= 0)
(2) The row sums are 0
(3) Λ is symmetric

Hence, Λ is a Kirchhoff matrix for another resistor network. This is easily shown.
The inverse problem associated with resistor networks is given a response matrix, Λ, and

graph, G, find the conductivities (i.e. the entries in the Kirchhoff matrix). This simple
definition of the inverse problem leads to the term recoverability. The idea is that with any
response matrix there exist unique conductivities on G that generated Λ. Prior research
shows that given certain characteristics of the graph, there is recoverability. Hence, we can
find theoretically find the conductivities with the response matrix. When there are non-
unique conductivities corresponding to the response matrix, we say that the graph is n to 1
(The phrase coined in [2]) where n > 1. In this sense with a given Λ there exists n different
conductivities that created the response matrix. The simpliest example of such graphs is the
”series” connection (View Figure 2). In this case, we can show that Λ is a 2×2 matrix. Then
λ1,2 = γ1,3γ2,3

γ1,3+γ2,3
. Because we can not break λ1,2 down into two components, γ1,3 and γ2,3 can

be any value such that this ratio holds. Thus, there is ∞ to 1 different conductivities that
produce the response matrix. The more interesting cases occur when n is a finite number
greater than one.

Figure 2. The graphs of the Kirchhoff and response matrices for series configurations

 1

γ1,3
#3

γ2,3
 2  1

λ1,2
 2

2. Motivation

The concept of n to 1 graphs where n is a finite number has been of great interest. In
[3], the 2-to-1 graphs were explored thoroughly (and 2n) using n-gon in n-gon graphs. They
established the existance of at least 2n-to-1 graphs. It wasn’t until the work by [1] and [2],
who showed the existance of 3-to-1 graphs, that n-to-1 graphs were possible (n is finite).
However, the creation of these graphs and their underlying structure remains relatively
limited. Moreover, we will take a different approach to solving n-to-1 graphs then previously
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thought. In this paper, we explore the construction of n-to-1 graphs (when n does not equal
a power of 2) and certain properties that arise.

3. Preliminary Notions

3.1. Star-K Transformation. The concept of Star-K Transformation and the enforcement
of the quadrilateral rule are essential to constructing n-to-1 graphs. We define a star as a
graph in which there exists no interior to interior edges and no boundary to boundary edges.
An n-star (for n > 1) is defined as n boundary vertices connected to a single interior vertex.
The K transformation takes the star and creates a complete graph with the interior vertex
removed. We will denote Kn as a complete graph with n boundary vertices (This is not to
be confused with the Kirchhoff matrix K). Thus the Star-K Transformation takes a n-star
to a Kn.

 0

γ0

 1

γ1

#4

γ3γ2

 2  3

 0

µ1,2
µ0,2

µ0,1
 1

µ1,3
µ0,3

 2 µ2,3
 3

Figure 3. 4-star transformed to a K4

The importance of this Transformation lies in understanding what it does to the Kirchhoff
matrix. By eliminating interior vertices, we are doing row reductions to reduce B to the 0
matrix. Once all interior vertices have been “row reduced”, the upper left-hand matrix is
A−BC−1BT , which is defined as the response matrix, Λ.

Knowing this response matrix, we understand the relationship between γi and µij. It is
shown that

γ0γ1
σ

= µ0,1

where σ =
∑

i γi. Similarly, µ1,3 = γ1γ3
σ

.

3.2. Quadrilateral Rule. The quadrilateral rule derives from the 4-star and K4 (Figure
3) and the Determinant Connection Theorem found in [5]. The basic idea is that in the
4-star there exists no 2-connection between any 4 boundary vertices. Because of this and the
Determinant Connection Theorem, we know that the determinant of any 2× 2 off-diagonal
sub-matrix (γii is not an entry in the sub-matrix) of the Kirchhoff matrix is 0. In the K4

graph, it is equvialent to det[2× 2] = 0 or

µ0,1µ2,3 = µ1,3µ0,2 = µ0,3µ1,2

In more generality for larger stars, the quadrilateral rule is stated as

(1) µijµkl = µikµjl for all i 6= j 6= k 6= l.

The quadrilateral rule leads to an important theorem developed in [4] regarding computation
of the γ from the response matrix.

3



Theorem 3.1. A network on a complete graph (Kn) is response-equivalent to a star if and
only if its conductivities satisfy Equation 1.

In particular, [4] discovered a method of recovering the γ’s given all sides of the quadri-
lateral. Define

αi =

√
µijµik
µjk

.

Then we can formally compute γi’s by

(2) γi = αi
∑
j

αj.

We must be careful when applying this. The µij’s needed for the calculation do not
necessarily come directly from the response matrix. In some cases, the response
matrix has the sum of multiple edges in the quadrilateral. Hence in order to compute the γi
we must be able to calculate each edge in the quadrilateral separately.

3.3. Parameterizing the Response Matrix. This remarkable formula allows us to pa-
rameterize the response matrix so that it preserves the quadrilateral rule. A closer examina-
tion of Figure 3 reveals how we can choose λij and create a valid graph with conductivities.
Assume that the µ’s for µ0,1 and µ2,3 are fixed. We are now able to select any positive values
for µ0,2 and make µ1,3 = µ0,1µ2,3

µ0,2
satisfy the quadrilateral rule. Moreover, we can choose a

positive value for µ0,3 (independent of µ0,2) and make µ1,2 = µ0,1µ2,3
µ0,3

. By doing this, we can

recover the corresponding γ’s by Equation 2. Thus, we can construct a “response matrix”
which corresponds to real conductivities on a 4-star.

To avoid confusion with the response matrix and the Kirchhoff matrix, we will defined new
terminology.

Definition 3.1. R-MultiGraph and R Matrix
The R-MultiGraph is the graph of the star after performing the Star-K Transformation. In
Figure 3, the complete graph is the R-MultiGraph. We use the term multi-graph to describe R
because as we will see later multiple edges will be allowed in the R-MultiGraph. The R-Matrix
is a matrix that stores the values of the µ’s or the “conductivities” on the R-MultiGraph.
Because multiple edges are allowed in the R-MultiGraph, the entries in the R-Matrix often
will be sets containing the µ’s. If a multiple edge occurs in the R-MultiGraph, the R-Matrix
separates the multiple edges storing both values as the entry in the matrix. This slightly
differs from the response matrix since a multiple edge in the R-MultiGraph results is a sum
of the µ’s in the response matrix between any two vertices. When there is only a single edge
in the R-MultiGraph, the response matrix and the R-Matrix will contain the same values.
All off-diagonal entries in the R-Matrix must be positive and the diagonal entries are the
same as the response matrix. In addition, the R-Matrix like the response is symmetric.

The R-Matrix is a useful tool because in order to recover the conductivities we must know
all the sides on the quadrilateral. In order to better understand this terminology, we will
provide some examples in the next section.
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3.4. Connecting Multiple Stars. Although we can connect different n-stars to each other,
we will focus on 4-stars. The following figures illustrate different connections of multiple 4-
stars and their corresponding R-MultiGraphs.

 0  1  4

#6 #7

 2  3  5

 0

µ0,2

µ0,1

µ1,2

 1

µ0,3 µ3,4
µ
(1)
1,3 µ

(2)
1,3

 4

µ1,5
µ4,5

µ1,4

 2 µ2,3
 3 µ3,5

 5

Figure 4. Connection of Multiple 4-Stars by Parallel Sides

The response matrix in Figure 4 would be the following:

Λ =



−
∑
µi µ0,1 µ0,2 µ0,3 0 0

µ0,1 −
∑
µi µ1,2 µ

(1)
1,3 + µ

(2)
1,3 µ1,4 µ1,5

µ0,2 µ1,2 −
∑
µi µ2,3 0 0

µ0,3 µ
(1)
1,3 + µ

(2)
1,3 µ2,3 −

∑
i µi µ3,4 µ3,5

0 µ1,4 0 µ3,4 −
∑
µi µ4,5

0 µ1,5 0 µ3,5 µ4,5 −
∑
µi

 ,

whereas the R-Matrix is

−
∑
µi µ0,1 µ0,2 µ0,3 0 0

µ0,1 −
∑
µi µ1,2 {µ(1)

1,3, µ
(2)
1,3} µ1,4 µ1,5

µ0,2 µ1,2 −
∑
µi µ2,3 0 0

µ0,3 {µ(1)
1,3, µ

(2)
1,3} µ2,3 −

∑
i µi µ3,4 µ3,5

0 µ1,4 0 µ3,4 −
∑
µi µ4,5

0 µ1,5 0 µ3,5 µ4,5 −
∑
µi

 ,

Note the distinction between the two. In row 1 column 4, the response matrix has the sum
of the µ’s whereas the R-Matrix has in entry 1,4 two values of µ. We can see that in the
R-MultiGraph we get two edges from vertices 1 and 3, so the R-Matrix and Λ will only differ
by this entry.

Figure 3.4 will often be used in creating n-to-1 graphs. Later we will refer to this type of
connection of multiple stars as a inversion. Note that when you see an R-MultiGraph like
Figure 3.4 it comes from that resistor network graph and is simply a quadrilateral.

4. Positivity and Polynomials

As shown previously, the structure of the graphs give rise to polynomials formed from
linear combinations of products of (Cj − x)k and xk for k = 1, . . . , n where the coefficients
need to be positive. We also proved that the positivity of fj’s prior to the end of the arms,
those before multiplication occurs, don’t affect the ending σ(x). For instance, the λ’s which
ensures positivity of these fj don’t appear in the ending calculations for σ(x). As a result,
we can solve the solutions to σ(x) first and then choose these λ’s larger than all solutions to
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 1  5

Figure 5. Connection of Multiple 4-Stars by Diagonal Side

σ(x) for the prior fj’s.

We can now turn our focus to understanding σ(x). The first thing to note is that σ =
p(x)+f0 = p(x)+x where p(x) is a polynomial formed from linear combinations of products
of xk and (Cj − x)k for k = 1, . . . , n where the coefficients are positive. Because f0 will
always appear in σ, the construction of the arms only depend on the function p(x). Hence,
the ultimate goal is to find p(x) as linear combinations of products of (Cj − x)k and xk,
and satsifies some additional properties. In order for this graph to have valid conductivities,
these properties need to be true of σ(x):

(1) The solutions to σ(x) = λ0,1 need to be positive (strictly larger than 0) for some
positive λ0,1.

(2) All the Cj need to be larger than all the solutions to σ(x) to ensure that a particular
fj is positive. This implies that the Cj’s must also be positive.

(3) The function σ(x) must be of the form p(x) + x, where p(x) is a linear combinations
of products of (Cj − x)k and xk, where all the coefficients must be positive.

The goal is to find a p(x) and hence σ with the properties and then construct the corre-
sponding network graph.

Consider the first property of σ, where σ(x) = λ0,1 must have all positive roots for some pos-
itive λ0,1. For now, we will assume λ0,1 = 0 and find a σ which satisfies the three properties.
We will then use a simple trick to get λ0,1 positive by shifting the entire polynomial up a
fixed number. Without loss of generality, we will construct polynomials with roots between
(0, 1). Therefore, the Cj ≥ 1 for all j in order to satsify condition (2): the Cj’s need to be
larger than all solutions σ. We will see that letting the Cj = 1 for all j produces a widely
studied class of polynomials. As a result, the rest of this section we will take Cj = 1 for all
j. This topic of constructing polynomials with certain root properties has been extensively
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explored, particularly roots between (−1, 1). There exists many polynomials with this prop-
erty including Chebyshev and other Jacobi polynomials. You can do this process with any
of these polynomials; however for this paper, we will use Legendre polynomials as our basis
for constructing σ.

4.1. Legendre Polynomials. Standard Legendre polynomials have roots between (−1, 1),
so we will start by constructing these polynomials and shift accordingly. Using Bonnet’s
recursion formula for Legendre polynomials, (n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x),
where P0(x) = 1 and P1(x) = x, you can construct an explicit calculation for the Legendre
polynomial,

Pn(x) =
n∑
k=0

(−1)k
(
n

k

)2(
1 + x

2

)n−k (
1− x

2

)k
.

We will shift the polynomials to have roots between (0, 1) by setting x 7→ 2x− 1. Thus the
“shifted” Legendre polynomials with roots between 0 and 1 are

(3) Pn(x) =
n∑
k=0

(−1)k
(
n

k

)2

xk(1− x)n−k.

Note that the Legendre polynomials are in the “basis” that we want (i.e. xk and (1− x)k).
However, property (3) fails for σ as some of the coefficients are negative. Unfortunately, we
can’t directly use Legendre polynomials, but they do have the property that are the roots
are positive and Cj = 1 is bigger than all the roots for all j. For now, we will use these
polynomials as acting like σ; thus denote

σ̃(x) =
n∑
k=0

(−1)k
(
n

k

)2

xk(1− x)n−k.

The first few “shifted” Legendre polynomials are:

n = 0 : P0(x) = 1

n = 1 : P1(x) = 1− 2x

n = 2 : P2(x) = (1− x)2 − 4x(1− x) + x2

n = 3 : P3(x) = (1− x)3 − 9x(1− x)2 + 9x2(1− x)− x3

n = 4 : P4(x) = (1− x)4 − 16x(1− x)3 + 36x2(1− x)2 − 16x3(1− x) + x4

The benefit of Legendre polynomials are that the roots are now restricted to be between
(0, 1) and they come from linear combinations of products of xk and (Cj−x)k where Cj ≥ 1.
We now try to satisfy the property that the coefficients of these linear combinations need
to be positive. In order to solve this, we introduce a new type of polynomial known as
Bernstein Polynomials.

4.2. Bernstein Basis Polynomials. The Bernstein Basis Polynomials of degree n are
defined as

bk,n(x) =

(
n

k

)
xk(1− x)n−k, k = 0, . . . , n.
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The Bernstein basis polynomials of degree n form a basis for the vector space of polynomials
of degree less than or equal to n. Bernstein basis polynomials have a multitude of properties
useful in solving our current problem.

Property 4.1. The Bernstein basis of polynomials form a partition of unity. Thus,

n∑
k=0

bk,n =
n∑
k=0

(
n

k

)
xk(1− x)n−k = 1.

Proof. Consider that (1− x+ x)n = 1. Applying binomial formula, we get that

1 = (1− x+ x)n =
n∑
k=0

(
n

k

)
xk(1− x)n−k.

�

We will use this fact to make the coefficients of the Legendre polynomials positive while
simultaneously shifting the polynomial upward making λ0,1 > 0.

Property 4.2. Let f be a continuous function on the interval [0, 1] and Bn(f) be the poly-
nomial on [0, 1] such that

Bn(f) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
.

Then Bn(f) tends uniformly to f(x) as n→∞.

As a result, the Bernstein basis polynomials can be used to prove the Weierstrass approx-
imation theorem.

Recall that, σ(x) = p(x) + x, and that we need to find p(x) in order to construct our
graphs. So far, we have written σ̃(x) in terms of Legendre polynomials. Now using Property
(4.2), we can write x in terms of the Bernstein basis polynomials. Moreover if n ≥ 1
and since Bernstein polynomials form a basis, x will be exactly given by the formula:
Bn(f) =

∑n
k=0

(
n
k

)
xk(1− x)kf

(
k
n

)
. Therefore,

(4) x =
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k, for n ≥ 1.

Next, we will find p(x) = σ(x) − x. So far, we have assumed that λ0,1 = 0 and that σ̃ is a
Legendre polynomial with negative coefficients. First, we will construct a pre-p(x) function,
which doesn’t quite satisfy the properties we need. Denote this function by p̃(x) = σ̃(x)−x.
Using Equation (3) and (4), we get that

(5) p̃(x) =
n∑
k=0

(
(−1)k

(
n

k

)
− k

n

)(
n

k

)
xk(1− x)n−k.

Next, the following claim will ensure positivity of the coefficients of p(x) and show the
existence of a positive λ0,1 for σ that has n positive roots.
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Proposition 4.1. Let C ∈ R and pn(x) =
∑n

k=0 ak
(
n
k

)
xk(1− x)n−k, a polynomial of degree

n written in terms of the Bernstein basis polynomials. Then

pn(x) + C =
n∑
k=0

(ak + C)

(
n

k

)
xk(1− x)n−k.

In other words, adding a constant, C, to every coefficient, ak, shifts the polynomial up by C.

Proof. We see that
n∑
k=0

(ak + C)

(
n

k

)
xk(1− x)n−k =

n∑
k=0

ak

(
n

k

)
xk(1− x)n−k + C

n∑
k=0

(
n

k

)
xk(1− x)n−k.

Applying Property (4.1), the partition of unity, we get that
n∑
k=0

ak

(
n

k

)
xk(1− x)n−k + C

n∑
k=0

(
n

k

)
xk(1− x)n−k =

n∑
k=0

ak

(
n

k

)
xk(1− x)n−k + C

= pn(x) + C.

�

This proposition allows us to add a number to every coefficient to make

˜p(x) =
n∑
k=0

(
(−1)k

(
n

k

)
− k

n

)(
n

k

)
xk(1− x)n−k

have all positive coefficients. As a sufficient condition, the smallest the coefficient of p̃(x) is(
n
dn
2
e

)
+ 1. Hence adding this to every coefficient guarantees positivity of every coefficient of

p̃(x). Moreover by Proposition 4.1, adding a positive number to every coefficient shifts the
polynomial up by that constant. Denote this new polynomial as

p(x) = p̃(x) +

(
n

dn
2
e

)
+ 1

=
n∑
k=0

(
(−1)k

(
n

k

)
− k

n
+

(
n

dn
2
e

)
+ 1

)(
n

k

)
xk(1− x)n−k.

By this construction of p(x), all the Cj ≥ 1, p(x) has all positive coefficients and p(x) is linear
combinations of products of (Cj − x)k and xk. This allows us to construct σ(x). Therefore,
let

σ(x) = σ̃(x) +

(
n

dn
2
e

)
+ 1

= p̃(x) +

(
n

dn
2
e

)
+ 1 + x

= p(x) + x

=
n∑
k=0

(
(−1)k

(
n

k

)
− k

n
+

(
n

dn
2
e

)
+ 1

)(
n

k

)
xk(1− x)n−k + x.
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This σ(x) has all the properties necessary. For instance because σ(x) = σ̃(x) +
(
n
dn
2
e

)
+ 1

and σ̃ has n zeroes between (0, 1), then if σ(x) =
(
n
dn
2
e

)
+ 1 it will have exactly n solutions

between (0, 1). As result, we showed there exists a positive λ0,1, namely
(
n
dn
2
e

)
+ 1, such that

the solutions are all positive and between (0, 1). Putting this together with the properties
of p(x)- the coefficients being positive, Cj greater than 1, and p(x) linear combinations of
products of xk and (Cj − x)k and xk- we see that all the solutions of σ(x) =

(
n
dn
2
e

)
+ 1 are

less than Cj = 1 for all j. Therefore, this σ satisfies all the properties needed.
The following are the first few σ and p(x) given by the above formula:

n = 1 : p(x) = 3(1− x)

σ(x) = 3(1− x) + x

n = 2 : p(x) = 4(1− x)2 + x(1− x) + 3x2

σ(x) = 4(1− x)2 + x(1− x) + 3x2 + x

n = 3 : p(x) = 5(1− x)3 + 2x(1− x)2 + 19

σ(x) = 5(1− x)3 + 2x(1− x)2 + 19 + x

n = 4 : p(x) = 8(1− x)4 + 11x(1− x)3 + 75x2(1− x)2 + 9x3(1− x) + 7x4

σ(x) = 8(1− x)4 + 11x(1− x)3 + 75x2(1− x)2 + 9x3(1− x) + 7x4 + x

n = 5 : p(x) = 12(1− x)5 + 29x(1− x)4 + 206x2(1− x)3 + 4x3(1− x)2 + 76x4(1− x) + 9x5

σ(x) = 12(1− x)5 + 29x(1− x)4 + 206x2(1− x)3 + 4x3(1− x)2 + 76x4(1− x) + 9x5 + x

In summary, to construct a σ(x) = p(x)+x, with all the characteristics we need you proceed
as followed

(1) Write the shifted Legendre polynomials with roots between (0, 1) and call it σ̃.
(2) Write x in terms of the Bernstein basis polynomials
(3) Define p̃(x) = σ̃(x)− x and rewrite into Bernstein basis polynomials
(4) Add

(
n
dn
2
e

)
+1 to every coefficient p̃(x) to make the coefficients positive, while simulta-

neously shifting the polynomial up by some constant. Then set p(x) = p̃(x)+
(
n
dn
2
e

)
+1.

By doing the above steps, you should get

p(x) =
n∑
k=0

(
(−1)k

(
n

k

)
− k

n
+

(
n

dn
2
e

)
+ 1

)(
n

k

)
xk(1− x)n−k

σ(x) = p(x) + x =
n∑
k=0

(
(−1)k

(
n

k

)
− k

n
+

(
n

dn
2
e

)
+ 1

)(
n

k

)
xk(1− x)n−k + x.

By setting σ(x) =
(
n
dn
2
e

)
+1, you will get n positive solutions where all the fj’s are positive

for all n solutions.
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Figure 6. The first few graphs of σ

(a) When n = 2, σ(x) gives two solutions
for λ0,1 = 3

(b) When n = 3, σ(x) gives three solutions
for λ0,1 = 4

(c) When n = 4, σ(x) gives four solutions
for λ0,1 = 7

(d) When n = 5, σ(x) gives five solutions
for λ0,1 = 11
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