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Abstract

Optimal permutation arrays (PAs) have a sharply transitive group
structure. A contraction operation is defined that constructs new
permutation arrays from old ones. We characterize the effect of con-
traction on all sharply transitive group PAs.

1 Introduction

In section 2, we define m-contraction and show that m ≤ 3 for all PAs. Next
in section 3, we restrict our attention to group PAs and prove equivalent
conditions for m = 3. The main result is in section 4, where we consider
sharply transitive group PAs. Theorem 4.1 classifies the contraction of all
sharply transitive group PAs.

In this paper, e denotes the identity permutation. PA stands for “permu-
tationa array”. When σ, τ are permutations, d(σ, τ) denotes the Hamming
distance between σ, τ ; it is invariant under permutation composition [put
citation].

2 m-Contraction

Definition 2.1. The contraction [put citation] of σ is

σ′ =
(

n σ−1(n)
)

σ

Definition 2.2. The PA(n, d) is said to m-contract if the contractions of
the elements of the PA(n, d) form a PA(n, d−m).

1



Let σ, τ be permutations on {1, 2, · · · , n}.

Lemma 2.1. d(σ′, τ ′) ≥ d(σ, τ)− 3
When equality holds, π3(n) = n, π(n) 6= n where π = στ−1.

Proof. Let s = σ−1(n), t = τ−1(n)

d(σ′, τ ′) = d((n s)σ, (n t)τ)

= d(π, (n s t))

(∗) ≥ d(π, e)− d(e, (n s t))

= d(σ, τ)− d(e, (n s t))

(∗∗) ≥ d(σ, τ)− 3

Now, we examine the equality case. Step (∗∗) implies n, s, t are distinct. Step
(∗) follows from the triangle inequality, which states that d(a, b) + d(b, c) ≥
d(a, c).

d(a, b) + d(b, c) = d(a, c) ⇐⇒
(

a(i) 6= b(i) =⇒ b(i) = c(i)

)

Applied to (∗)

d (e, (n s t)) + d ((n s t), π) = d (e, π) ⇐⇒ π : (n s t) → (s t n)

Hence π3(n) = n, π(n) 6= n.

As a consequence, this shows that m ≤ 3 in m-contraction.

3 Conditions for 3-Contraction

In this section, we prove equivalent conditions for 3-contraction of groups.

Definition 3.1. A PA(n, d) is called a G(n, d) if it is also a group.

Theorem 3.1. A G(n, d) 3-contracts iff G contains a permutation π such
that
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1. π3(n) = n

2. π(n) 6= n

3. d(e, π) = d

Proof. Suppose G contains such an element π. Define s, t such that (n s t) =
(n π(n) π2(n)) Then the contractions of π, π2 have distance d− 3. Indeed,

d(π′, (π2)′) = d
(

(n t)π, (n s)π2
)

= d ((n s t), π)

(∗) = d(e, π)− 3

= d− 3

Step (∗) requires explanation. In all locations besides n, s, t, permutations
e, π differ iff (n s t), π differ. At locations n, s, t, e, π differ but (n s t), π
match. Thus the number of mismatches decreases by 3. Since we have found
a pair of contracted permutations with Hamming distance d−3, and Lemma
2.1 implies that this is the minimal distance, this implies that G(n, d) 3-
contracts.

For the other direction, suppose that the G(n, d) 3-contracts. Then there
exist permutations σ, τ ∈ G for which the equality case of Lemma 2.1 holds.
Thus, π3(n) = n and π(n) 6= n. Furthermore, d(σ, τ) − 3 = d − 3 =⇒
d(e, π) = d. Taking g = π ∈ G, we have constructed a g satisfying the
conditions of this theorem.

4 Classification

Using Theorem 3.1, we classify contractions of all sharply-transitive G(n, d).

Theorem 4.1. Let G be a sharply-transitive G(n, d).

Condition Contracts to
d ≡ 0 mod 3 PA(n− 1, d− 3)
d 6≡ 0 mod 3 PA(n− 1, d− 2)
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Proof. Let the G(n, d) undergo m-contraction. We’ve shown generally that
m ≤ 3. Now suppose that m < 2. If this was the case, after contraction

there would be
n!

(d− 1)!
permutations of length n−1, with pairwise Hamming

distance at most d− 1. This would imply

M(n− 1, d− 1) ≥
n

d− 1

(n− 1)!

(d− 2)!
>

(n− 1)!

(d− 2)!
≥ M(n− 1, d− 1)

This contradiction follows from the maximality of the sharply-transitive group
PAs [put citation here]. We conclude m ∈ {2, 3}.

The rest of the classification involves the following two cases:

• d ≡ 0 mod 3

In this case, we will show that 3-contraction occurs by finding an ele-
ment that satisfies the conditions of Theorem 3.1. Consider the set

S = {π ∈ G|1 ≤ i ≤ n− d =⇒ π(i) = i}

It is straightforward to verify that S is a subgroup of G. Moreover,
since G is sharply n − d + 1-transitive, there is a unique element in S

for every value of π(n− d+1). Since π(n− d+1) takes on each of the
d values from n− d+1 to n inclusive, there are precisely d elements in
S.

By Cauchy’s Theorem, 3|d = |S| =⇒ S has an element of order
3 [put citation here]. Call this element π. Then π3(n) = n. Now
consider d(e, π). The two permutations match for positions i ≤ n− d,
by construction. By n−d+1-transitivity, they can not match anywhere
else. Thus d(e, π) = d. As a consequence, π(n) 6= n. Thus by Theorem
3.1, the G(n, d) undergoes 3-contraction.

• d 6≡ 0 mod 3

We proceed by assuming for contradiction that G(n, d) 3-contracts.
By Theorem 3.1, there exists an element π with π3(n) = n such that
π(n) 6= n. This implies that n is contained in a 3-cycle. Thus π contains
a 3-cycle, so its order is a multiple of 3 [put citation here].

Now we construct a group S ′ that mimics the construction of S above,
such that π ∈ S ′. Let I be the set of fixed points of π. By (n− d+ 1)-
transitivity, |I| = n− d. Then define

S ′ = {σ ∈ G|i ∈ I =⇒ σ(i) = i}
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Note that π ∈ S ′. As before, S ′ is a group. By sharp transitivity,
|S| = d. Thus 3|ord(π)|d, which is a contradiction. Thus G(n, d)
undergoes 2-contraction.

5 Conclusions/Results/Citations

Pending. Will report new lower bounds as a consequence of this theorem
with data from our table.
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