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1 Introduction

This is a preliminary writeup of my work with the semilinear groups. These
groups yield new permutation arrays with large pairwise Hamming distances.
Their properties are well-understood, which allows the minimal pairwise
Hamming distance to be obtained without resorting to direct computation.

2 Overview and Notation

2.1 Finite Fields

Given q = pn, a power of a prime, call the unique field with q elements Fq.

Fq = {0, 1, g, g2, · · · , gq−2}

where g is any generator of Fq.

2.2 Permutation Polynomials

Let f : Fq → Fq be a polynomial function with coefficients in Fq. If f is
one-to-one, then f permutes the elements of Fq. In this case, f is called a
permutation polynomial, and the permutation corresponding to f is:

σf : x→ f(x)

2.3 Classical Groups

There are four families of groups that we are concerned with in this paper.

• AGL(n,F): affine general linear group of dimension n over the field F.

• AΓL(n,F): affine general semilinear group of dimension n over F.

• PGL(n,F): projective general linear group of dim n over F.

• PΓL(n,F): projective general semilinear group of dim n over F.

Note 2.1. We will use shorthand like Group(n, q) as a synonym for Group(n,Fq).
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2.4 Hamming distance and Permutation Arrays

In this section, all permutations act on n elements.
The Hamming distance between two permutations is the number of places

in which they differ. Let S and T be sets of permutations. Then hd(S, T )
denotes the minimal Hamming distance between distinct elements of S and
T .

If hd(S, S) = d, then the set S is called a permutation array of Hamming
distance d. We say that S is an M(n, d) in this case.

3 Constructions

3.1 AGL(1,Fq)

AGL(1,Fq) = AGL(1, q) is the group of linear polynomials:

AGL(1, q) = {ax+ b|a, b ∈ Fq, a 6= 0}

The group operation is function composition:

(ax+ b) ◦ (cx+ d) = a(cx+ d) + b = acx+ (b+ d)

In fact, all the groups in this paper are presented as sets of polynomials,
and the group operation will always be function composition. This group is
sharply 2−transitive and yields an optimal M(q, q−1) with q(q−1) elements.

3.2 AΓL(1,Fq)

Recall that q = pn. Consider the permutation polynomial

frob(x) = xp

called the Frobenius automorphism, which is semilinear in the following sense:

frob(x+ y) = (x+ y)p ≡ xp + yp = frob(x) + frob(y)

Starting from AGL(1, q), append frob(x) and take the group closure, yielding:

AΓL(1, q) = {axpi + b|a, b ∈ Fq, a 6= 0, 0 ≤ i < n}

This group has nq(q − 1) elements.
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3.3 PGL(2,Fq)

Projective groups act on a “point at infinity”. To accommodate this case,
form the set P1(Fq) = {∞} ∪ Fq. Then PGL(2, q) is constructed as:

PGL(2, q) =

{
ax+ b

cx+ d

∣∣∣∣ a, b, c, d ∈ Fq, ad 6= bc

}
These are called fractional linear functions. Note that cancelling common
factors from the numerator and denominator leaves the function unchanged,
so there are only 3 degrees of freedom among (a, b, c, d).

Suppose h(x) ∈ PGL(2, q). If h(x) is written as h(x) = ax+b
cx+d

, then h acts
on P1(Fq) as follows:

h(x) =


a
c

if x =∞
∞ if x = −d

c
ax+b
cx+d

otherwise

The group PGL(2, q) is 3−transitive and yields an optimal M(q + 1, q − 1)
with (q + 1)q(q − 1) elements.

3.4 PΓL(1,Fq)

In analogy with AΓL, start from PGL(2, q) then append frob(x) and take
the group closure.

PΓL(2, q) =

{
axp

i
+ b

cxpi + d

∣∣∣∣∣ a, b, c, d ∈ Fq, ad 6= bc, 0 ≤ i < n

}

This group has n(q + 1)q(q − 1) elements.

4 Hamming Distance Computations

4.1 Preliminaries

In this section, all permutations act on n elements.
Let G be a set of permutations that is also a permutation group. The

goal in this section is to compute hd(G,G), and thereby interpret G as a
permutation array M(n, d).
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Lemma 4.1. hd({στ}, {σρ}) = hd({τ}, {ρ})

Proof. στ(x) = σρ(x) ⇐⇒ τ(x) = ρ(x)

Lemma 4.2. hd(G,G) = hd({e}, G), where e is the identity permutation

Proof. Pick a, b ∈ G. Then hd(a, b) = hd(e, a−1b) so the result follows

Lemma 4.3. Suppose N is a normal subgroup of a finite group, G. If {ai}i∈I
is a set of coset representatives of N , then

hd(G,G) = min
i∈I

hd({ai}, N)

Proof. Since N is normal, the set {a−1i } is also a set of coset representatives.
Therefore, G =

⋃
i∈I a

−1
i N , so the Hamming distance is computed as follows:

hd(G,G) = hd({e}, G) = min
i∈I

hd({e}, a−1i N) = min
i∈I

hd({ai}, N)

where Lemma 4.1 and Lemma 4.2 have been applied.

Using the following lemma, one can compute the Hamming distance sim-
ply by counting roots of polynomials.

Lemma 4.4. For any polynomial f ∈ Fq[x], let r(f) denote the number
of distinct roots of f(x) in Fq. Then for any distinct pair of polynomials
g, h ∈ Fq[x] we have

hd({g}, {h}) = n− r(g − h)

Proof. g(x) 6= h(x) is equivalent to saying x is not a root of g − h

4.2 AΓL

Theorem 4.5. AΓL(1, q) is an M
(
q, q − pn∗)

, where n∗ denotes the largest
proper factor of n.

Proof. Let G = AΓL(1, q) and let N = AGL(1, q). Note that N is normal
in G by construction. To proceed, apply Lemma 4.3 with representatives
{xpi}n−1i=0 to G, then use Lemma 4.4:

hd(G,G) = min
0≤i<n

hd({xpi}, N)

= q −max
i<n
g∈N

r
(
xp

i − g(x)
)
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By Theorem 5.1,

max
g∈N

r
(
xp

i − g(x)
)

= r
(
xp

i − x
)

Now by Theorem 5.2,

r
(
xp

i − x
)

= pgcd(i,n)

Putting all of our results together,

hd(G,G) = q −max
i<n
g∈N

r
(
xp

i − g(x)
)

= q −max
i<n

pgcd(i,n)

= q − pn∗

Thus AΓL(1, q) is an M
(
q, q − pn∗)

.

Corollary 4.6. Suppose q = 2p where p is prime. Then there exists an
M(q, q − 2) of size pq(q − 1).

4.3 PΓL

Theorem 4.7. PΓL(2, q) is an M
(
q + 1, q − pn∗)

, where n∗ denotes the
largest proper factor of n.

Proof. Let G = PΓL(2, q) and H = {g ∈ G|g(∞) =∞}. H can be identified
with AΓL(1, q) by means of the isomorphism i : AGL(1, q)→ H

i(g)(x) =

{
g(x) if x ∈ Fq

∞ if x =∞

Suppose g(x), h(x) are distinct elements of G. If g(x) 6= h(x) for all x,
then hd({g}, {h}) = q + 1. Otherwise, pick a point y such that

g(y) = h(y) = w

Choose the following elements of G:

τ1(x) =

{ 1

x− w
if w ∈ Fq

x if w =∞
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τ2(x) =

{ yx+ 1

x
if y ∈ Fq

x if y =∞
Let g′ = τ1 ◦ g ◦ τ2, h′ = τ1 ◦ h ◦ τ2. Then τ1(g(τ2(∞))) =∞ and likewise for
h, so g′, h′ ∈ H.

By Lemma 4.1, hd(g′, h′) = hd(g, h). Moreover, the isomorphism i pre-
serves Hamming distance so

hd(g′, h′) = hd
(
i−1(g′), i−1(h′)

)
But i−1(g′), i−1(h′) ∈ AΓL(1, q), so by Theorem 4.7

hd
(
i−1(g′), i−1(h′)

)
≥ q − pn∗

Therefore hd(g, h) ≥ q − pn∗
, so PΓL(2, q) is an M

(
q + 1, q − pn∗)

.

Corollary 4.8. Let q = 2p where p is prime. Then there exists an M(q + 1, q − 2)
of size p(q + 1)q(q − 1) = O (q3 log q).

This improves upon the best current computational results.

5 Root-counting Results

Theorem 5.1. r
(
xp

i
+ ax+ b

)
≤ r

(
xp

i − x
)

Proof. Let p1(x) = xp
i
+ ax+ b, p2(x) = xp

i
+ ax and p3(x) = xp

i − x.
We will show that r(p1) ≤ r(p2) ≤ r(p3).

First, suppose p1 has at least one root (if not, the result holds trivially).
Then pick a root of p1 and call it y. Observe that for any root yi of p1,
we have

p2(yi − y) = (yi − y)p
i

+ a(yi − y)

= yp
i

i − yp
i

+ a(yi − y)

= p1(yi)− p1(y) = 0

Thus y1−y is a root of p2. Since the mapping y1 → y1−y is a bijection,
this shows that r(p1) = r(p2) whenever p1 has at least one root. Thus
in general, r(p1) ≤ r(p2).
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To show that r(p2) ≤ r(p3), we will instead show that r (p◦2) ≤ r (p◦3),
where

p◦2 =
p2
x

= xp
i−1 + a p◦3 =

p3
x

= xp
i−1 − 1

If p◦2(0) = 0, then p◦2 = xp
i−1 so r (p◦2) = 1 ≤ r (p◦3), since p◦3 has the

trivial root 1.

Otherwise, zero is not a root of p◦2. Suppose p◦2 has at least one root
(otherwise the result follows trivially). Then pick a root of p◦2 and call
it z. As zi ranges over all roots of p◦2, map zi → zi

z
.

p◦3

(z1
z

)
=
(z1
z

)pi−1
− 1

=

(
zp

i−1
1

zpi−1

)
− 1

=
−a
−a
− 1 = 0

so zi
z

is a root of p◦3. Since the map is a bijection, this establishes
r (p◦2) = r (p◦3) under the hypotheses on p2. It follows that in general,
r(p2) ≤ r(p3). Thus, r(p1) ≤ r(p3) as we intended to show.

Theorem 5.2. r
(
xp

i − x
)

= pgcd(i,n)

Proof. Let S be the set of roots of xp
i − x. First, observe that the S forms a

finite field. This follows by checking closure under addition, multiplication,
and division - in a similar manner as in the previous proof.

Thus S is a subfield of Fq. In particular, S = Fpj where j|n.

Now consider the extension of xp
i−x into its splitting field. In this larger

field, the expanded root set forms Fpi . But this root set contains S as a
subset, so that S is also a subfield of Fpi . Thus j|i.

Since subfields are ordered by inclusion, S is the maximal subfield sat-
isfying the above constraints. This implies that j is the maximal inte-
ger satisfying j|n and j|i simultaneously. So j = gcd(i, n) which shows

r
(
xp

i − x
)

= |S| = pj = pgcd(i,n)

8



Theorem 5.3 (Special case of Quan’s Conjecture). The equation

ax+ b

cx+ d
= xp

has at most p+ 1 solutions in Fq ∪ {∞}, where a, b, c, d ∈ Fq.

Proof. Let xi be a solution of the equation. Then xi is a root of the following
polynomial:

cxp+1 + dxp − ax− b

By the Fundamental Theorem of Algebra, this polynomial has at most p+ 1
roots.

Corollary 5.4. Let G = PGL(2, q) and f be the Frobenius permutation.
Then hd(G, {f}) = q − p.

Proof. Choose g(x) ∈ G. Then by Lemma 4.4, hd({g}, {f}) = q + 1 − s,
where s is the number of solutions of the equation

ax+ b

cx+ d
= xp

By Theorem 5.3, s ≤ p+ 1.
Therefore, hd({g}, {f}) ≥ (q + 1) − (p + 1) = q − p. When g(x) = x,

equality holds. It follows that hd(G, {f}) = q − p.

Corollary 5.5. Quan’s Conjecture holds for M(2n + 1, 2n − 1), with backoff
distance 1. Quan’s Conjecture holds for M(3n + 1, 3n − 1), with backoff
distance 2.

Proof. Quan’s Conjecture relates to the coset method. Start with G =
PGL(2, q) = M(q+ 1, q− 1) and generate random permutations, σ, on q+ 1
elements. If σ has minimal Hamming distance q− 1− d from all elements of
G, then the coset σG is said to have “backed off by d” from G.

Quan’s Conjecture states that when d ≥ 2, this procedure generates at
least one such permutation, σ. The previous results show that Quan’s Con-
jecture holds for q = 2n and q = 3n, by choosing σ to be the Frobenius
automorphism.

Note: An even simpler proof establishes Quan’s Conjecture for M(2n, 2n − 1)
and M(3n, 3n − 1).
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6 Conclusions

Need to write up properly. I want to emphasize that these are novel lower
bounds, that this leads to a family with asymptotic growth O(n3 log n), and
that this can be used as a starting point for a refined coset method.

Also, it may be worth looking for other areas where my technical results
about roots of polynomials can be applied.
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