Iterated Contraction of Permutation Arrays

Avi Levy

September 5, 2013

1 Chains

1.1 Definitions

A chain $\Sigma = \sigma_0 \to \sigma_1 \to \cdots \to \sigma_m$ is a sequence of permutations. $|\Sigma| = m$ denotes the number of transitions. $d(\Sigma) = |fp(\sigma_m)| - |fp(\sigma_0)|$ where fp denotes the set of fixed points. Σ_0 denotes σ_0 .

Every permutation σ can be decomposed into a product of disjoint cycles, which we call the *cycle decomposition* of σ . If a cycle is a singleton, then it is called *trivial*.

1.2 Types of Chains

Fix a chain Σ made of permutations σ_i .

 Σ is called

- decreasing if $i < j \implies fp(\sigma_i) \subset fp(\sigma_j)$. Note that if Σ is decreasing then $d(\Sigma) \geq 0$.
- K-bounded if for all transitions $\sigma_i \to \sigma_{i+1}$, we have $d(\sigma_i, \sigma_{i+1}) \leq K$. This time, d denotes the Hamming distance.

2 Main Result

Theorem 2.1. If Σ is a decreasing (K+1)-bounded chain, then the cycle decomposition of Σ_0 has at least $d(\Sigma) - K|\Sigma|$ non-trivial $(1 \mod K)$ -cycles.

Corollary 2.2. If Σ is a decreasing (K+1)-bounded chain and

$$\frac{d(\Sigma)}{|\Sigma|} > K,$$

then Σ_0 contains a j-cycle such that

- $1 < j \le K|\Sigma|$
- $j \equiv 1 \mod K$

3 Iterated Contractions

Sudborough et. al. introduced a contraction operation for permutation arrays. For every σ , the contraction is defined to be

$$\sigma' = \sigma(n \ \sigma \cdot n)$$

where n is the symbol to be deleted from σ . $\sigma^{(m)}$ denotes a permutation that is obtained by performing m contractions on σ .

Lemma 3.1. If σ and τ are permutations such that

$$d(\sigma, \tau) - d(\sigma^{(m)}, \tau^{(m)}) > 2m,$$

then the cycle decomposition of $\sigma \tau^{-1}$ contains a j-cycle where 1 < j < 2m and j is odd.

Theorem 3.2. Let M(n,d) be a permutation array. Suppose that no element $\sigma \in M(n,d)$ contains a j-cycle in its cycle decomposition (where 1 < j < 2m and j is odd). Then $M^{(m)}$ is a PA(n-m,d-2m).

4 Application to Permutation Groups

Theorem 4.1. Let G(n,d) be a sharply transitive group. Then $G^{(m)}$ is a PA(n-m,d-2m) if and only if d has no odd divisor j where 1 < j < 2m.