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1 Introduction

The game To Knot or Not to Knot was introduced in a recent paper, A Midsummer Knot’s Dream by
Henrich et al. This game is played on a knot pseudodiagram, that is, a knot diagram with some crossings
unresolved. The two players, King Lear and Ursula, alternatively resolve crossings, until all crossings are
resolved. King Lear wins if the diagram is knotted, and Ursula wins if the diagram is equivalent to the
unknot. Henrich et al considered the game on shadows of twist knots, determining the winning player in
this case. They also considered some rational knots, but as far as I know, nobody has determined who wins
on all rational knot shadows. (A shadow is a pseudodiagram in which all crossings are unresolved.)

In another paper, I developed a convoluted theory for analyzing the game on sums of knot pseudodia-
grams, where the connected sum of two knot pseudodiagrams is defined in an obvious way. The good thing
about these sums is that we can tell which player won from knowledge of who won on each component.
Unfortunately, knowing which player has a winning strategy is not as easy to predict from the sums. I
showed that there was a certain 38-element monoid V , such that each pseudodiagram could be assigned a
value in V , the player with the winning strategy could be determined from this value, and the value of a
sum of two diagrams is the sum of the values of each diagram individually.

In this paper I apply this to shadows of rational knots, for which we have simple algorithms for determining
whether the final diagram is knotted or not. I determine who wins in a given combination of rational knot
shadows. The more general problem of determining who wins in a combination of rational pseudodiagrams
seems much harder.

2 Rational Tangles and Knots

Rational tangels were probably invented by John Conway. They are exactly the tangles (with 4 loose ends)
built up recursively from the tangle with two parallel strands that don’t cross, by adding twists on the four
sides. It turns out that we could equivalently only add twists on the right and the bottom. In this paper,
I’ll use the notation [a1, a2, . . . , an] to denote the tangle obtained by doing a1 horizontal/vertical twists, a2

vertical/horizontal twists, and so on, ending with an horizontal twists. (These numbers may be zero or
negative, to indicate a negative twist or no twists at all.) I’ll also abuse this notation to denote the knot or
link obtained by joining the two strands on top and the two strands on bottom. The vast majority of the
time I am more interested in knots than in tangles.

The following results are well known or easy to show:

Theorem 1. Two tangles [a1, a2, . . . an] and [b1, b2, . . . bn] are equivalent iff the continued fractions are equal:

a1 +
1

a2 + 1
a3+

1

...+ 1
an

= b1 +
1

b2 + 1
b3+

1

...+ 1
bn

1



Theorem 2. The knot or link [a1, a2, . . . an] is a knot (as opposed to a link) iff

a1 +
1

a2 + 1
a3+

1

...+ 1
an

=
p

q

with p odd.

Theorem 3. The knot or link [a1, a2, . . . an] is equivalent to the unknot iff

a1 +
1

a2 + 1
a3+

1

...+ 1
an

=
1
q

for some q.

Note that q can be 0 in the previous theorem!
I extend this notation to rational pseudodiagrams and shadows as follows: [a1(b1), a2(b2), . . . , an(bn)]

denotes a pseudodiagram in which there are bi ≥ 0 unresolved crossings, and resolved crossings totalling to
ai at the ith stage. If ai = 0, we simply write . . . , (bi), . . ., and if bi = 0, we simply write . . . , ai, . . .. So for
example, the shadow of the trefoil can be written as [(3)], while the shadow of the figure eight knot can be
written as [(2), (2)].

Lemma 1. The following pairs of shadows are equivalent (up to planar isotopy).

[(1), (a1), . . . , (an)] = [(a1 + 1), . . . , (an)]

[(a1), . . . , (an), (1)] = [(a1), . . . , (an + 1)]

[(0), (0), (a1), . . . , (an)] = [(a1), . . . , (an)]

[(a1), . . . , (ai), (0), (ai+1), . . . , (an)] = [(a1), . . . , (ai + ai+1), . . . , (an)]

[(a1), . . . , (an), 0, 0] = [(a1), . . . , (an)]

[(a1), (a2), . . . , (an)] = [(an), . . . , (a2), (a1)]

Proof. These are all clear from drawing pictures. Only the last one is nonobvious, since the isotopy involves
turning everything inside out. (I guess this isn’t really a planar isotopy, but its an isotopy if everything was
embedded on a sphere instead of a plane).

Definition 1. A shadow S is obtained by a phony Reidemeister 1 move from a shadow T if S is obtained
by removing a loop (with a precrossing) from T . We denote this T →1 S.

Definition 2. A shadow S is obtained by a phony Reidemeister 2 move from a shadow T if S is obtained
by uncrossing two overlapping strands in T , just like a normal Reidemeister 2 move, except we don’t care
about which strands are on top. We denote this T →2 S.

We also use the notation T →∗1 S, T →∗2 S, and T →∗1,2 S to denote that S is obtained from T by a
sequence of applying the respective phony Reidemeister moves. T →∗1,2 S denotes a mix of both moves.

Lemma 2.
[(0), (a1 + 1), (a2), . . . , (an)]→1 [(0), (a1), (a2), . . . , (an)]

[(a1), . . . , (an−1), (an + 1), 0]→1 [(a1), . . . , (an−1), (an), 0]

[. . . , (ai + 2), . . .]→2 [. . . , (ai), . . .]

Proof. Again, these are all clear from drawing pictures.
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Lemma 3. If T is a rational shadow, that resolves to be a knot (not a link), then T →∗1,2 U , where U is the
unknot.

Proof. Let T = [(a1), . . . , (an)] be a minimal counterexample. Then T cannot be reduced by any of the rules
specified above. Since any ai ≥ 2 can be reduced by a phony Reidemeister 2 move, all ai < 2. If n = 0, then
T = [] which turns out to be the unknot. If a0 = 0 and n > 1, then either a1 can be decreased by 1, or a0

and a1 can be stripped off. On the other hand, if n = 1, then T = [(0)], which is easily seen to be a link. So
a0 = 1. If n > 1, then T reduces to [(a2 + 1), . . . , (an)]. So n = 1, and T is [(1)] which clearly reduces to the
unknot via a phony Reidemeister 1 move.

Later, we will see that this implies that no rational knot shadow can be a win for the knotter playing
both first and second. That is, the unknotter always has a winning strategy, either moving first or moving
second.

Definition 3. A pseudodiagram T is odd or even if it has an odd or even number of precrossings. An odd
projection of T is either T (if T is odd), or a T ′ with T ′ →1 T if T is even. An even projection of T is
either T (if T is even), or a T ′ with T ′ →1 T if T is odd.

The odd projection of a pseudodiagram is always odd, and the even projection is always even. From the
point of view of To Knot or Not to Knot, all odd (even) projections of a pseudodiagram are equivalent. In
fact, to use the notation of my previous paper, if T ′ →1 T , then the game associated with T ′ is equal to ∗
plus the game associated with T .

Lemma 4. If T ′ and T are pseudodiagrams, with T ′ → T , and T is a win for some player P moving second,
then T ′ is a move for the same player moving first.

Proof. Player P moves in T ′ to the loop that is missing in T , yielding a pseudodiagram equivalent to T . She
then follows her strategy for T , as the second player.

It follows that if T is any pseudodiagram, then the odd projection of T cannot be a win for P play-
ing second if the even projection of T is a win for P ’s opponent playing first. Using this, we divide up
pseudodiagrams into classes as follows:

• T ∈ X0 if the even projection of T is U2 and the odd projection is U1

• T ∈ X1 if the even projection of T is K1 and the odd projection is U1

• T ∈ X2 if the even projection of T is K1 and the odd projection is K2

• T ∈ Y0 if the odd projection of T is U2 and the even projection is U1

• T ∈ Y1 if the odd projection of T is K1 and the even projection is U1

• T ∈ Y2 if the odd projection of T is K1 and the even projection is K2

Here, K2 is short for “King Lear wins playing second,” U1 is short for “Ursula wins playing first,” and so
on. Each pseudodiagram T belongs to exactly one of the Xi and one of the Yi. Let X(T ) = i iff T ∈ Xi and
Y (T ) = i iff T ∈ Yi. For reasons explained in my previous paper, T belongs to the same classes as its odd
and even projections. (All this amounts to is the fact that if T ′′ →1 T ′ →1 T , then T ′′ and T are completely
equivalent from a game-theoretic point of view.)

Lemma 5. Let T and S be even pseudodiagrams, with T →2 S. Then if some player P wins moving second
in S, she also wins moving second in T .

Proof. Player P uses her strategy from S to play in T , responding to a move in the two new crossings by
playing the countering move. She is never forced to be the first to play in the two new crossings herself,
since S is even.

3



Analogously we have the following:

Lemma 6. If T and S are odd pseudodiagrams, T →2 S, and some player P wins moving first in Y , then
he also wins moving first in X.

The point of all this is the following:

Theorem 4. If T →∗1,2 S, then X(T ) ≤ X(S) and Y (T ) ≥ Y (S).

Proof. We only need to show this in the case that T →1 S or T →2 S. The first case follows from the fact
that a game is in the same classes as its even and odd projections. That is, if T →1 S, then X(T ) = X(S)
and Y (T ) = Y (S). So we only need to consider when T →2 S.

Suppose that X(S) ≤ 0. Then an even projection of S is U2. We can take T ′ and S′ to be even projections
of T and S, such that T ′ →2 S′. Then by Lemma 5, T ′ is also U2. So T is in X0, and X(T ) = 0 ≤ X(S).

Next, suppose that X(S) = 1. Then an odd projection of S is U1. We can take T ′ and S′ to be odd
projections of T and S, such that T ′ →2 S′. Then by Lemma 6, T ′ is also U1. So T is in X0 ∪ X1, and
X(T ) ≤ 1 = X(S).

Otherwise, X(S) = 2, and there is nothing to show. The fact that Y (T ) ≥ Y (S) can be proven
analogously, switching the roles of the two players.

Corollary 1. No rational knot shadow is a win for the knotter, i.e., is both K1 and K2. In fact, every
rational knot shadow is in X0. Every even rational knot shadow is a win for the unknotter if she plays
second, and every odd rational knot shadow is a win for the unknotter if she plays first.

Proof. If T is a rational knot shadow, then T is reducible by phony Reidemeister 1 and 2 moves to the
unknot, which is clearly in X0. So T ∈ X0. If T is even, then T is its even projection, which is U2. If T is
odd, then T is its odd projection, which is U1.

On the other hand, it is easy to come up with rational pseudodiagrams which are wins for the knotter –
for example, simply take a game that is already over! Unfortunately, the unknot is in Y0, not Y2, so it will
take more work to classify the rational knots.

3 Odd-Even Shadows

Definition 4. An odd-even shadow is a rational shadow of the form [(a1), (a2), . . . , (an)], where all ai ≥ 1,
exactly one of a1 and an is odd, and all other ai are even.

Note that these are all odd. It is straightforward to verify from the rules given above that every odd-even
shadow reduces by phony Reidemeister moves to [(1)], and so every odd-even shadow actually corresponds
to a knot, not a link.

Theorem 5. Every odd-even shadow T is a win for the unknotter, playing first or second.

Proof. Since T = [(a1), (a2), . . . , (an)] is odd, by Corollary 1 it is a win for the unknotter playing first. So
we only need to show that it is a win for the unknotter if she plays second. Suppose we have a minimal
counterexample (n is as small as possible). Without loss of generality, a1 is odd and all other ai are even.
If a1 is 1, then T is the same as [(a2 + 1), . . . , ], a smaller odd-even shadow. So a1 is at least 3. Since none
of the ai are zero, and the others are all even, all ai ≥ 2. Now suppose the knotter makes a move in the
component (ai). Then the unknotter can reply with a canceling move, effectively decreasing ai by 2. If the
new value of ai is nonzero, then we still have an odd-even shadow, which the unknotter can now win in, by
choice of T . Otherwise, ai was decreased by 2 to yield 0, so i > 1, and the new shadow T ′ is

T ′ = [(a1), . . . , (0), . . . , (an)] = [(a1), . . . , (ai−1 + ai+1), . . . , (an)] ,
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another odd-even shadow, unless i = n. In this case,

T ′ = [(a1), . . . , (an−2), (an−1), (0)]→1 [(a1), . . . , (an−2), (an−1 − 1), (0)]→1 . . .

→1 [(a1), . . . , (an−2), 0, 0] = [(a1), . . . , (an−2)] .

So T ′ →∗1 T ′′ for some odd-even shadow T ′. By choice of T , T ′′ is U2, and so Y (T ′) = Y (T ′′) = 0. The
shadow T ′ is also odd, so this means that T ′ is U2 too. Therefore, the unknotter can win in T ′.

In summary, then, the unknotter can respond to any move in T , by simply playing in the same component.
Therefore, T is in U2, and so it is a win for the unknotter both ways.

In fact, something more is true - all odd-even shadows are equivalent (modulo ∗) to the zero game, the
game where nobody moves and the unknotter always wins. (The unknot shadow, for example, is a zero
game). Such games are identities under addition. In the notation of my previous paper, we want to show
that every odd even shadow is in the class Z0. It turned out that a game G was in Z0 iff G + E ∈ Y0, where
E is the game {{{u}, {k}}}. The game E is an odd game, of length 3, which is a win for whoever moves
second. On the first move there are no options. After the first move, there are two options - a move to ∗
and a move to k∗. The second move determines who wins within E. The third move has no effect, but is a
spare move that can come in handy.

Theorem 6. If T is an odd-even shadow, then T is in Z0.

Proof. We need the game T +E to be in Y0. Since T and E are both odd, T +E is even, and what we really
need is T + E + ∗ to be U2. Here is the strategy for the unknotter, playing second, in this combination of
games:

• At all costs, we never make the first move in E, since the knotter can immediately respond with a
killer move. We are never forced to make this move in E, since if that was the sole move remaining,
the unknotter would be faced with an odd position, which shouldn’t happen since initially the knotter
was faced with the odd position T + E + ∗.

• If the knotter every plays in E (making the first move), we respond immediately by moving to ∗, since
otherwise the knotter can make his killer move and we lose.

• If the knotter plays in T , we respond in the same component. This is only problematic if T has been
entirely resolved, or if the knotter plays in an odd component with only one twist. The latter is not
really a problem, since from a different point of view, the one twist can be seen as a part of the next
component. On the other hand, if the knotter has just finished T , and there are still moves remaining,
we make any of them, subject to the preceding caveats.

• If the knotter plays in ∗, or makes the third move of E, and we are left to play somewhere else, then
play in the odd component of T , if it exists. (Otherwise, the game is close to being over).

• If for some reason we are ever forced to move in T for a second time, simply undo the move that we
made there in the first place.

The reader can convince himself that this strategy actually works. Another way of saying this is to note
that all of the following are safe moves for the unknotter to move to1:

• Positions of the form [(a1), (a2), . . . , (an)] + E + ∗ where a1 is odd and the other ai are even.

• Positions of the form [(a1), (a2), . . . , (an)] + ∗+ ∗ where a1 is odd and the other ai are even.

• Positions of the form [(a1), (a2), . . . , (an)] where a1 is odd and the other ai are even.

• Positions of the form [1(a1), (a2), . . . , (an)] + E, where all the ai are even.
1This is assuming that initially, a1 was odd

5



• Positions of the form [1(a1), (a2), . . . , (an)] + ∗, where all the ai are even.

Then it is straightforward to check (using techniques similar to the proof of Theorem 5) that U2 can remain
within this safe set.

4 The other games

The next lemma unfortunately has no clear proof that I know of, other than a verification by computer:

Lemma 7. The following rational shadows are in Y2:

[(3), (1), (3)] , [(2), (1), (2), (2)] , [(2), (2), (1), (2)] , [(2), (1), (1), (2)] , [(2), (2), (1), (2), (2)] , [(2), (2)]

Lemma 8. If T = [(a1), . . . , (an)] is a non-trivial rational shadow corresponding to a knot (not a link), then
either T →∗1 O for some odd-even shadow O, or T →∗1,2 A, where A is equivalent to one of the six shadows
in Lemma 7.

Proof. Without loss of generality, T is irreducible as far as phony Reidemeister-1 moves go. Then we can
make the assumption that all ai > 0. If all of the ai are even, then by stripping applying phony Reidemeister
2 moves, we can reduce T down to either [(2), (2)] or [(2)]. But the second of these is a link (draw a picture
to check this), so T →∗1,2 [(2), (2)]. Otherwise, at least one of the ai is odd. If the only odd ai are i = 1
and/or i = n, then either T is an odd-even shadow, or a1 and an are both odd. But if both a1 and an are
odd, then by applying phony Reidemeister two moves, we can reduce to one of the cases [(1), (0), (1)] or
[(1), (1)]. Both of these are equivalent to [(2)], which is not a knot.

This leaves the case where at least one ai is odd, 1 < i < n. Let T be (a) not reducible by phony
Reidemeister 1 moves, and (b) as reduced as possible by phony 2 moves, without breaking the property of
having one of the ai be odd, for 1 < i < n. If aj > 2 for any 1 < j < n, then we can reduce aj by two.
So for every 1 < j < n, aj ≤ 2. Similarly, a1 and an must be either 2 or 3. (They cannot be 1 or else T
would be reducible by a phony Reidemeister 1 move.) If a1 = 3 and i > 2, then we can reduce a1 by two
and combine it into a2 to yield a smaller T . So if a1 = 3, then a2 = 1 and aj 6= 1 for j > 2 (or else we could
have chosen a different i and reduced). Similarly, if an = 3, then an−1 = 1 and aj 6= 1 for j < n− 1. Thus,
if a sequence begins with (3), the next number must be (1), and the (1) must be unique. For example, the
sequence [(3), (1), (1), (3)] can be reduced to [(1), (1), (1), (3)] and thence to [(2), (1), (3)].

On the other hand, suppose a1 = 2. If i > 4 then we can reduce T farther by decreasing a1 by a phony
Reidemeister 2 move, and then decreasing a2 one by one (by phony Reidemeister 1 moves) until both a1

and a2 are zero. Then both can be removed, yielding a smaller T . Moreover, this also works if i = 4, unless
a3 = 1.

Therefore, what precedes ai = 1 must be one of the following:

• (3)

• (2)

• (2)(2)

• (2)(1)

• (2)(2)(1)

• (2)(1)(1)

(Only the first three of these can precede the first (1)). The same sequences reversed must follow any (1) in
sequence. Then the only combinations which can occur are (this takes some checking):

• [(3), (1), (3)]
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• [(3), (1), (2)] and its reverse

• [(3), (1), (2), (2)] and its reverse

• Not [(3), (1), (1), (2)] because more than just (3) precedes the second (1).

• [(2), (1), (2)]

• [(2), (1), (2), (2)] and its reverse

• [(2), (1), (1), (2)]

• [(2), (1), (1), (2), (2)] and its reverse

• [(2), (1), (1), (1), (2)]

• [(2), (2), (1), (2), (2)]

• [(2), (2), (1), (1), (2), (2)]

• Not [(2), (2), (1), (1), (1), (2)] because too much precedes the last (1).

So either T is one of the combinations in Lemma 7 or one of the following happens:

• [(3), (1), (2)] reduces by a phony Reidemeister two move to [(1), (1), (2)] = [(2), (2)]. So does its reverse.

• [(3), (1), (2), (2)] reduces by two phony Reidemeister two moves to [(3), (1), (0), (0)] = [(3), (1)] = [(4)]
which is a link, not a knot. Nor is its reverse.

• [(2), (1), (2)] reduces by a phony Reidemeister 2 move to [(0), (1), (2)], which in turn reduces by a phony
Reidemeister 1 move to [(0), (0), (2)] = [(2)] which is a link, not a knot. So this case can’t occur.

• [(2), (1), (1), (2), (2)] reduces by phony Reidemeister moves to [(2), (1), (1), (0), (2)] = [(2), (1), (3)] so it
isn’t actually minimal.

• [(2), (1), (1), (1), (2)] likewise reduces by a phony Reidemeister two move and a one move to

[(0), (0), (1), (1), (2)] = [(1), (1), (2)] = [(2), (2)]

• [(2), (2), (1), (1), (2), (2)] reduces by a phony Reidemeister two move to [(2), (0), (1), (1), (2), (2)] =
[(3), (1), (2), (2)], so it isn’t actually minimal.

In summary then, every T that does not reduce by phony Reidemeister one moves to an odd-even shadow
reduces down to a finite set of minimal cases. Each of these minimal cases is either reducible to one of the
six shadows in Lemma 7, or is not actually a knot.

5 Sums of Rational Knot Shadows

Putting everything together, then, we have

Theorem 7. Let T be a rational knot shadow, and let T ′ = [a1, a2, . . . , an] be the smallest T ′ such that
T →∗1 T ′. Then if T ′ is an odd-even shadow, T ∈ Z0, and otherwise, T ∈ X0 ∩ Y2.

Proof. It turns out that the class Z0 is also closed under phony Reidemeister 1 moves, so if T ′ ∈ Z0, then
T ∈ Z0. We already know that if T ′ is an odd-even shadow, then T ′ ∈ Z0. So suppose that T ′ is not an
odd even shadow. Then by Lemma 8, T ′ must reduce by phony Reidemeister 1 and 2 moves to a rational
shadow T ′′ that is one of the six shadows in Lemma 7. By Lemma 7, T ′′ ∈ Y2. Then by Theorem 4, T ∈ Y2,
since T →∗1 T ′ →∗1,2 T ′′. Also, by Corollary 1, T ∈ X0.
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Definition 5. A rational knot shadow reduces to an odd-even shadow if it reduces to an odd-even shadow
via phony Reidemeister one moves.

The previous theorem can be restated to say that a rational knot shadow is in Z0 iff it reduces to an
odd-even shadow, and is in X0 ∩ Y2 otherwise.

Theorem 8. If T1, T2, . . . Tn are rational knot shadows, and T = T1 + T2 + . . . + Tn is their connected sum,
then T is a win for the unknotter (T is U1 and U2) if all of the Ti reduce to odd-even shadows, and otherwise,
T is a win for the second player if T is even, and a win for the first player if T is even.

Proof. The class X0 is closed under addition, so T ∈ X0. Also, the class Y2 is closed under addition by
anything, so if any Ti ∈ Y2, so is T . By the previous lemma, this happens unless every Ti ∈ Z0. Now the
class Z0 is also closed under addition, as shown in my previous paper. So in this case, when all the games
are reducible to odd-even shadows, the sum is also in Z0. But Z0 ⊆ Y0, so in this case T ∈ Y0.

Now it is clear from the definitions of Xi and Yi that the outcomes work out in the way stated. For
example, if T is odd, and in X0 ∩ Y2, then the odd projection of T , which is simply T , must be U1 (because
of X0), and K1 (because of Y2). So T is a win for the first player.

6 Computer Experiments

To be continued. . . 2

2The computer experiments to be described here are already done, but I haven’t written them up yet.
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