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Abstract. We consider the problem of recovering nonlinear conductances in

a circular planar graph. If the graph is critical (in the sense of [2]), and the
conductance functions satisfy some weak conditions (such as being bijective),

we show that the conductance functions are completely recoverable from the

Dirichlet-to-Neumann relationship. This result is general enough that it also
demonstrates the recoverability of conductances in critical circular planar lin-

ear networks with negative or complex (but nonzero) conductances, extending

previous work in [3].
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1. Introduction

In a previous paper, I showed that if an electrical network has non-linear but
monotone and continuous conductance functions, then the Dirichlet-to-Neumann
map is well-defined. This raises issues of recovery. When the conductance function
is allowed to be bounded (so that a maximum current can flow through some con-
ductors), then recovery will generally be impossible, because by surrounding some
conductor c with bounded-current conductors, part of the conductance function of
c could be concealed. Therefore, in this paper, we impose an additional constraint:
the conductance functions must be surjective. In order to have a sort of duality,
it also seems good to require that the conductance functions be strictly monotone,
that is, injective. With both constraints, there is a bijection between current and
voltage along each edge, which allows planar graph duality to be used to its full
potential.

The recovery problem was solved for critical circular planar graphs with these
assumptions. However, much weaker assumptions were actually used by this algo-
rithm. This paper presents these results, which also turn out to be useful for the
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case of negative conductivities. Of course, for non-critical circular planar graphs,
recovery is already known to be impossible, by Chapter 8 of [2].

2. Preliminaries

Definition 2.1. A simple undirected graph with boundary is a triple Γ = (V, ∂V,E),
where V is a set of nodes, ∂V ⊆ V is a set of boundary nodes, and E ⊆ V × V is
a set of edges, subject to

(i, i) /∈ E
(i, j) ∈ E ⇐⇒ (j, i) ∈ E

for all i, j ∈ V . In other words, E is a symmetric irreflexive relationship on V .

Definition 2.2. A circular planar graph is a graph with boundary (V, ∂V,E) which
can be embedded on a disk D, such that each boundary vertex v ∈ ∂V is on the
boundary of D, and no edges cross 1.

In this paper, we will only consider nonlinear electrical networks of the following
type:

Definition 2.3. A bijective nonlinear network is a pair (Γ, γ), where Γ is a simple
undirected graph with boundary, and γ is a map which assigns to each (i, j) ∈ E a
function γij : R→ R, such that

• γij(0) = 0
• γij(−x) = γji(−x)
• γij(x) is a bijection from R to R.

The function γij is the conductance function on edge (i, j)

Note that there are no requirements that the γij are monotone or continuous.
In fact, bijective nonlinear networks generalize both the symmetric networks of [1],
and the negative conductivities on linear networks, considered by Michael Goff in
[3].

Definition 2.4. A voltage function on (Γ, γ) is a function x : V → R. A current
function on (Γ, γ) is a function c : E → R such that c(i, j) = −c(j, i) for all
(i, j) ∈ E.

The value c(i, j) is interpreted as the current flowing from node i to node j.

Definition 2.5. A current function c and a voltage function x on (Γ, γ) are com-
patible if for every (i, j) ∈ E, c(i, j) = γij(x(i)− x(j)).

For c a current function, the total current flowing out of a node i is given by

φc(i) =
∑

j, (i,j)∈E

c(i, j).

Definition 2.6. A current function c on (Γ, γ) satisfies Kirchhoff’s Current Law
(KCL) if φc(i) = 0 for all i ∈ intV .

Definition 2.7. Given a voltage function x, the boundary voltage function ux

is the restriction of x to ∂V . Given a current function c, the boundary current
function ψc is φc restricted to ∂V .

1In other words, we have an injection f : V → D, such that f(∂V ) ⊆ ∂D, and for each

edge (i, j) ∈ E a continuous injection fij : [0, 1] → D such that fij(0) = i, fij(1) = j, and

fij(α) 6= fi′j′ (β) for any i, j if α, β ∈ (0, 1)
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Definition 2.8. For a fixed bijective nonlinear network (Γ, γ), the Dirichlet-to-
Neumann relationship Λ is the relationship between the possible boundary voltages
and boundary currents:

Λ = {(ux, ψc) : x is a voltage function, c is a current function

satisfying the KCL, and x and c are compatible}.

Note that Λ is not necessarily a function, because the individual conductance
functions may be very ill-behaved. On the other hand, if the γij are all strictly
increasing, then Λ is almost a bijection, as I showed in another paper.

3. Covoltage

If Γ is a circular planar graph, we can consider the dual graph Γ†. (For definitions,
see, e.g., §5 in [4].) We now make the following definition.

Definition 3.1. A covoltage function on Γ is a voltage function on Γ†.

To each covoltage function x† on Γ, we associate a current function c on Γ
satisfying the KCL, by

c(i, j) = x†(a)− x†(b),

where a and b are the faces on the left and right sides of the edge (i, j).

Claim 3.2. This construction yields a current function satsifying the KCL. Con-
versely, any current function c satisfying the KCL comes from a covoltage function,
which is determined uniquely, up to the addition of a constant.

This can be proven using arguments similar to those used in the linear case in
§6 and §7 of [4].

Consequently, we can speak of a voltage function and a covoltage function be-
ing compatible, if the voltage function is compatible with the covoltage function’s
associated current function. The covoltage function is somewhat like the harmonic
conjugate of the voltage function; not all voltage and covoltage functions will have
compatible partners.

Definition 3.3. The voltage-covoltage relationship Θ is the relationship between
possible boundary voltages u and boundary covoltages u†, i.e.,

Θ = {(u, u†) : u and u† are compatible}

Theorem 3.4. The voltage-covoltage relationship Θ contains the same information
as the Dirichlet-to-Neumann relationship Λ.

Proof. Given the boundary covoltages of a current function on Γ, the boundary
currents can be determined: the boundary current at a boundary node i is just the
difference in covoltages of the two boundary faces on either side of i. Conversely,
given the boundary currents, the boundary covoltages are determined up to addition
by a constant, because the differences between covoltages in adjacent boundary
faces is known. �
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4. Boundary-to-Boundary Edges and Boundary Spikes

In this section, we show why the layer-stripping approach that is used to recover
linear networks in [2] is also applicable for the nonlinear case. That is, we show
that if boundary-to-boundary edges and boundary spikes are recoverable, then the
entire graph is recoverable. The theorems in this section are the analogs of those
in Chapter 6 of [2].

Suppose we take a circular planar graph Γ with conductivity function γ, and
we create a new graph Γ′ by adjoining a boundary-to-boundary edge (i, j) with
conductivity function γij . Then the voltage-covoltage relationship Θ changes in
a predictable way. Let a denote the boundary face between i and j on the old
graph, and a′ denote the boundary face between i and j on the new graph. Then
(u, u†) ∈ Θ iff (u, v†) ∈ Θ′, where

v†(a′) = u†(a) + γij(u(i)− u(j)),

v†(b) = u†(b) for b 6= a′.

Importantly, the map from Θ to Θ′ is a bijection. We have shown:

Theorem 4.1. Given the voltage-covoltage relationship Θ, or, equivalently, the
Dirichlet-to-Neumann relationship Λ of a bijective nonlinear network (Γ, γ), and
given γij for some boundary edge (i, j), the voltage-covoltage and Dirichlet-to-
Neumann relationships of (Γ′, γ′) are determined, where Γ′ is the graph obtained by
deleting (i, j), and γ′ is the restriction of γ to the edges of Γ′.

In other words, once we have determined the conductance function of a boundary-
to-boundary edge, we can remove it from the picture, reducing to a simpler problem.

Similarly, suppose we take a circular planar graph Γ and adjoin a boundary spike
at node i (making i an interior node and adding a new node i′). If we extend γ
with a conductance function on (i′, i) given by γi′i, then (u, u†) ∈ Θ iff (v, u†) ∈ Θ′,
where

v(i′) = u(i) + γ−1
i′i (u†(a)− u†(b)),

v(j) = u(j) for j 6= i′,

where a and b are the faces on either side of the boundary spike. Again, the map
that sends Θ to Θ′ is a bijection. Consequently,

Theorem 4.2. Given the voltage-covoltage relationship Θ of the Dirichlet-to-Neumann
relationship Λ of some bijective nonlinear network (Γ, γ), and given γi′i for some
boundary spike (i′, i), the voltage-covoltage and Dirichlet-to-Neumann relationships
of (Γ′, γ′) are determined, where Γ′ is the graph obtained by contracting (i′, i), and
γ′ is the restriction of γ to the remaining edges of Γ′.

In other words, once we have determined the conductance function of a boundary
spike, we can remove it from the picture, reducing to a simpler problem.

Moreover, it is known (Lemma 8.6 of [2]) that every critical circular planar graph
has at least one boundary-to-boundary edge or boundary spike, and removing it
retains criticality. It follows that we can recover the conductivity function from the
Dirichlet-to-Neumann relationship as long as we can recover the conductivity of an
arbitrary boundary-to-boundary edge or boundary spike.
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5. Convex Sets

We now develop the technical machinery that will enable recovery. Assume
throughout that Γ is a critical circular planar graph. Some results do not require
criticality – I leave to the reader the task of sorting them out. For definitions of
medial graphs, criticality, and geodesics, see chapter 8 of [2]. Let S be the set of all
cells in the medial graph of Γ.

Definition 5.1. Two cells x and y in the medial graph of Γ are adjacent if they
share an edge. A connected set of cells X is one that is connected through adjacency.

Definition 5.2. A corner of a set X ⊆ S is a pair (v, x) where v is a vertex, and x
is a cell in X touching v, such that neither of the cells adjacent to x and touching v
are in X. (That is, if some cell of X other than x touches v, it is the one opposite
x). An anticorner of X is a vertex v such that exactly three of the cells around v
are in X.

Intuitively, a corner is a place on the boundary of X where the boundary turns
inwards, and an anticorner is a place where the boundary turns outwards. If two
cells of X come together on opposite sides of a vertex, there are two corners there;
otherwise, corners can be identified with vertices.

Definition 5.3. A set X ⊆ S is simply connected if it is connected and every
component of the complement S \X is connected to a boundary cell.

Note that if X is not simply connected, then we can “fill in” the isolated com-
ponents of S \X yielding an X ′ ⊇ X which is simply connected.

Lemma 5.4. Let X ⊆ S be simply connected, and suppose X contains no boundary
cells of the medial graph. Then, X has at least three corners.

Proof. Let X be a counterexample containing as few cells as possible. Suppose first
that there is at least one anticorner v of X. Choose one of the geodesics which
originate at v that heads into the interior of X. Follow it until it reemerges from
the interior of X. This geodesic segment divides X into two disjoint sets X1 and
X2, as shown in Figure 1, because X is simply connected. Both X1 and X2 are
easily seen to be simply connected. (The main difficulty is showing that they are
connected, but this follows from the fact that the set of cells in each Xi which lie
along the side of the geodesic segment are connected.)

The total number of corners introduced by this partition is at most 3, one at v
and one or two at the site of reëmergence. To see this, suppose (v, x) is a new corner
of, say, X1. Then since (v, x) was not a corner of X, we must have x ∈ X1 and
some of the neighbors of x that touch v in X2 (see Figure 2). Both cannot be in X2

since the geodesic dividing X1 and X2 cannot make a sharp turn or intersect itself.
Therefore, there are three consecutive cells x, y, and z, around v, with x ∈ X1,
y ∈ X2, and z /∈ X. This must be one of the end points of the geodesic segment.
And (v, x) can only be a new corner if x is one of the two cells which flank the last
edge along the geodesic segment. Thus there are at most two at each end of the
geodesic segment. But because one end was at an anticorner, there is only one new
corner on that side, so at most 3 new corners were added.

Consequently, the total number of corners among X1 and X2 is at most 2+3 = 5,
so either X1 or X2 is a smaller counterexample.
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Figure 1. How we divide up X in Lemma 5.4

Figure 2. The possible situations in the neighborhood of (v, x):
(a) cannot happen, so (b) must happen.

Otherwise, we can assume that X contains no anticorners. If X contains no
corners, then the entire boundary of X is a loop, contradicting the criticality of
Γ. If there is exactly one corner, then the boundary is a self-intersecting geodesic,
which is impossible. Finally, if there are exactly two corners, then the boundary
of X consists of two geodesics which intersect at two points, so the medial graph
contains a lens, and Γ is not critical. (All of these conclusions require the fact that
X does not contain any boundary cells.) �

Lemma 5.5. Let X ⊆ S be connected, and suppose X contains no boundary cells
of the medial graph. Then, X has at least three corners.

Proof. Let X ′ ⊇ X be the simply connected set obtained by “filling in” any holes in
X. X ′ certainly has no more corners than X, and does not contain any boundary
cells of the medial graph, because X does not. Then by Lemma 5.4, X ′ has at least
three corners. Therefore, so does X. �

Every geodesic in the medial graph divides S into two pieces.

Definition 5.6. A half-disk is the subset of S on one side of a geodesic g. A set
X ⊆ S is convex if it is an intersection of half-disks.

For critical graphs, it will turn out that convex sets are connected.

Lemma 5.7. Suppose x and y are two cells inside some cells of a critical medial
graph M . If x and y are on the same side of every geodesic in M , then x = y.
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Proof. We proceed by induction on the number of geodesics in M . If there are no
geodesics, then there is just one cell in M , so x = y.

Otherwise, let g be a geodesic in M . Construct a new medial graph M ′ by
removing the side of g that does not contain x and y, and making g part of the
boundary of M ′ (see Figure 3). Now, any geodesic h in M ′ will not separate x and
y, because if it did, it would cross g and then necessarily separate x and y in the
original medial graph M (see Figure 4). Therefore, by induction, x = y.

Figure 3. Constructing a new medial graph M ′ from one side of
the geodesic g.

Figure 4. If h separates x and y in M ′, then it does in M . Here
is the case where h crosses g.

�

Lemma 5.8. Let x and y be two cells in a critical medial graph M . Let n be the
number of geodesics which separate x from y. Then there is a path of adjacent cells
from x to y of length n (We can get from x to y in n moves).
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Figure 5. Getting from x to y in n steps.

Proof. Proof by induction on n. Suppose n = 0. Then by the previous lemma, x
and y are the same cell so we are done.

Otherwise, consider all the geodesics around the boundary of x. If some geodesic
h separates x from y, then we move from x to the neighboring cell x′ across h. Then
n− 1 geodesics separate x′ from y, so there is a path from x′ to y of length n− 1.
Combining this with the step from x to x′, we get a path of length n (Figure 5).

On the other hand, if all geodesics around the edge of x do not separate x from
y, then consider a new critical medial graph consisting of only these geodesics, and
let x′ and y′ be the cells containing x and y. Then no geodesics separate x′ and
y′, so by Lemma 5.7 x′ = y′. Therefore, there is a path from x to y which stays
entirely in x′ = y′, i.e., which does not cross any of the geodesics around the edge
of x. This is only possible if x = y, contradicting the n > 0 geodesics separating x
and y. �

Note that if x, y, n are as in the lemma, then a path from x to y must take at
least n steps, to cross the n geodesics which separate x from y. Therefore, any path
which uses only n steps crosses only the geodesics which separate x and y.

Theorem 5.9. Every convex set X of cells is connected.

Proof. Let x and y be two cells in X. Then by the previous lemma, there is a path
from x to y which only crosses geodesics which separate x from y. If this path ever
leaves X, it must exit one of the half-disks which are used to define X. It would
then cross a geodesic which does not separate x from y, a contradiction. So there
is a path between any x and y in X, so X is connected. �

Suppose that four cells x1, x2, x3, x4 come together at some interior vertex v of
the medial graph. If we know the voltage/covoltage at three of these four cells, then
we can determine the voltage or current at the edge of Γ associated with v, allowing
us to determine the fourth voltage/covoltage. Note that this occurs precisely when
the set of cells with known voltage/covoltages has an anticorner.

Definition 5.10. A set X ⊆ S is closed if it has no anticorners. In other words,
whenever it contains three of the cells which come together at an interior vertex v,
it also contains the fourth.

If X ⊆ S is arbitrary, the closure X is the smallest closed set containing X.

The definition of closure makes sense because
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Lemma 5.11. The intersection of two closed sets is closed.

Proof. (Clear from the definition) �

So the closure of X is the intersection of all closed sets containing X. Alterna-
tively, the closure X can be constructed by adding one cell at a time to X, removing
anticorners, until X becomes closed (this process terminates because S is closed).
Consequently, we have

Lemma 5.12. The closure of a connected set is connected.

Lemma 5.13. X is closed iff each connected component of X is closed.

Proof. Suppose X is closed, and let X ′ be a connected component of X ′. If four
cells x1, x2, x3, x4 come together at a vertex, and three are in X ′, then the fourth
is in X, but it is also connected to the cells in X ′, so it is in X ′ itself. So X ′ is
closed.

Conversely, suppose that every connected component of X is closed. Then if four
cells x1, x2, x3, x4 meet at a vertex, and three are in X, they are necessarily in the
same connected component of X, so the fourth is also in X. Thus X is closed. �

Theorem 5.14. If X is convex, then X is closed.

Proof. Since the intersection of two closed sets is closed, it suffices to show that a
half-disk H is closed. Suppose that four cells x1, x2, x3, x4 meet at a vertex, x4 /∈ H,
but x1, x2, x3 ∈ H, and x1 is adjacent to x4 (see Figure 6). Then H must come
from the geodesic which separates x1 from x4. But this geodesic also separates x3

from x2, so they cannot both be in H. �

Figure 6. Why a half-disk H is closed: if x1 ∈ H but x4 /∈ H,
then x3 /∈ H

The converse is true for connected sets, but requires some lemmas first.

Lemma 5.15. If X is closed and connected, then X is simply connected. Also,
there are no vertices at which X has two corners.

Proof. Suppose X is not simply connected. Then there is some connected compo-
nent Y of S \ X which contains no boundary cells of the medial graph. Then by
Lemma 5.5 Y has at least three corners (v, y). Thus y ∈ Y but the two cells next
to v and y are in X. The fourth cell at v must be in Y or else X is not closed.
Thus Y and some component of S \X touch at v, from opposite sides. Construct
a multigraph on the connected components of S \ X by having an edge between
two if they share a vertex. Multiple edges correspond to multiple vertices. Identify
all the vertices corresponding to components touching the boundary of the medial
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graph. Any cycle in this graph will disconnect X (Figure 7). Because every vertex
save one has degree at least 3, there must be a cycle, unless there is only one vertex,
the exterior one. In this case, X is simply connected.

Figure 7. A cycle in the multigraph means that X is not con-
nected. Note that a path that starts and ends on the medial graph
boundary counts as a cycle, because all boundary components have
been identified.

To prove the second assertion, note that if there was such a vertex, where exactly
two cells were in X and the two were not adjacent, then this would yield another
edge in the auxiliary graph from the first part of this proof. Since there is only
vertex in this auxiliary graph, this would be a self-loop, which would divide X. �

Let g be a fixed geodesic with orientation, and let X be a closed set of cells. We
can partition the edges that constitute g into four classes:

• Interior edges, which lie between two cells of X
• Exterior edges, for which both of the adjacent cells are not in X.
• Left edges, for which the cell on the left of the edge is in X but not the one

on the right.
• Right edges, for which the cell on the right of the edge is in X but not the

one on the left.
Let the components of g be the maximal contiguous series of edges which are clas-
sified in the same way. See Figure 8, for example. Since X is closed, an interior
component can not be adjacent to a right component or a left component.

Figure 8. Eight components of g. From left to right, there are
exterior, right, exterior, interior, exterior, left, right, and exterior
components.
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Lemma 5.16. If X is closed and connected and is on only one side of g, then there
is at most one non-exterior component.

Proof. Without loss of generality, X is entirely on the right side of g. Then there are
only right and exterior components. Suppose s1 and s2 are two right components,
chosen as close as possible, and d is the exterior component between them. Let H be
the half-disk on the side of g containing X, and consider the connected component
Y of H \X containing d. If Y contains some boundary cells of the medial graph,
then X is not connected. If Y touches any other segment of g other than d, then
X is not connected. We thus have a sitution similar to the one in Figure 9.

Figure 9. The scenario of Lemma 5.16

Now suppose (v, y) is a corner of Y . Then y ∈ Y but y’s neighbors around v
are not in Y . Therefore, they are either in S \H or in X. If both are in X, then
since X has no anticorners, the fourth cell at v must not be in X. But this cannot
happen by Lemma 5.15. So one of the cells around v must be in S \H. By a similar
argument, one of the cells must be in X. This forces v to be along g, since S \H
and X are on opposite sides. In fact, v must be one of the two endpoints of d, since
every other point along d is adjacent to two cells of S \H and two of Y .

Therefore, Y has too few corners, and we have a contradiction. �

Lemma 5.17. If X is closed and connected, then there is only one non-exterior
component.

Proof. Let Hl and Hr be the two half-disks on the left and right sides of g. Both
are closed, so by Lemma 5.11 Hl∩X and Hr ∩X are both closed. The components
of g along Hl∩X will come from the left and interior components of g along X, and
the components of g along Hr∩X will come from the right and interior components
of g. By Lemma 5.16, there will only be one component of g along each connected
component of Hl ∩X or Hr ∩X.

Now x and y are two cells in X. They are connected by some path of adjacent
cells which remains inside X. If this path ever crosses g it does it at some interior
component of g. Now suppose it crosses g more than once. At some point it enters
a connected component X ′ of Hr ∩ X or of Hl ∩ X, and then it leaves X ′. By
Lemma 5.16, there is only one component of g along X ′. This component comes
from an interior component s of g along X. The set of cells along each side of s is
connected, so we could modify the path in question by skipping the detour into X ′
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entirely, and just travel along the side of s (Figure 10). By repeating this process,
we can ensure that any path from x to y only crosses g at most once.

Figure 10. If a path enters and exits some component X ′ of Hr∩
X, we can remove the detour into X ′ by traveling along the side
of g.

It follows that there is at most one component of Hr ∩ X and at most one
component of Hl ∩ X (otherwise, we could not get between two components on
the same side of g). If either Hr ∩ X or Hl ∩ X vanishes, then we are done by
Lemma 5.16. Otherwise, there is certainly an interior component of g, because X
is connected. This interior component yields a non-exterior component of g on each
of Hr ∩X and Hl ∩X – then by Lemma 5.16 there can be no other non-exterior
components of Hr ∩ X or Hl ∩ X. Therefore, there can be no more non-exterior
components of X save the one interior component.

�

Lemma 5.18. Let X be a connected, closed set, and let e be an edge along the
boundary of X. If e is along a geodesic g (as opposed to the boundary of the medial
graph), then X is entirely on one side of g.

Proof. By Lemma 5.17, there is only one non-exterior component of g along X. It
is not an interior component, since e is not between two cells of X. Therefore, it
is a right or left component. Suppose without loss of generality that it is a right
component. Then there are no cells of X touching the left side of g. Since X is
connected, this can only happen if X is entirely on one side of g. �

Theorem 5.19. If X is connected and closed, then it is convex.

Proof. Let X ′ be the convex closure of X, i.e., the intersection of all half-disks
containing X. X ′ is clearly convex, so it is connected. Also, if e is any edge along
the boundary of X ′, and e is on a geodesic g, then X is entirely on one side of g,
by Lemma 5.18, so X ′ is too. Suppose some x ∈ X ′ is not in X. Then by the
connectedness of X ′, there is a path from some y ∈ X to x. By Lemma 5.8, there is
a path (not necessarily in X ′) from x to y which does not cross any geodesic which
does not separate x and y. This would include every geodesic along the boundary
of X. Therefore, the path from x to y does not actually cross the boundary of X,
so x ∈ X. �

Corollary 5.20. Let X be connected. Then the closure of X is the intersection of
all half-disks containing X.
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Proof. Let X be the closure of X. As noted above, X will be connected because X
is. By the preceding theorem, X is convex, so it is the intersection of all half-disks
containing X. Let X ′ be the intersection of all half-disks containing X. Any half-
disk which contains X contains X, so X ′ ⊆ X. On the other hand, X ′ is a convex
set containing X, so it is also a closed set containing X. Therefore, X ⊆ X ′. �

6. Consistent Data and Nice Extensions

Fix Γ a critical circular planar graph and γ a conductivity function on Γ. Let
X be a set of cells in the medial graph of Γ.

Definition 6.1. Data on X is a function f from the cells of X to R, interpreted
as voltage or covoltage data, as appropriate. The data f is consistent (with γ) if
whenever four cells in X meet at a vertex, the voltages and covoltages at that vertex
are consistent with the conductance function at the associated edge in Γ. If the cells
a, b correspond to faces in Γ and i, j correspond to vertices, some equation like

f(a)− f(b) = γij(f(i)− f(j))

must be true.

Definition 6.2. If X is a set of cells in the medial graph, and X ′ is obtained from
X by adding a single cell a, such that a and three other cells meet at an anticorner
of X, then X ′ is a simple extension of X. If a only touches one anticorner of X
(i.e., a is adjacent to only two cells of X), then X ′ is a nice simple extension. If
X ′′ is obtained from X by a series of simple extensions, then X ′′ is an extension
of X, and if it is obtained by a series of nice simple extensions, then it is a nice
extension of X.

It is clear that the maximal extension of any set X is simply the closure X, and
that any extension of X is a set Y satisfying X ⊆ Y ⊆ X.

The motivation for nice extensions (and closure and convexity, in fact) is the
following theorems:

Theorem 6.3. Suppose f is consistent data on a set of cells X, and X ′′ is an
extension of X. Then f can be extended in at most one way to be consistent data
f ′′ on X ′′.

Proof. It suffices to show this for the case of X ′′ a simple extensions. But this is
obvious, since a simple extension X ′ is obtained from X by adding a cell a which is
the missing cell at some anticorner ofX. The value of f ′′ at a is uniquely determined
by the consistency requirement, since all conductivity functions are bijections. �

Theorem 6.4. Suppose f is consistent data on a set of cells X, and X ′′ is a nice
extension of X. Then f can be extended in a unique way to be consistent data f ′′

on X ′′.

Proof. As before, we only need to consider nice simple extensions. Here, the only
thing to prove is that the addition of the cell a does not violate any consistency
requirements. Since this is a nice simple extension, there is only one vertex v which
touches a and three other members of X ′′. Therefore, there is only one relationship
imposed on f ′′(a), and it can be satisfied. �
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If X is a set of cells in the medial graph, an interior vertex of X is a vertex whose
four neighboring cells are all in X. Specifying consistent data on X amounts to
specifying the value of |X| variables subject to n equations, where n is the number
of interior vertices in X.

Definition 6.5. If X is a set of cells in the medial graph, the rank of X, denoted
rank(X), is the number of cells in X minus the number of interior nodes.

The following lemma is obvious from the definitions:

Lemma 6.6. Let X ′ be a simple extension of X. Then rank(X ′) ≤ rank(X) with
equality iff X ′ is a nice simple extension.

Theorem 6.7. Let X ′ be an extension of X. Then rank(X ′) ≤ rank(X), with
equality iff X ′ is a nice extension of X.

Proof. Obvious from the lemma, using induction. �

It turns out that there is a different way of understanding the rank:

Theorem 6.8. Let X be a convex set of cells. Then rank(X) is one more than
the number of geodesics g which pass through the interior of X (i.e., have interior
components along X).

Proof. Consider the subgraph of the medial graph containing the cells of X and all
the edges around them (including the edges along the boundary of the medial graph,
not corresponding to any geodesics). Since X is simply connected (Lemma 5.15),
the leftover areas are all connected, and can be replaced by one exterior face. This
graph will have n2 + n3 + n4 + ni vertices, where

• n2 is the number of 2-valent vertices, which are all corners.
• n3 is the number of 3-valent vertices, which all occur along the boundary.
• n4 is the number of boundary 4-valent vertices, which are all anticorners

(by Lemma 5.15).
• ni is the number of interior nodes, which are all 4-valent.

Likewise the number of edges will be given by

E =
2n2 + 3n3 + 4n4 + 4ni

2
,

and the interior faces will be given by

F = 1 +E− V = 1 +n2 +
3
2
n3 + 2n4 + 2ni−n2−n3−n4−ni = 1 +

n3

2
+n4 +ni,

because there is exactly one exterior face. Now F is just the number of cells in X,
so

rank(X) = F − ni = 1 +
n3

2
+ n4.

Now each geodesic that passes through the interior of X terminates at a 3-valent
or 4-valent boundary vertex. A 3-valent boundary node is the endpoint of one
geodesic while a 4-valent boundary node is the endpoint of two. Therefore, if g is
the number of geodesics,

2g = n3 + 2n4.

We are not overcounting any geodesics, because each geodesic which passes through
the interior of X only has one component, by Lemma 5.17.

rank(X) = 1 + g.
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�

We now come to the key results that will be needed for recovery:

Theorem 6.9. Let X be a convex set which touches the boundary of the medial
graph and let a be some cell on the boundary of the medial graph, a /∈ X but a
touches X (see Figure 11). Then the closure of X ∪ {a} is a nice extension of
X ∪ {a}.

Proof. The closure X ∪ {a} is certainly an extension of X ∪ {a}, so it suffices to
show that

rank(X ∪ {a}) ≥ rank(X ∪ {a}).
Now the number of interior nodes in X ∪ {a} must be the same as the number of
interior nodes in X, since X is closed. Therefore, rank(X ∪ {a}) = rank(X) + 1.
So it suffices to show that

rank(X ∪ {a}) > rank(X).

But this is simple, since both X and X ∪ {a} are convex sets, and more geodesics
pass through the latter. Specifically, the geodesic which separates a from X (which
cannot pass through the interior of X, because it is part of the boundary of X)
now passes through the interior of X ∪ {a}. �

Figure 11. Theorem 6.9.

Theorem 6.10. Let ∂M be the set of all boundary cells in the medial graph. If X
is a convex set which is the closure of X ∩ ∂M , and X ∩ ∂M is connected, then
there is some X ′ ⊆ X ∩ ∂M such that X is a nice extension of X ′.

Proof. Let S be a subset of X ∩ ∂M of maximal size such that S is connected and
a nice extension of S. Clearly, any one-element subset of X has this property, so
|S| ≥ 1. If S = X, then we are done, so suppose S ⊂ X. Because X is the closure
of its intersection with the boundary, S 6= X ∩∂M . Let a be a cell in (X ∩∂M)\S
which is adjacent to S. Then by Theorem 6.9, S ∪ {a} is a nice extension of S∪{a}.
Then a is not next to an anticorner of S, so it is not next to an anticorner of S
either. Therefore,

rank(S ∪ {a}) = rank(S) + 1,
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rank(S ∪ {a}) = rank(S) + 1.
But we also have

rank(S) = rank(S),

rank(S ∪ {a}) = rank(S ∪ {a}),
because of the nice extensions. It follows that

rank(S ∪ {a}) = rank(S ∪ {a}).

But S ∪ {a} is just S ∪ {a}. So if we take S′ = S∪{a}, then rank(S′) = rank(S′), so
S′ is a subset of X ∩∂M whose closure is connected (because S ∪{a} is connected)
and is a nice extension of S. Also, |S′| > |S|, contradicting the choice of S. So we
are done. �

Theorem 6.11. Let X be a convex set which touches the boundary of the medial
graph ∂M . Then there is some set of cells S ⊆ ∂M \X such that the entire medial
graph is a nice extension of X ∪ S.

Proof. Let Q be a maximal convex set which is a nice extension of X and some
boundary cells. If Q contains all of ∂M , then Q is already the entire medial graph,
since the closure of ∂M is the entire medial graph (because no geodesic can be
entirely on one side of ∂M). So some boundary cells are not in Q. Choose a ∈
∂M \ Q such that a is adjacent to Q. By a Theorem 6.9, Q′ = Q ∪ {a} is a nice
extension of Q∪{a}. Now Q itself is a nice extension of X∪S′ for some S′ ⊆ ∂M\X.
Therefore,

rank(Q′) = rank(Q ∪ {a}) = rank(Q) + 1 = rank(X ∪ S′) + 1.

But rank(X∪S′)+1 = rank(X∪S′∪{a}), because a does not complete an anticorner
in Q, and therefore does not complete an anticorner in X ∪ S′ ⊆ Q either. Also,
Q′ = Q = X ∪ S′ ∪ {a} = X ∪ S′ ∪ {a}, so Q′ is a nice extension of X ∪ S, where
S = S′ ∪ {a}, contradicting the choice of Q. �

7. Recovery

As noted in a previous section, we can recover critical circular planar graphs as
long as we can recover the conductivity on individual boundary-to-boundary edges
and boundary spikes. Because of the duality between voltage and covoltage (which
works because conductance functions are bijections), we only focus on boundary-
to-boundary edges here. The case for boundary spikes is completely analogous.

Let (i, j) be a boundary-to-boundary edge. Let a be the cell in the medial graph
between the cells i and j. There will be two geodesics g and h which originate on
either side of a and immediately cross, making a into a three-sided cell. Assume g
separates a from i and h separates a from j. We will construct a mixed problem
with a uniquely determined solution that forces all voltages and covoltages on one
side of g to be 0, and the covoltage at a to be anything we please. It is clear then
that the voltage at j will be given by ±γ−1(x), where x is the covoltage at a, γ
is the conductance function along the boundary-to-boundary edge and the sign is
determined by the orientation of things.

Lemma 7.1. If there is a boundary-to-boundary edge (i, j), then for any x there is
a mixed problem (a set of voltages and covoltages along the boundary of the medial
graph) whose unique solution takes the value γ−1(x) at j.
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Proof. Begin by setting all of the voltages and covoltages on the side of g opposite a
to be 0. This will force all voltages and covoltages to vanish in the closure of those
boundary cells, which is just the half-disk determined by g. For suppose some other
half-disk H contains all the boundary cells on that side of g: then the geodesic k
which determines H must have both endpoints on the same side of g as a, and so by
criticality, it cannot cross g at all. So the half-disk H already contains the half-disk
determined by g.

Now, by Theorems 6.4 and 6.9, if we additionally set the value of the covoltage at
a to be x, then this will uniquely determine all the voltages and covoltages in some
bigger convex set X. Then by Theorem 6.11, there is some set of boundary nodes
S such that X∪S nicely extends to the entire medial graph. So by taking arbitrary
values on S, x at a, and all zeros on the far side of g, we get a mixed problem with
a unique solution f . This mixed problem is pictured in Figure 12. It is clear from
the consistency requirement that the voltage at j, f(j) will end up being something
like f(i) + γ−1(f(a)− f(b)), where b is the cell opposite a. Since b and i are both
on the far side of g, f(i) = 0 = f(b), and so f(j) = γ−1(f(a)) = γ−1(x). �

Figure 12. The mixed problem to recover boundary-to-boundary
edge (i, j). There will also be some arbitrary additional boundary
constraints on the right side of this diagram.

Theorem 7.2. If Γ is a critical circular planar graph, and γ is an arbitrary con-
ductivity function on Γ, then γ is recoverable from the Dirichlet-to-Neumann rela-
tionship Λ.

Proof. By the preceding, we know that we can recover the conductivity function
along any boundary-to-boundary edge from Λ. Boundary spikes can be recov-
ered similarly (the situation is perfectly dual). By Theorem 4.1, knowledge of the
conductivity function along a boundary-to-boundary edge along with the Dirichlet-
to-Neumann relationship determines the Dirichlet-to-Neumann relationship of the
graph obtained by deleting the boundary-to-boundary edge. Similarly, boundary
spikes can be contracted. Also, it is previously known (for example, in Chapter 8
of [2]) that every critical circular planar graph contains at least one boundary-to-
boundary edge or boundary spike, and deleting or contracting them (respectively),
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preserves criticality. Therefore, all the conductivities in Γ can be recovered by layer
stripping. That is, if some Γ was not recoverable, then choose a minimal such one,
recover a boundary-to-boundary edge or boundary spike, reduce the graph to a
smaller Γ′, obtain the Dirichlet-to-Neumann relationship Λ′ for Γ′, and recover the
conductivity functions in Γ′. The end. �

Corollary 7.3. Suppose a critical circular planar graph is given, with non-zero but
possibly negative conductivites on each edge. Then the conductivities are recoverable
from the Dirichlet-to-Neumann relationship, even if it is not a function.

Proof. Negative conductivities satisfy the requirements of bijectivity and zero-
preservation. �

Previously, Michael Goff [1] had shown this in the case where the Dirichlet-to-
Neumann map exists (is a function). This work extends his result.

8. Future Work

The requirement that condunctance functions be strictly monotone lacks any
real motivation. Therefore, one idea to explore is nonlinear conductance networks
in which the conductances are (monotone and continuous) surjections.

It would also be good to have a theory similar to this one, but for nonplanar
graphs. There might be some worth in considering the ideas of nice extensions and
convex sets for the case of graphs of low genus, where we can make some kind of
medial graph. For example, if a graph is not circular planar, but can be embedded
on a torus, then we can construct a medial graph on the torus. It is conceivable
that some of the results from this paper might carry over into that context, though
it is not clear in that case even what a “critical” graph would be, or how emptying
lenses should work.

One of the most disappointing things observed while writing this paper is the
complexity of the lemmas in §5. The basic idea of medial-graph convexity seems
simple enough that it should not require complicated arguments to establish the
main results of §5. There are probably much simpler proofs to be found. At any
rate, it seems like there should be some theory lurking behind the lemmas in §5.
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