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1 Introduction
Counting the number of spanning trees on arbitrary graphs is a topic of great
interest in the mathematical community. Some applications include cluster anal-
ysis, information transmission requiring minimal connection, and modeling local
particle activity in turbulent fluid flow. Holroyd et al. in their paper "Chip firing
and rotor-routing on directed graphs" present, as a corollary to the matrix tree
theorem, that the set of labeled spanning trees of a graph G is isomorphic to the
number of recurrent configurations in the sandpile group of G. A question raised
by David Jekel and Will Dana was what the explicit structure of the sandpile
group looked like for C a Cayley graph of Zn - they determined algebraically
that for odd n, the sandpile group of C = Z(1,2)

n ' Zn × (Zfn
)2, where fn de-

notes the nth term in the Fibonacci sequence. We prove this identity by means
of "unhooking" the circulant graph and studying the movement of related graph
structures around Z(1,2)

n , a process which lends itself to extrapolation to higher
numbers of generators. We also explore methods of counting labeled spanning
trees on these Cayley graphs by means of the principle of deletion-contraction
and labeling spanning trees from their non-isomorphic unlabeled spanning tree
structures. We end our discussion with several other interpretations of count-
ing these spanning trees, and possible ways of extrapolating methods to larger
classes of graphs.

2 Method 1: unhooking the circulant graph
In this discussion, our main objective is to prove the

Theorem 1. The number of spanning trees on C = Z(1,2)
n is nf2

n, where fn

denotes the nth Fibonacci number, with f1 = f2 = 1.

Consider Z(1,2)
n , the circulant Cayley graph on the cyclic group Zn generated

by elements 1 and 2: (insert diagram of graph) Now, imagine drawing a line
between two of the vertices and deleting the edges incident to it. This results
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in a linearized, "non-modular" version of Z(1,2)
n , shown below: We will first

determine the number of spanning trees on this unhooked circulant graph. We
start by introducing an identity that will prove to be useful later:
Identity: f2n−2 = f2

n − f2
n−2.

Lemma 1. The number of spanning trees on the "line" graph on n vertices is
f2n−2.

Proof. (insert diagram of line graph) Let F (n) be the number of labeled span-
ning trees on this line graph, and let G(n) be the number of labeled spanning
trees on this line graph tat contain the edge (n− 1, n). If a spanning tree does
not involve (n−1, n) then it must contain the edge (n−2, n), since the spanning
tree is connected. But this is equivalent to finding the number of spanning trees
on the remaining (n − 1)-vertex line graph, which is F (n − 1). But the count
of spanning trees with edge (n − 1, n) is G(n). So F (n) = F (n − 1) + G(n).
Now, consider the spanning tree with edge (n− 1, n). If we omit edge (n− 2, n)
from the spanning tree, we obtain F (n − 1). If we involve the edge (n − 2, n)
in the spanning tree as well, we cannot involve the edge (n − 2, n − 1), oth-
erwise we form a cycle. So involving both edges is equivalent to involving
edge (n − 2, n − 1) in a spanning tree on an n − 1 vertex line graph, so we
get G(n − 1). So G(n) = F (n − 1) + G(n − 1). Arranging these functions as
F (n), G(n+1) = F (n)+G(n), F (n+1) = G(n+1)+F (n), . . . yields the familiar
Fibonacci sequence recursion fn = fn−1 +fn−2. By observation of smaller cases,
we obtain that G(n) = f2n−3 and F (n) = f2n−2, with F (1) = 1, G(0) = 0.

The standard line graph will be the graph as labeled above.

Lemma 2. Given the line graph on n vertices, add k a positive integer to each
of the vertex labels mod n. Then these graphs yield distinct spanning trees, and
each have the same number of spanning trees.

Proof. The second part is trivial, as they have isomorphic graph structures. It
suffices to show that the sets of spanning trees on these distinct line graphs
are distinct. WLOG we can pick the standard line graph and the line graph
obtained by adding 1 to each vertex. The latter involves vertex 1 at the far right
connected to vertices n and n-1, connections which don’t exist in former graph.
So spanning trees are distinct in these graphs, and thus are distinct for any
k-addition to each vertex of the standard line graph. More generally, adding
k to each vertex of the standard line graph will require that a spanning tree
passes through either 1 and 2 to the left of them (moving from left to right),
edges which are not present in the standard line graph.

Since there are n of these distinct labelings, the number of spanning trees on
these line graphs S = nf2n−2 = n(f2

n − f2
n−2). However, it would seem that we

UNDERCOUNTED by nf2
n−2, so what other spanning trees are missing from

the count? We start by considering the standard line graph, and the spanning
trees it contains. However, it does not contain spanning trees of the following
type: (include examples) In order to include these (the 1-shifted spanning
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trees), we need to consider the 1-shifted standard line graph. In general, the
spanning trees will be contained in k-shifted line graphs, for k < bn/2c, counting
the n different labelings of these line graphs. So we have the following

Lemma 3. The spanning trees on each of these k-shifted graphs are distinct.

Proof. The argument is the same as that provided in lemma 2.

So now we have the following

Lemma 4. There is a 1-1 correspondence between the number of spanning trees
on Z(1,2)

n and the spanning trees on all labeled k-shifted graph structures.

Proof. (sketch) For a given labeling, a 0-shifted graph (i.e. the standard line
graph) determines all possible spanning trees on Z(1,2)

n that "wrap around" Z(1,2)
n

exactly once. By this we mean that if our tree starts at vertex k and we trace
the tree around to its opposite endpoint k ± 1 (mod n), then an axis drawn
between these vertices cannot intersect an edge between vertices k and k + 1 or
k + 2, or vertex k− 1 with 1. Less formally, there is no edge that "traverses" (or
crosses past) a vertex that is already included in the spanning tree. Similarly,
a 1-shifted graph (with n labelings) determines all possible spanning trees on
Z(1,2)

n that "wrap around" Z(1,2)
n more than once, but by one edge. In other

words, for all spanning trees counted in these types of graphs there exists two
edges of the spanning tree that intersect between vertices k, k + 1, as in the
diagram pictured below. (INSERT DIAGRAMS) Since any spanning tree of
Z(1,2)

n can cycle around Z(1,2)
n at most twice, and the b(n− 1)/2c-shifted graph

determines spanning trees of all ranges including that, we observe that the set
of these labeled k-shifted graphs exhaustively determine the spanning trees of
Z(1,2)

n .

Lemma 5.
∑(n−1)/2

k=1 f2(n−2k)−2 = f2
n−2.

Proof. f2(n−2k)−2 = f2
n−2k − f2

n−2k−2, so we have
∑(n−1)/2

k=1 f2(n−2k)−2

=
∑(n−1)/2

k=1 f2
n−2k − f2

n−2k−2 = f2
n−1 + f2

n−2 − 2 = f2
n−2.

Now, we get to work. There are n labeled k-shift line graphs for any 0 ≤ k ≤
(n− 1)/2, and so for arbitrary k we observe that there are nf2(n−k)−2 spanning
trees. Summing these using lemma 5 gives us the number of spanning trees on
our circulant graph, namely nf2

n−2 + n(f2
n − f2

n−2) = nf2
n.

3 Further work
- vector field interpretation
- discuss Prüfer sequences and how they count the complete graph case; goal is
to generalize counting of circulant graphs or otherwise graphs with symmetry
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