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1 Introduction

The purpose of this paper is to establish terminology, notation, and tools for
describing and recovering annular networks. I assume the reader is familiar
with the basic theory of electrical networks and significant results in the
circular planar case. Some terms with well-established definitions will not
be defined here, and the definitions presented will prioritize precision over
readability.

There are known criteria for the recoverability of circular planar net-
works, but not for planar networks in general. Every finite planar graph
with boundary can be embedded in a circular region with n holes.

2 Basic Definitions

An electrical network is a connected graph G = (V,E) (with V partitioned
into the boundary ∂V and the interior intV ) and a conductivity function
γ : E → {x > 0}. We will write either γ(pq) or γpq. If there is no edge
between p and q, we define γpq to be zero. We assume |V | is finite. We
assume every interior vertex has degree at least two.

A directed edge is an edge in e ∈ E with an specified order of the vertices.
When we name an edge in V , we will assume it is undirected unless otherwise
specified. The symbol pq will denote the undirected edge from p to q and
p → q will denote the directed edge. p ∼ q means that there is an edge
between p and q. If e = p→ q, then −e will denote q → p.

An embedding of a graph in the plane is a function which uniquely
associates coordinates in C to each vertex and a curve to each directed edge.
(We may denote the vertex and its coordinates by the same symbol and the
edge and its curve by the same symbol.) For a directed edge p→ q, the curve
can be parametrized by an injective C1 function fpq : [0, 1]→ C with nonzero
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derivative such that f(0) = p and f(1) = q and fpq([0, 1]) = fqp([0, 1]). The
curves for distinct edges may not intersect unless the edges share a vertex,
and in that case, the curves may only intersect at that vertex.

An annular planar network is an electrical network whose graph can be
embedded in A = {r < |z| < R} for some positive r < R. The circle
{|z| = r} is called the inner boundary circle and {|z| = R} is called the
outer boundary circle.

3 Construction of the Medial Graph

The medial graph M(G) is a graph constructed on G as follows. Place a
vertex of M on each edge of G (but not on the endpoints of the edge). If two
boundary vertices v1 and v2 of G are connected by an arc Â of the boundary
circle such that no other boundary vertices of G lie on Â, then place two
boundary vertices of M along Â between v1 and v2.

For each interior vertex v of G, let e1, . . . , en be the edges with endpoints
at v, in some counterclockwise order about v. Let w1, . . . , wn be the corre-
sponding vertices of M . Add an edge of M between w1 and w2, w2 and w3,
. . . , wn−1 and wn, and finally between wn and w1.

For each boundary vertex v of G, let c1, . . . , cn be the edges and segments
of the boundary circle with endpoints at v, ordered counterclockwise such
that c1 and cn are the segments of the boundary circle. Let w1, . . . , wn be
the corresponding vertices of M . For the segments of the boundary circle,
let wk be the closest vertex of M to v. Add an edge of M between w1 and
w2, w2 and w3, . . . , wn−1 and wn.

Each interior vertex of the medial graph has degree 4. Thus, we can
construct curves called geodesics by joining opposite edges of M at each
vertex.

Suppose x and y are two points on the same boundary circle. Let x̂y de-
note the arc of the boundary circle passing from x to y in a counterclockwise
direction.

Suppose g is a geodesic and x and y are vertices of the medial graph
which lie on g. Let x̂y[g] be the arc of g which passes from x to y. We
assume the curve is oriented with x before y.

4 Classification of Geodesics and Lenses

A lens in the medial graph is a simple closed curve which is the union of
edges in the medial graph, such that all the edges belong to one or two
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geodesics. A lens L is called simply connected if there is a simply connected
set S such that L ⊂ S ⊂ A.

Divide geodesics into the following categories: A type 1 geodesic has both
endpoints on the same boundary circle; these geodesics are further divided
into inner-to-inner or outer-to-outer based on which boundary circle their
endpoints are on. A type 2 geodesic has one endpoint on each boundary
circle. A type 0 geodesic has no endpoints (it is a zero-pole lens).

Let G0 be the family of type 0 geodesics, G1 the family of type 1 geodesics,
G2 the family of type 2 geodesics. Let Go be the family of outer-to-outer
geodesics (type 1 geodesics with both endpoints on the outer boundary cir-
cle) and Gi be the family of inner-to-inner geodesics (type 1 geodesics with
both endpoints on the inner boundary circle).

Suppose g is a type 1 geodesic in M , which does not intersect itself. Then
g divides the annulus into two components. Let S(g) be the component
which does not include the hole. Let ĝ denote the arc of the outer circle
which lies along S(g). A geodesic h is said to lie inside g if h 6= g and
S(h) ⊂ S(g). These terms are not defined for any other geodesics.

5 Manipulation of the Medial Graph

For each geodesic g, the crossing sequence is an ordered list of the geodesics
which g crosses in the order they are crossed when g is parametrized by a
piecewise smooth curve. By reversing the orientation of g, we may create
an equivalent list in reverse order, but no other orderings are equivalent.

g : h1, h2 means that the geodesic g intersects geodesic h1 and immedi-
ately afterward intersects the geodesic h2. In other words, “h1, h2” appears
in the crossing sequence of g. If no orientation is specified on g, g : h1h2 is
equivalent to g : h2, h1.

A motion is a change in the medial graph corresponding to a Y -∆ trans-
formation of the primal graph. Although technically the medial graph must
be redrawn after each transformation, we can identify whether two geodesics
are the same before and after the transformation by their endpoints. Thus,
we can describe a motion in terms of crossings in the medial graph. If f : g, h
and g : f, h and h : f, g, then a motion exchanges g and h in the crossing
sequence of f and similarly for the other two geodesics, which produces
f : h, g, g : h, f , h : g, f .

An uncrossing is the removal of the intersection of two geodesics. It cor-
responds to an edge removal in the primal graph. If g1 and g2 are uncrossed
in M , producing a graph M ′, there is no canonical way to determine which
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of the resulting geodesics in M ′ is g1 and which is g2.
Geodesic elimination is the process of manipulation the medial and pri-

mal graphs by

• Motions,

• Uncrossings performed at empty boundary triangles after determining
the conductivity of the edge in the primal graph,

• Deleting disconnected boundary vertices.

6 Universal Cover and Multi-Valued Covoltages

For the argument which follows, it will sometimes be necessary to work on
a simply connected set rather than the annulus. The universal cover of the
annulus A = {r < |z| < R} is the strip S = {− logR < Im(z) < − log r},
which maps onto A by the function f(z) = eiz. For any simply connected
U ⊂ A, f−1(U) is a sequence of disjoint connected sets Vn ⊂ S, which we
can index by positive and negative integers. And for each Vn, Vn+1 is the
translation of Vn to the right by 2π. For each Vn, f is homeomorphism from
Vn to U .

The outer boundary of the annulus corresponds to the lower boundary
of the strip and the inner boundary corresponds to the upper boundary.

When we apply f−1 to the vertices and edges in G, M , and G†, we
obtain an infinite electrical network on the strip, whose vertices and edges
repeat with a period of 2π. Any voltage function on the annulus maps to a
periodic voltage function on the strip and any periodic voltage function on
the strip maps to a voltage function on the annulus.

Because the strip is simply connected, every voltage function has a well-
defined covoltage. Since the voltage is periodic, the differences in covoltage
must also be periodic; however, the covoltage itself may not. When we map
the strip’s covoltage onto the annulus, it may become multivalued similar
to the argument function of complex analysis.

In fact, we can easily determine the net change in covoltage over a period
of the graph in a strip. Let v† be the covoltage function. Let x be a vertex
on the upper boundary of the strip and let x + 2π be the corresponding
vertex in the next period. Since the net current at a boundary vertex is
the difference in the covoltages of the adjacent cells, v†(x + 2π) − v†(x) is
the sum of the currents of the upper boundary vertices over one period.
This is exactly the net current flowing from the inner boundary to the outer
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boundary, which we may call the net outward current.1 For any function
u, this is calculated by χiΛφ, where φ = u|∂V and χi is the characteristic
function of the inner boundary vertices written as a vector.

Thus, if we are careful about the multiple values of the covoltages, we
can use Will Johnson’s method of voltages and covoltages on annular graphs
to define mixed problems whose solutions will allow us to determine certain
conductivities. In practice, it is often unnecessary to make covoltages multi-
valued. We can find functions with net outward current zero that still allow
us to determine conductivities.

Definition 6.1. For a geodesic g in the annulus, gk will denote the inverse
image of g in the strip in period k.

Lemma 6.2 (Will Johnson). The voltage-covoltage relationship is equivalent
information to the Dirichlet-to-Neumann map.

7 Medial Cell “Topology”

The “topology” invented by Will Johnson and extended by Ian Zemke de-
scribes the propagation of information through an electrical network. With
their machinery we can construct mixed problems with unique solutions,
from whose boundary data we can determine conductivities on certain edges.
Unfortunately, these results only apply when the embedding region is simply
connected; we should not apply them to the strip rather than the annulus.

Definition 7.1. Let X be a set of medial cells. Then a vertex v of the
medial graph is called

• Interior if X contains all cells around v.

• Exterior if X contains no cells around v.

• A corner if X contains one cell around v.

• An anticorner if X contains three cells around v.

• A double corner if X contains two diagonally opposite cells around v.2

1The fact that the net outward current is equal to the change in covoltage over a period
can also be proved by considering cycles in the dual graph which encircle the hole and
applying the “Green’s Theorem” in [3].

2Ian Zemke calls this a degenerate corner.
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Definition 7.2. Let R be a simply connected region in which a graph is
embedded. Let g be a geodesic of the medial graph with at least one endpoint
on ∂R. Then g splits R into two components. Each of the components is
called a half-plane.

Definition 7.3. A set is closed if it has no anticorners. The (geodesic)
closure of X, denoted by X, is the smallest closed set containing X.3

Theorem 7.4 (Will Johnson, Ian Zemke). Suppose X is a connected set
of medial graph cells, where the medial graph is embedded in a simply con-
nected region of the plane. Then X is the minimal intersection of half-planes
containing X.

Definition 7.5. Suppose X is a set of medial graph cells. Let ∂X denote
the union of all edges in the medial graph at which some cells c1 ∈ X and
some c2 6∈ X are adjacent.

Definition 7.6. Suppose X is a set of medial graph cells. Let B(X) be the
family of all geodesics g such that g ∩ ∂X 6= ∅. Let I(X) be the family of
all geodesics g intersecting the interior of X.

Lemma 7.7. Suppose X is the intersection of half-planes. Then B(X) ∩
I(X) = ∅.

This lemma is clear from the definition. Considering the sets B(X)
and I(X) allows us to interpret Will Johnson’s results for a non-simply-
connected region. Unless we unwrap the annulus onto the strip, we cannot
define half-planes for type 2 geodesics. Thus, we cannot directly apply
Theorem 7.4 to an annulus. However, we can apply the theorem to the strip
and determine which geodesics may form part of the boundary of a region;
this information does have a clear meaning on the annulus.

Theorem 7.8 (Will Johnson). Let X be a convex set with some boundary
cells. Let a be a boundary cell not in X but adjacent to a cell in X. Then
X ∪ {a} is a nice extension of X ∪ {a}.
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