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Abstract

We consider the inverse problem for countable, locally finite electrical
networks with edge weights in an arbitrary field. The electrical inverse
problem seeks to determine the weights of the edges knowing only the po-
tential and current data of harmonic functions on a set of boundary nodes.
Motivated by the results of Curtis-Ingerman-Morrow and de-Verdiere-
Gitler-Vertigan and others, we formalize the idea of using layer-stripping
and harmonic continuation to solve the inverse problem. Our strategy is
to iteratively recover “vulnerable” edges near the boundary, then remove
them by deletion or contraction. To recover the vulnerable edge, we set
up a clever boundary value problem and solve it using discrete harmonic
continuation.

We define “scaffolds,” a set of oriented edges that models the flow of
information in harmonic continuation. We formulate a sufficient geometric
condition (“recoverability by scaffolds”) for the inverse problem to be
solvable using the layer-stripping strategy. Recoverability by scaffolds is
preserved under box products, harmonic subgraphs, covering graphs, and
more generally under preimages by unramified harmonic morphisms. For
critical circular planar graphs, we prove recoverability by scaffolds using
the medial graph.

We also connect the harmonic continuation process to Baez-Fong’s
compositional framework for networks and Lam-Pylyavskyy’s electrical
linear group. We use this to generalize results of Curtis-Ingerman-Morrow
and de-Verdiere-Gitler-Vertigan relating the size of connections through
the graph and the rank of submatrices of the response matrix. We give
a symplectic characterization of the boundary behavior for networks and
the electrical linear group, valid for fields other than F2. Many of our
results also generalize to the nonlinear networks such as those of Johnson.

Approach and Prerequisites:

The main thrust of this paper is concrete and geometric–it is about cutting
networks apart and gluing them together, stripping away a network layer by
layer, and propagating potential and current information step-by-step through
a network. The results are elementary and self-contained enough to be accessible
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to advanced undergraduates familiar with linear algebra, set theory, basic graph
theory, and basic category theory.

Network theory is a multi-faceted subject reaching out to graph theory,
physics, probability, algebraic topology, and symplectic Lie theory. I therefore
make passing references to many branches of mathematics, yet none of the other
results are essential to understand the main proofs here.

The first major section of the paper is devoted to explaining the main ideas
without going into the technical details. It is meant to serve as a summary to
those who do not have time to read the whole thing and as preparation for those
who do. Most of the insights are simple and it is only a matter of choosing the
correct definitions to make the proofs work in the best generality.

Familiarity with the results of Curtis-Ingerman-Morrow [5] or de Verdiere-
Gitler-Vertigan [9] on electrical networks is very helpful in understanding the
motivation, though some of the important ideas will be explained here anyway.
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1 Background and Results

The electrical inverse problem seeks to probe the interior of an electrical network
from boundary measurements. We have an electrical network with resistors of
unknown properties and we want to figure out what they are from the testing
potential and net current at boundary nodes. The graph-based inverse problem
we shall study is a discrete analogue of a continuous problem in PDE, and was
motivated by electrical engineering and electrical impedance tomography.

The seminal papers of Curtis-Ingerman-Morrow [5] and de Verdiere-Gitler-
Vertigan [9] solved the inverse problem for networks embedded in the disk,
and proved many related results concerning spanning-tree-determinant formu-
las, connections through the graph, and medial graphs.

We take as our starting point their idea of using layer-stripping and har-
monic continuation to solve the inverse problem. Our strategy is to iteratively
recover “vulnerable” edges near the boundary, then remove them by deletion or
contraction (as in [5], §11). To recover the vulnerable edge, we set up a clever
boundary value problem and solve it using discrete harmonic continuation (as
in [7], §3).

This is perhaps the simplest possible approach to the inverse problem, but
it is quite powerful, especially when done systematically. Will Johnson used
this strategy to solve the inverse problem for nonlinear networks in the disk in
the arXiv paper [16], and his techniques were adapted to infinite networks in
the half-plane in the undergraduate thesis of Ian Zemke [28]. In the spirit of
Johnson and Zemke’s work, we will formalize the layer-stripping approach and
describe sufficient geometric conditions to make each step work. We will define
a class of graphs recoverable by scaffolds for which the layer-stripping approach
is guaranteed to solve the inverse problem (Theorem 4.10, §4.5).

Our approach is more general in that we do not assume the graph is embed-
ded in any surface. However, if we are given an embedded graph with a medial
graph, we can still use this to prove recoverability by scaffolds (§6). We will
show that the critical circular planar graphs studied by [5] and [9] are recov-
erable by scaffolds (Theorem 6.6, §6.3). Moreover, the harmonic continuation
process does not rely on any special properties of the edge weights, and thus
works for networks over arbitrary fields and certain types of nonlinear networks
(§9.1). It adapts to infinite networks and applies to “supercritical” networks in
the half-plane (§6.6). We thus reprove the results of [5], [9], [16], and [28] about
the inverse problem.

One of the main advantages of our framework is that recoverability by scaf-
folds can be “pulled back” using an adaptation of Urakawa’s harmonic mor-
phisms [26]: If f : G→ G′ is an unramified harmonic morphism of graphs with
boundary (see §3.1), and G′ is recoverable by scaffolds, then G is also recover-
able by scaffolds (Theorem 4.12, §4.5). In particular, this shows that covering
graphs, subgraphs, and box products of graphs recoverable by scaffolds are also
recoverable by scaffolds, which greatly expands the list of known recoverable
networks.

The key geometric construction in our sufficient condition is called a scaffold
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(§4). It is a set of oriented edges of a scaffold, roughly speaking, show the di-
rection of harmonic continuation. It turns out that scaffolds and layer-stripping
itself are related and describe the same fundamental structure (§4.2). Yet a
third perspective is furnished by Baez-Fong’s compositional framework [1], in
which a graph is viewed as a morphism from a set of input vertices to a set
of output vertices, and composition of morphisms glues the outputs of the first
graph to the inputs of the second graph (see §5). Scaffolds are equivalent to
certain elementary factorizations in this category, which express a morphism
as a concatenation of very simple networks corresponding to individual steps in
the harmonic continuation process (§5.4).

We refer to these related ideas collectively as “layering theory.” We will
apply layering theory not only to solve the inverse problem, but also to gen-
eralize the rank-connection principle observed by [5] and [9] relating the ranks
of submatrices of the response matrix and the size of connections through the
graph (see [5] Theorem 4.2). We formulate a version of the rank-connection
principle that makes sense for arbitrary fields, even when the response matrix
is not defined, and holds for generic edge weights. Using layering theory, we de-
scribe necessary and sufficient conditions on the graph for the rank-connection
principle to hold for all edge weights (Theorem 7.4, §7.3).

We give a description of Lam-Pylyavksyy [20]’s electrical linear group in
terms of layering theory (§5.5). Motivated by results of Baez-Fong and Lam-
Pylyavksyy, we use layering theory to prove a symplectic characterization of the
possible boundary behaviors of electrical networks over any field (Theorem 8.1,
§8.2). We also characterize the electrical linear group for fields other than F2

(Theorem 8.11, §8.3).

2 Overview of Main Ideas

This section motivates and describes the main constructions of this paper, leav-
ing out some of the technicalities and applications. This overview is meant to
summarize the main ideas for those who do not have time to read the whole
paper, and to make the later technical developments more digestible for those
who will keep reading.

After giving the main definitions, we explain 1) the layer-stripping strategy
for the inverse problem, 2) recovering boundary spikes and boundary edges using
harmonic continuation, 3) using scaffolds as a geometric model for the harmonic
continuation process, 4) application to mixed-data boundary value problems, 5)
another model for harmonic continuation using a category where the morphisms
are graphs and composition glues them together.

2.1 Definitions

In this paper, a graph G is a countable, locally finite, undirected multi-graph
with self-loops allowed. We write V for the vertex set and E for the set of
oriented edges. If e is an oriented edge, e− and e+ refer to its starting and
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ending vertices, and e refers to its reverse orientation. The degree of a vertex
p is the number of oriented edges with e+ = p.

A graph with boundary (abbreviated to ∂-graph) is a graph with a spec-
ified partition of V into two sets V ◦ and ∂V , called the interior and boundary
vertices respectively.

For a field F, we define an F-network Γ = (G,w) as a ∂-graph G together
with a weight function w : E → F \ 0 with w(e) = w(e). Traditionally, the
weights are in R+, but most of our results hold for general fields.

A potential is a function u : V → F. For a potential u, we define du(e) =
u(e+) − u(e−). The current on an oriented edge e induced by the potential u
is

w(e)du(e) = −w(e)du(e) = w(e)(u(e−)− u(e+)).

The reason for the negative sign is that “current flow goes in the opposite
direction of the gradient.” The net current at a vertex p is given by the
weighted Laplacian

∆u(p) =
∑

e:e+=p

w(e)du(e).

We say u is harmonic if ∆u(p) = 0 for all interior vertices p. We denote
the vector space of harmonic functions by U(Γ). Physically, harmonic
functions represent valid electrical potentials that satisfy Ohm’s law that the
current on an edge is w(e)du(e) and Kirchhoff’s law that the net current at an
interior vertex is zero.

The boundary data of a harmonic function u is the pair (u|∂V ,∆u|∂V ).
The boundary behavior

Λ(Γ) = {(u|∂V ,∆u|∂V ) : u ∈ U(Γ)}

is the set of all pairs (φ, ψ) which are the boundary data of harmonic functions.
It is a linear subspace of F∂V × F∂V .

We consider the following version of the inverse problem: For a fixed
graph G and field F, are the edge weights uniquely determined by the boundary
behavior? That is, is w 7→ Λ(G,w) injective? If the answer is yes, then we say
G is recoverable (over F).

For positive real edge-weights and finite networks, there is a unique harmonic
function with any prescribed potentials on ∂V (that is, the Dirichlet problem has
a unique solution) (see [5]). Thus, the role of Λ(Γ) is traditionally played by the
Dirichlet-to-Neumann map or response matrix, a linear transformation
F∂V → F∂V that sends φ ∈ F∂V to the net current vector of the harmonic
function with u|∂V = φ. In this situation, the boundary behavior is the graph
of the Dirichlet-to-Neumann map. In general, there might not be a Dirichlet-
to-Neumann map, so we must use the boundary behavior instead.

2.2 Layer-Stripping

We want to recover our network through the following iterative procedure (the
layer-stripping strategy): As long as there are edges left in the network
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1. Locate some edge e which is “near the boundary,” and find w(e) from
Λ(Γ).

2. Delete or contract e to obtain a smaller network Γ′.

3. Use w(e) and Λ(Γ) to compute the boundary behavior Λ(Γ′).

4. Repeat with Γ′ instead of Γ.

There are two types of “near-boundary” edges: A boundary spike is an
edge with one interior endpoint and one boundary endpoint of degree 1. A
boundary edge is an edge where both endpoints are boundary vertices. A
boundary spike and a boundary edge are pictured below; the boundary vertices
are black and the interior vertices are white:

boundary
spike

boundary
edge

Boundary spikes are removed by contraction and boundary edges are re-
moved by deletion. When a boundary spike is contracted, the two endpoints
are identified. The new vertex occupies the position of the interior endpoint,
but becomes a boundary vertex:

contraction

deletion

If Γ′ is obtained from Γ by contracting a boundary spike or deleting a bound-
ary edge, then computing Λ(Γ′) from Λ(Γ) and vice versa (step 3) is straight-
forward. First suppose Γ′ is obtained by contracting a boundary spike e with
boundary endpoint p and interior endpoint q. Note that any harmonic func-
tion u′ on Γ′ extends uniquely to a harmonic function u on Γ. We simply
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choose the potential at p to make the net current at q be zero, that is, set
u(p) = u′(q) + w(e)−1∆u′(q), where the Laplacian is computed in Γ′.

To find the boundary data of u from that of u′, replace q with p in the list of
boundary vertices, replace u′(q) with u(p), and leave everything else the same.
Note that all the current at q from the edges in Γ′ must flow from q to p in Γ,
and thus, ∆u′(q) in Γ′ is the same as ∆u(p) in Γ. The boundary data of u is
found by a single row operation from the boundary data of u′, which adjusts
the potential at p or q based on the net current there. If

Ξ : F∂V ′

× F
∂V ′

→ F
∂V × F

∂V

is the corresponding linear transformation, then Λ(Γ) = ΞΛ(Γ′) and Λ(Γ′) =
Ξ−1Λ(Γ).

For a boundary edge, there is a similar transformation — simply change the
net current on the two endpoints by ±w(e)(u(e+)− u(e−)).

As we shall see in §8, for finite graphs, Λ(Γ) is a Lagrangian subspace of
F∂V × F∂V with respect to the standard symplectic form, and the linear trans-
formations for adding boundary spikes and boundary edges are symplectic ma-
trices. In fact, for any field with more than two elements, these special matrices
generate the group of symplectic matrices Ξ which map (1, . . . , 1, 0, . . . , 0) to
itself. This provides another perspective on the electrical linear group of [20].

2.3 Recovery of Boundary Spikes and Boundary Edges

The hardest step of the layer-stripping strategy is the recovery of boundary
spikes and boundary edges. Let us first handle the case of a boundary spike
e with boundary endpoint p and interior endpoint q. Our goal will be to find
P,Q ⊂ ∂V such that:

• Existence: For any possible choice of edge weights, there exists a harmonic
function u with u|P = 0, ∆u|Q = 0, and u(p) = 1.

• Uniqueness: For any possible choice edge weights, a harmonic function u
with u|P = 0 and ∆u|Q = 0 is forced to have u(q) = 0.

Note that if u is any such harmonic function, then the net current on p is

∆u(p) = w(e)(u(p)− u(q)) = w(e)(1 − 0) = w(e).

If we establish our two claims, that will show that w(e) is uniquely determined by
Λ(Γ). Indeed, by solving some linear equations, we can find a pair (φ, ψ) ∈ Λ(Γ)
such that φ|P = 0, ψ|Q = 0, and φ(e+) = 1. If we pick any such pair, ψ(p) is
guaranteed to be ∆u(p) = w(e).

For a boundary edge e with endpoints p and q, the strategy is the same,
except that this time we force u to be zero on p and all its neighbors other than
q, and we force u(q) = 1. This guarantees that ∆u(p) = −w(e).

We demonstrate the two claims about P and Q using discrete harmonic con-
tinuation, which is best explained by example. We will recover the boundary
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spike in the earlier example by imposing the boundary conditions pictured be-
low. The conditions in parentheses denote the net current and the ones not in
parentheses denote the potential.

1

0 (0)

0

In this example, P comprises the two lower left boundary vertices, and Q is
the single vertex where the net current is zero. At this point, we see an edge
where u = 0 on both endpoints, and deduce that the current on the edge is zero
and color the edge blue (below, left). Next, the vertex where the net current is
declared to be zero has only two edges incident to it and one of them has zero
current already. This implies the current is zero on the other edge, and hence
we conclude that the potential is zero on the interior vertex of the spike (below,
right).

1

0 (0)

0

0

1

0 (0)

0

0

0

0

Next, the current on the boundary spike is determined since the potentials
on the endpoints are determined (below, left). As remarked above, the current
on the spike is w(e) from the boundary vertex to the interior vertex, and thus
the net current on the boundary vertex is w(e).

11



1

0 (0)

0

0

w(e)

0

0

We have now completed the “uniqueness” step, showing that our boundary
conditions force u to be zero on the interior vertex of the spike. It remains to
show that our partially defined function extends to some harmonic function on
the whole network. Note that we do not care about uniqueness any more since
the behavior of u near the spike is under control.

We start at the interior vertex q of the spike. There is only one edge at q
where the current is not yet determined, but we can choose the current on this
edge to make the net current at q zero (below, left). At this point, the data
we have on the network does not determine any more values of u. To continue
with our harmonic extension, we assign a potential ∗ arbitrarily at the vertex
indicated in gray in the picture (below, right).

1

0 (0)

0

0
∗

w(e)

0

0

1

0 (0)

0

0
∗

∗

w(e)

0

0

Once again, we see two edges where the potential on the endpoints is known.
We color them blue to indicate that the current on these edges is known (below,
left). Then we see interior vertices with only one underdetermined edge each,
and we must choose the current on these edges to make the net current at the
interior vertices zero; they are indicated in orange (below, right).
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1

0 (0)

0

0
∗

∗

w(e)

0

0

1

0 (0)

0

0
∗

∗

∗

∗

w(e)

0

0

Finally, we declare an arbitrary parameter at the right middle boundary
vertex, color two edges blue, and then one edge orange:

1

0 (0)

0

0
∗

∗

∗

∗

∗

w(e)

0

0

1

0 (0)

0

0
∗

∗

∗

∗

∗

∗

w(e)

0

0

We have now shown that our partially defined harmonic function extends
to the whole network. By construction, the net current at each interior vertex
is zero. Indeed, each interior vertex has an orange edge exiting it, and the
current on the orange edge was chosen to make the net current at the starting
point zero. Therefore, we have proved that the weight of the boundary spike is
uniquely determined by Λ(Γ).

2.4 Formalizing Harmonic Continuation with Scaffolds

Although the process of defining a harmonic function in the last example was
ostensibly algebraic, it can be represented purely geometrically by the orange
edges, blue edges, and relationship between them. The set of orange edges is
an example of a scaffold, a set S of oriented edges satisfying certain conditions,
designed as an auxiliary framework to build a harmonic function, or as a geo-
metric model of the flow of information. To motivate the definition of scaffolds,
let us try to formalize the process in the last example.

Discrete harmonic continuation has two types of moves, represented by the
blue and orange edges. For each blue edge, the values of u on the endpoints
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are determined first, and that defines the current on the edge. For each orange
edge, we know u at one endpoint and the current on the edge, and use that to
find the potential at the other endpoint. The orange edges are parallel to the
flow of information, but the blue edges are transverse to it.

The harmonic continuation process is broken into two stages: In the first
stage, we are concerned about uniqueness. We do not have to worry about
consistency since we just want u to be zero everywhere. In the second stage, we
are concerned about existence. We do not care what the values of u are away
from the spike e so long as there is some consistent extension. The boundary
spike comes in the middle between the two stages. The value on the interior
endpoint had to be uniquely determined, but we also needed to have u = 1 at
the boundary endpoint, and needed to have a consistent harmonic extension
even after we put nonzero data on the network.

In the second stage, there can be some obstacles to uniqueness of extensions.
In the example, these obstacles were represented by the interior vertices where
we assigned an arbitrary parameter rather than deducing the potential from
previous information. These were precisely the interior vertices with no orange
edge entering them. When there is an orange edge entering a vertex p, we can
use the values of u already defined to determine the current on the orange edge
and hence u(p). But if there is no orange edge entering p, we have one parameter
of freedom in choosing u(p).

In the first stage, obstacles to existence are permissible; since we want u to
be zero in this region, there is no problem achieving harmonicity. The obstacles
to existence are interior vertices with no orange edge exiting them. (These did
not occur in the example, and if they did we would have barely noticed them,
since we were focused on forcing u to be zero.) When there is an exiting orange
edge, then the current on the edge is chosen so as to make the net current at
the starting vertex 0. But if there is no exiting orange edge, there is nowhere
for the current to escape to.

We are going to use the set of oriented orange edges as our model for the
flow of information. What requirements did the orange edges have to satisfy?
First, each interior vertex can have at most one orange edge entering it and
at most one orange edge exiting it. This implies that the oriented edges form
disjoint paths.

The choice of orange edges must also be consistent with the order of har-
monic continuation. Note that each orange edge was used after the other edges
incident to its starting point and before the edges incident to its ending point.
To capture this idea of order directly from the properties of the orange edges,
we define an increasing path to be a path that uses only oriented orange edges
and blue edges, with no two blue edges in a row. These are the paths that are
forced to be increasing with respect to the order of harmonic continuation.

In order for such increasing paths to reflect an underlying order of the edges,
we need to require that no increasing path forms a cycle. Another requirement
is that any obstacle to existence must come after any obstacle to uniqueness. If
S is the set of orange edges, then the obstacles to existence are interior vertices
not in S− and the obstacles to uniqueness are interior vertices not in S+. Thus,
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we make the requirement, that there is no increasing path from a vertex in
V ◦ \ S+ to a vertex in V ◦ \ S−. Finally, for our harmonic continuation process
to work for infinite graphs, we anticipate some use of Zorn’s lemma, and we
require that there is no infinite decreasing path.

If a set S of oriented edges with S ∩S = ∅ satisfies these conditions, we will
call it a scaffold. For a scaffold S, we can partition the vertices and edges into
three sets, corresponding to the beginning, middle, and end of the harmonic
continuation process:

• The Beginning consists of anything that can be reached by a decreasing
path from an interior vertex not in S−.

• The End consists of anything that can be reached by an increasing path
from an interior vertex not in S+.

• The Middle consists of everything else.

The “first stage” takes place in the Beginning and part of the Middle, and the
“second stage” takes place in part of the Middle and the End.

Using essentially the same argument as in the example, we will show that
we can recover a boundary spike e if there is a scaffold S, where e 6∈ S ∪ S and
e is in the Middle. We can recover a boundary edge e if there is a scaffold S,
where e ∈ S ∪ S and e is in the Middle.

We say a ∂-graph is recoverable by scaffolds if there is a sequence of
boundary spike contractions and boundary edge deletions that exhausts the
edges in the graph, and at each step, the edges removed can be recovered using
a scaffold. We will show that the inverse problem can always be solved for such
∂-graphs.

Recoverability by scaffolds has the virtue of being a purely geometric condi-
tion — we no longer have to pretend to do algebra while performing harmonic
continuation. However, recoverability by scaffolds is hard to check because it
is inductive; it requires choosing the sequence of layer-stripping operations and
constructing a scaffold at each stage. But we will establish some easier-to-check
sufficient conditions.

The main advantage of defining recoverability by scaffolds is that we can use
a scaffolds on one graph to produce scaffolds on other graphs. We will define an
unramified harmonic morphism of ∂-graphs later, and show that if f : G → H
is a UHM and S is a scaffold on H , then f−1(S) is a scaffold on G. The reason
for this is basically that increasing paths push forward to increasing paths.

Moreover, layer-stripping operations also produce layer-stripping operations
by taking preimages. This will enable us to show that if f : G → H is a UHM
and H is recoverable by scaffolds, then so is G. Thus, when one checks that H
is recoverable by scaffolds, that automatically shows that a host of other graphs
are also recoverable by scaffolds.
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2.5 Application to Mixed-Data Boundary Value Problems

Our recovery strategy used harmonic continuation to solve certain mixed-data
boundary value problems. Motivated by results of [5], we apply harmonic contin-
uation to understand existence and uniqueness question for mixed-data bound-
ary value problems in general. Partition ∂V into two sets P and Q, and consider
the following questions:

• For which (φ, ψ) ∈ FP × FP does there exist a harmonic function with
u|P = φ and ∆u|P = ψ?

• If there is such a harmonic function, how uniquely do the values on P
determine the values on Q?

• The same questions with P and Q reversed.

If existence and uniqueness occur for the first question, then we have a well-
defined map FP ×FP → FQ×FQ. But in general, we only have a linear relation

X : FP × F
P  F

Q × F
Q,

that is, a linear subspace

X ⊂ (FP × F
P )× (FQ × F

Q)

describing what boundary data on P is compatible with what boundary data
on Q. To avoid clumsy notation, we write x instead of (φ, ψ) for an element of
FP × FP . Then we define X by saying that (x, y) ∈ X if and only if there is a
harmonic function u with boundary data x on P and y on Q.

If πP and πQ are the projections of (FP × FP ) × (FQ × FQ) onto the first
and second factors, then the space of valid boundary data on P for which the
mixed-data problem has a solution is given by VP = πP (X), and likewise for Q
it is VQ = πQ(X). The failure of uniqueness for our problem is described by ZQ,
the subspace of VQ consisting of all y which are compatible with 0 ∈ FP × FP .
We can similarly define ZP = πP (π

−1
Q (0)).

There is a linear bijection VP /ZP → VQ/ZQ and hence dimVP − dimZP =
dimVQ−dimZQ. We will call this number rankX and think of it as the “amount
of algebraic connection” between data on P and data on Q.

Suppose that there is a scaffold where the vertices of P are the “inputs” and
the vertices of Q are the “outputs” as in Figure 1. Then we can use harmonic
continuation to find the dimensions of the fundamental subspaces VP , ZP , VQ,
and ZQ. Here is an intuitive description of the process (which on the surface is
rather different than the formal proof we will give later).

We start with the boundary data on P and harmonically continue, using the
edges in the scaffold in order. As before, there are two stages. In the first stage,
there are some obstacles to existence of harmonic extensions when vertices in
P ∪ V ◦ are not the input of some orange edge. Say there are k of them. When
we are forced to determine the net current on such vertices, we may reach an
inconsistency, which forces us to throw out some choices of initial data on P .
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Equivalently, each obstacle imposes a linear relationship that x ∈ VP must
satisfy.

For the other choices of initial data that survive the first stage, we keep
going. In the second stage, there may be some obstacles to uniqueness when
vertices in V ◦ ∪ Q are not the output of some orange edge, at which we must
assign an arbitrary parameter. Say there are ℓ of them.

Once we have gone through all the edges, we have eliminated all the invalid
data on P and parametrized the data on Q that is compatible with each element
of VP . We see that dim VP = 2|P | − k since one dimension was eliminated by
each obstacle. Moreover, for each element of VP , the compatible elements of
VQ form an affine subspace of dimension ℓ, since that is how many arbitrary
parameters we used. Thus, dimZQ = ℓ.

If we reverse the edges in the scaffold, we can say the same thing switching
P and Q and switching k and ℓ. In particular,

rankX = (2|P | − k)− k = (2|Q| − ℓ)− ℓ = 2(|P | − k) = 2(|Q| − ℓ).

This number has a simple geometric meaning as well. There are |P | paths of
orange edges starting at P , and k of them end at a vertex in V ◦∪P , so |P |−k of
them make it to Q. Symmetrically, there are |Q| paths going backwards from Q
and |Q|−ℓ of them reach P . Thus, |P |−k = |Q|−ℓ is the size of the connection
through the graph from P to Q. Thus, we have

Rank-connection principle: The amount of algebraic connection between
VP and VQ (that is, rankX) is equal to twice the size of connection through the
graph between P and Q.

The rank-connection principle (or an equivalent formulation using the re-
sponse matrix) was observed in [5] for circular planar networks as a consequence
of the determinant-connection formula for determinants of submatrices of the
Laplacian. In a similar spirit, one can deduce from the grove-determinant for-
mula ([11]) that the rank-connection principle holds for any ∂-graphs for generic
edge weights. However, provided we can find a scaffold and do harmonic con-
tinuation, the rank-connection principle holds for all edge-weights.

In particular, if there is a scaffold where all the orange paths connect P
and Q (hence a full-size connection between P and Q), then the relation X
actually defines a bijective function FP × FP → FQ × FQ for all edge weights.
Amazingly, the converse is also true: If X is a bijective function for all nonzero
edge weights in R, then such a scaffold exists (Theorem 7.5). Scaffolds thus
provide a geometric characterization of situations when existence and uniqueness
occur for all edge weights.

2.6 Another Viewpoint: Gluing Networks as Composition

Scaffolds are flexible, functorial, and adaptable to the infinite situation, but
these virtues arose from discarding certain information about the harmonic con-
tinuation process: The scaffold does not specify what boundary vertices were
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Figure 1: A scaffold and a corresponding elementary factorization. The numbers
on the edges show one possible partial order compatible with the scaffold. In
each IO-network the inputs are red and the outputs are green. The green vertices
of each IO-network are joined to the red vertices of the next one.

1

1

2

3

3

4

5

6

7

8

9

9

10

11

12

12

1

1

2
3

3
4

5

6

7

8
9

9

10

11

12

12

18



the overall “inputs” or “outputs.” Nor does it specify in what exact order the
edges were used during harmonic continuation; rather, it gives us a partial or-
der expressing many different options for ordering the edges. Thus, in order to
establish the rank-connection principle, it will be convenient to have another ge-
ometric object which describes the details of the harmonic continuation process
more explicitly.

We can view the linear relation X described in the last section as a transfor-
mation or morphism from (FP )2 to (FQ)2 in the category of linear relations. This
is the category where the objects are vector spaces and a morphism T : V  W
is a subspace T ⊂ V ×W . The composition of S : U  V and T : V  W is
defined by

(x, z) ∈ T ◦ S ⇔ ∃y ∈ V such that (x, y) ∈ S and (y, z) ∈ T.

In the case where the relations are bona fide functions, this reduces to compo-
sition of functions.

We will factorize our relation X : (FP )2 → (FQ)2 as a composition of very
simple relations corresponding to the individual steps in the harmonic continua-
tion process. But this algebraic factorization will be modeled by a factorization
in a more geometric category.

Using the language of Baez-Fong [1], we define a category where a ∂-graph
with ∂V = P ∪ Q is viewed as a morphism from P to Q. As will become clear
later, it is useful to allow P and Q to overlap, and to view P and Q as labels on
the vertices rather than the vertices themselves. We thus define the category of
input-output graphs (or IO-graphs) as follows: The objects are finite sets. A
morphism G : P → Q is a graph G together with labelling functions i : P → V
and j : Q → V , which we assume to be injective.2 It is unnecessary to specify
∂V for G since we can simply call it i(P ) ∪ j(Q).

Two morphisms G : P → Q and G′ : Q → R are composed by “gluing
the graphs together along Q”: taking the disjoint union of G and G′ and then
identifying the vertices labelled by Q in G with the vertices labelled by Q in G′.
In other words, we glue the outputs of the first morphism to the inputs of the
second morphism. The category of IO-networks is defined the same way, but
with the extra information of edge weights.

The relation X (properly defined) is a functor from the category of IO-
networks to the category of linear relations (called the “black box functor” in
[1]). Suppose Γ : P → Q and Γ′ : Q→ R are IO-network morphisms where the
sets of vertices labelled by P , Q, and R are disjoint. Suppose (x, y) ∈ X(Γ) and
(y, z) ∈ X(Γ′) represent the boundary data of harmonic functions u and u′. In
Γ′ ◦ Γ, the vertices labelled by Q are interior. Then u and u′ will glue together
to a harmonic function on Γ′ ◦ Γ if and only if their potentials agree on these
vertices and their net currents cancel.

Thus, to make composition in the category of relations work, we change our
sign convention. We say (x, y) ∈ X(Γ) if x = (u|P ,−∆u|P ) and y = (u|Q,∆u|Q).

2Technically, a morphism is an equivalence class of graphs where two graphs are considered
the same if they are isomorphic by a graph isomorphism that commutes with the labelling
functions.
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In other words, x tells us the current flowing out of the network at P and y
tells us the current flowing into the network at Q.3 In the new convention, if
(x, y) ∈ X(Γ) and (y, z) ∈ X(Γ′), then the harmonic functions u and u′ will glue
together to a harmonic function on Γ◦Γ′, and conversely, any (x, z) ∈ X(Γ′ ◦Γ)
arises this way. We thus have X(Γ′ ◦ Γ) = X(Γ′) ◦X(Γ).

The only question is how to define X(Γ) when the vertices i(P ) and j(Q)
overlap. If p ∈ i(P )∩ j(Q), then we can think of current is flowing into p on the
P side and out of p on the Q side. Thus for ((x1, x2), (y1, y2)) to be in X(Γ) we
want the associated harmonic function u to satisfy x1(p) = y1(p) = u(p) and
y2(p)− x2(p) = ∆u(p). This convention makes X a functor in the general case.

If we have a scaffold on Γ modeling harmonic continuation from P to Q,
then we obtain an elementary factorization of Γ : P → Q as Γn ◦ · · · ◦ Γ1 as
shown in Figure 1. Here each IO-graph is pictured with the input vertices red
and the output vertices green. The elementary IO-networks come in four types:
Type 1 corresponds to an orange edge, type 2 corresponds to a blue edge, type
3 corresponds to an obstacle to existence, and type 4 corresponds to an obstacle
to uniqueness.

Given an elementary factorization, it is easy to prove the rank-connection
principle: All we have to do is compute X on the elementary IO-networks Γj

and figure out what happens when we compose them. The details are carried
out in §5. We will also describe how to obtain elementary factorizations from
scaffolds and vice versa (§5.6).

2.7 Organization

We have now given a rough description of the ideas that form the backbone of the
paper. The rest of the paper works out the technicalities of these constructions,
relates them to other things, and applies them to prove old and new results.

§3 lays out the definitions and basic properties of various ∂-graph construc-
tions. We describe harmonic morphisms, and in particular, the unramified har-
monic morphisms (UHMs) which we will use to pull back scaffolds. Next, we
define various operations with harmonic subgraphs play a central (though some-
times hidden) role in the paper and in network theory in general. We also define
layer-stripping operations and show that they pull back under UHMs.

§4 defines scaffolds and recoverability by scaffolds. We show that recover-
ability by scaffolds is a sufficient condition for solving the inverse problem, and
that it pulls back under UHMs. We also define a stronger but more symmetrical
condition called total layerability.

§5 describes the category of IO-networks (as in [1]) and elementary factor-
izations in this category. We show that the rank-connection principle holds for
any network with such an elementary factorization (§5.4). We relate elementary
factorizations, layer-stripping, and scaffolds. The IO-graph category provides a
more concrete motivation and definition for (a variant of) the electrical linear
group from [20].

3We put the minus sign on P rather than Q to make the formulas in §5.3 and §5.5 neater.

20



§6 describes how to construct scaffolds and elementary factorizations for ∂-
graphs embedded on surfaces. We give a strategy that is potentially applicable
to general surfaces and execute it for the critical circular planar ∂-graphs studied
in [5], [9], [16]. We show critical circular planar ∂-graphs are totally layerable
and that elementary factorizations exist for any circular pair. We also prove
recoverability of the supercritical half-planar graphs of [28].

§7 gives a geometric characterization of the situations when the rank-connection
principle holds universally for all edge weights, using a generalization of elemen-
tary factorizations. Along the way, we prove a max-flow min-cut principle for
connections.

§8 characterizes the possible boundary behaviors of electrical networks using
symplectic vector spaces, drawing on [1] and [20]. We show that the bound-
ary behavior of a network is a Lagrangian subspace of F∂V × F∂V contain-
ing (1, . . . , 1, 0, . . . , 0) and conversely, any such subspace can be realized as the
boundary behavior of a network (which we explicitly construct). Similarly, we
show that the electrical linear group is the group of symplectic matrices that
preserve (1, . . . , 1, 0, . . . , 0) and explicitly construct networks for each matrix.
Together with local network equivalences, this can be used to show that any
network is equivalent to a circular planar network (if we don’t require the edge
weights to be positive). This result holds for any field other than F2.

§9 generalizes much of the theory to nonlinear networks, and suggests further
generalizations and open problems.

§3 through §5 build on each other and are prerequisites for the later sections.
However, §6 through §8 are independent of each other and can be read in any
order. §9 comments on the results of all the preceding sections.

3 Operations with ∂-Graphs and Networks

3.1 Harmonic Morphisms

The correct notion of graph morphism for our theory is neither a continuous map
of graphs viewed as topological spaces, nor a graph homomorphism. Since we
are interested in harmonic functions, we need a type of graph morphism that
preserves the Laplacian. Adapting the construction of Urakawa [26], we will
define harmonic morphisms of ∂-graphs and networks. Harmonic morphisms
include many standard classes of maps between graphs, and they are loosely
analogous to analytic functions between Riemann surfaces in the sense that if
f : Γ1 → Γ2 is a harmonic morphism and u is harmonic on Γ2, then u ◦ f is
harmonic on Γ1.

A harmonic morphism of ∂-graphs f : G1 → G2 is a map f : V1 ⊔ E1 → V2 ⊔E2

such that

1. f maps vertices to vertices.

2. If f(e) is an oriented edge, then f(e±) = f(e)± and f(e) = f(e).

3. If f(e) is a vertex, then f(e) = f(e) and f(e±) = f(e).
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4. f maps interior vertices to interior vertices.

5. For any p ∈ V ◦
1 , the restricted map

{e ∈ E1 : e+ = p and f(e) is an edge} → {e ∈ E2 : e+ = f(p)}

has constant fiber size. In other words, it is n-to-1 for some n ≥ 0 (which
may depend on p).

A harmonic morphism of F-networks is given by a harmonic morphism
of the underlying ∂-graphs which preserves the edge weights in the sense that
w(f(e)) = w(e) whenever f(e) is an edge.

The reader may verify that using harmonic morphisms, ∂-graphs and F-
networks form categories.

In brief, (1), (2), and (3) state that f preserves reverse orientations and
endpoints of edges. Unlike a graph homomorphism (see [12]), f is allowed to
“collapse” an edge into a vertex, and in that case the endpoints of the edge must
map to the same vertex. (1), (2), (3) imply that in the language of topology, f
is a continuous cellular map.

Condition (5) says that if we ignore collapsed edges, then f maps the “star”
{e ∈ E1 : e+ = p} in an n-to-1 way onto the “star” {e ∈ E2 : e+ = f(p)}
whenever p is an interior vertex. This implies that if u : V2 → F, then

∆(u ◦ f)(p) =
∑

e:e+=p

w(e)d(u ◦ f)(e) = n
∑

e:e+=f(p)

w(e)du(e) = n∆u(p),

where for the middle equality we use the fact that d(f ◦ u) = 0 on collapsed
edges, and f preserves the edge weights. Together with (4), this implies

Lemma 3.1. If f : Γ1 → Γ2 is a harmonic morphism and u is harmonic on
Γ2, then u ◦ f is harmonic on Γ1. In other words, Γ 7→ U(Γ) is a contravariant
functor from the category of F-networks to the category of F-vector spaces.

Remark. In fact, given conditions (1) - (4) and given any fixed edge weights,
condition (5) is equivalent to saying that f “locally preserves harmonicity” in
the sense that ∆u(p) = 0 implies ∆(u◦f)(p) = 0 for all p ∈ V ◦ and any function
u : V → F.

Harmonic morphisms include several standard types of maps. First, we
say f : G̃ → G is a covering map if it satisfies the following conditions: f
maps vertices to vertices and oriented edges to oriented edges, f preserves the
reverses and endpoints of edges, f is surjective for both vertices and edges,
f(p) ∈ V ◦ if and only if p ∈ Ṽ ◦, and f maps {e ∈ Ẽ : e+ = p} bijectively onto
{e ∈ E : e+ = f(p)} for all p ∈ V . (This agrees with the topological definition
of covering map in the special case of graphs.) Any covering map is a “local
isomorphism.”

A covering ∂-graph of G is a ∂-graph G̃ together with a covering map
G̃→ G. Concretely, covering ∂-graphs are constructed as follows: Take a finite
or countable set S, and define

Ṽ = V × S, Ẽ = E × S, Ṽ ◦ = V ◦ × S.
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Each oriented edge (e, s) has the natural ending point (e, s)+ = (e+, s). How-
ever, we will “mix up” the reverses and starting points among the edges in each
fiber f−1(e). For each e ∈ E, choose a permutation σe ∈ Perm(S) such that
σe = σ−1

e , and then set
(e, s) = (e, σe(s)),

so that (e, s)− = (e−, σe(s)). In other words, we take several copies of G, then
cut the edges in half and glue them together in a different arrangement in each
fiber. The covering map G̃ → G is given by the projections V × S → V and
E×S → E. Up to isomorphism, all covering ∂-graphs are constructed this way,
assuming G is connected.

Branched covering maps are like covering maps except that they allow
ramification: f is not required to map {e ∈ Ẽ : e+ = p} bijectively onto
{e ∈ E : e+ = f(p)}. Instead, this mapping must be n-to-1 for some n > 0
which may depend on p. This can be viewed as a discrete analogue of the
behavior of the analytic function zn in a neighborhood of the origin, in keeping
with the analogy between graphs and Riemann-surfaces in the literature [26], [2],
[3]. Concretely, some branched covering spaces can be obtained from covering
spaces by gluing some vertices in each fiber f−1(p) together.

Box products furnish another class of harmonic morphisms. Given two
∂-graphs G1 and G2, we define G1�G2 as the graph G with

V = V1 × V2, E = E1 × V2 ⊔ V1 × E2, V ◦ = V ◦
1 × V ◦

2 .

The reverses and endpoints of edges are defined by

(e, p) = (e, p), (e, p)+ = (e+, p), (e, p)− = (e−, p) for (e, p) ∈ E1 × V2

and a symmetrical formula for (p, e) ∈ V1 × E2. The “natural” projection map
G1�G2 → G1 is a harmonic morphism. It collapses all the edges in V1 × E2

into vertices.
Similar to our construction of covering spaces, we can define a twisted box-

product by choosing a permutation of V1 for each edge e ∈ E1 with σe = σ−1
e

and defining
(e, p)+ = (e+, p), (e, p) = (e, σ(e)p).

When we twist in the first factor but leave the edges in V1 × E2 untwisted,
then the map G → G1 is a harmonic morphism, although the map G → G2 is
not since the two endpoints of the collapsed edges are not mapped to the same
vertex.

Finally, harmonic morphisms include the inclusion maps of harmonic sub-
graphs. We say G′ is a harmonic subgraph of G if

V ′ ⊂ V, E′ ⊂ E, (V ′)◦ ⊂ V ◦,

and for each p ∈ (V ′)◦, the star {e ∈ E : e+ = p} is contained in E′. Note
that a ∂-graph G′ is a harmonic subgraph of G if and only if it a subgraph
and the inclusion map is a harmonic morphism, provided we assume G′ has
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no isolated interior vertices. The inclusion maps of harmonic subgraphs are
characterized as harmonic morphisms which are globally injective and such that
{e : e+ = p} → {e : e+ = f(p)} is bijective for each interior vertex p.

Roughly speaking, a harmonic morphism is locally somemixture of a branched
covering map, the projection of a twisted box product, and the inclusion of a
harmonic subgraph.

In order to pull back scaffolds and layer-stripping operations, we will have
to exclude ramification. We define an unramified harmonic morphism
(UHM) as a harmonic morphism such that {e : e+ = p} → {e : e+ = f(p)}
is bijective for each interior vertex p and injective for each boundary vertex p.
Inuitively, a scaffold is something like a foliation of a Riemann surface. If a map
between Riemann surfaces is locally injective, then a foliation can be pulled
back by taking preimages, but the preimage of a foliation will not be a foliation
near branching points.

Note that ∂-graphs and UHMs form a category. Moreover, covering maps,
the projections of twisted box products, and the inclusions of harmonic sub-
graphs are UHMs.

3.2 Operations with Subgraphs

Harmonic subgraphs are used implicitly or explicitly in most papers about elec-
trical networks. In particular, layer-stripping operations produce harmonic sub-
graphs (see §3.4). Harmonic continuation proceeds by extending harmonic func-
tions defined on harmonic subnetworks. Local network equivalences such as Y -∆
transformations (see [23]) work by replacing one harmonic subnetwork with a
different harmonic subnetwork with the same boundary behavior. Thus, it is
well worth our while to develop the language and basic properties of harmonic
subgraphs and subnetworks.

If f : G1 → G2 is a harmonic morphism andH is a harmonic subgraph of G2,
then we can define the pullback f−1(H) as the harmonic subgraph of G1 whose
vertex and edge sets are the preimages of the vertex and edge sets of H , and
whose interior vertices are f−1(V ◦(H)) ∩ V ◦(G1). Intersections and unions
of harmonic subgraphs are defined by taking the intersections and unions of
the respective sets V , V ◦, and E. For instance, V ◦(

⋃

α Γα) =
⋃

α V
◦(Γα). For

a harmonic subgraph H ⊂ G, we define the complement G \H by

V (G\H) = V (G)\V ◦(H), E(G\H) = E(G)\E(H), V ◦(G\H) = V ◦(G)\V (H).

This does not satisfy all the properties of a set-theoretic complement, but it is
the best we can do in a harmonic subgraph. We define similar operations for
subnetworks.

The way that harmonic subnetworks and boundary behavior interact in gen-
eral is well-known and unsurprising. Roughly speaking,

• Gluing: If we glue together a collection of networks along boundary ver-
tices, then the boundary behavior of the larger network depends only on
the boundary behaviors of the smaller ones (see e.g. [4]).
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• Splicing: If Γ′ is obtained by replacing some part of Γ by another part
with the same boundary behavior, then Γ and Γ′ have the same boundary
behavior (see e.g. [14]).

• Recoverability: A subnetwork of a recoverable network is recoverable (see
e.g. [4] Theorem 2.9, [22]).

To make this precise, we define a subgraph partition of G as a collection
of harmonic subgraphs {Gα} such that

• V (G) =
⋃

α V (Gα),

• E(G) is the disjoint union of E(Gα).

• V ◦(Gα) is disjoint from V (Gβ) for any α 6= β.

Note that
⋃

αGα is not G, but G is obtained from
⋃

αGα by changing some
boundary vertices to interior vertices. A subnetwork partition is defined the
same way except with the extra information of edge weights.

Proposition 3.2 (Gluing). If {Γα} is subnetwork partition of Γ, then Λ(Γ) can
be computed from Λ(Γα) and the identifications between vertices in ∂V (Γα) and
∂V (Γβ) in the larger network.

Proof. Let S =
⋃

α ∂V (Γα). Let T ⊂
∏

α Λ(Γα) be the set of points ((φα, ψα))
where

a. If p ∈ V (Γα) ∩ V (Γβ), then φα(p) = φβ(p).

b. If p ∈ S ∩ V ◦(Γ), then
∑

α:α∈∂V (Γα)

ψα(p) = 0.

Since p is an endpoint of only finitely many edges, and each edge is in only
one subnetwork, the sum has only fintitely many nonzero terms.

Define F : T → F∂V × F∂V by
∏

α(φα, ψα) 7→ (φ, ψ), where

1. φ(p) = φα(p) for p ∈ ∂V (Γ).

2. ψ(p) =
∑

α:p∈∂V (Gα) ψα(p),

which is well-defined by definition of T . Then Λ(Γ) = F (T ). Indeed, if
((φα, ψα)) ∈ T and (φα, ψα) is the boundary data of a harmonic function
(uα, cα), then (a) and (b) guarantee that they paste together to a harmonic
function on Γ, and (1) and (2) describe how to find its boundary data. Con-
versely, given any harmonic function on Γ, the restrictions to Γα will be har-
monic and their boundary data will be in T . Since we have described how to
find Λ(Γ) from Λ(Γα), we are done.
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Corollary 3.3 (Splicing). Suppose that {Γα} and {Γ′
α} are subnetwork parti-

tions of Γ and Γ′ respectively such that ∂V (Γα) = ∂V (Γα), ∂V (Γ) = ∂V (Γ′). If
Λ(Γα) = Λ(Γ′

α) for all α, then Λ(Γ) = Λ(Γ′).

Corollary 3.4 (Recoverability). If a ∂-graph G is recoverable over F, then so
is any harmonic subgraph.

Proof. Let S be a subgraph of G and let S′ = G \ S. Then S and S′ form a
∂-subgraph partition of G. If S is not recoverable, then there are two networks
Σ1 and Σ2 on S with different edge weights and the same boundary behavior.
Pick some network Σ′ on S′. Then the networks on G with edge weights given
by Σ1 ∪ Σ′ and Σ2 ∪ Σ′ have the same boundary behavior but different edge
weights, so G is not recoverable.

3.3 Boundary Wedge-Sums

There is one case of gluing networks together where the behavior of the smaller
pieces is determined by the behavior of the whole. We say G is the boundary
wedge-sum of two harmonic subgraphs G1 and G2 if G1 ∪G2 = G and G1 ∩G2

consists of a single boundary vertex p. Then

Lemma 3.5. Suppose Γ is the boundary wedge-sum of Γ1 and Γ2. Assume
either Γ1 or Γ2 is finite. Then Λ(Γ1) and Λ(Γ2) are determined by Λ(Γ). In
particular, a boundary wedge-sum of a recoverable ∂-graph and a finite recover-
able ∂-graph must be recoverable.

Proof. Assume Γ1 is finite. For a potential on Γ1, the net current at all ver-
tices of a network must sum to zero, and in particular, if u is harmonic, then
∑

p∈∂V ∆u1(p) = 0. Let q be the vertex of Γ1 ∩ Γ2. If u is a harmonic function
on Γ, then the boundary data of u1 = u|Γ1

is clearly determined by the bound-
ary data of u except possibly for ∆u1(q). But since the net currents sum to
zero, ∆u1(q) is also known. But knowing the contribution from Γ1 to ∆u(q), we
also know the contribution from Γ2, and hence the boundary data of u2 = u|Γ2

is also known.
We thus have a maps Λ(Γ) → Λ(Γ1) and Λ(Γ) → Λ(Γ2) induced by restric-

tion. They are surjective because any harmonic function on Γ1 or Γ2 can be
extended to Γ by setting it to be constant on the other subnetwork.

3.4 Layer-Stripping Operations

The following definitions and results are inspired by [5], §10 and 11, and related
results in [8].

A boundary edge is an edge e with e+, e− ∈ ∂V . The ∂-graph G \ e
obtained by deleting a boundary edge e (and leaving the sets V and V ◦

unchanged) is a harmonic subgraph of G.
A boundary spike is an edge e with endpoints p ∈ ∂V and q ∈ V ◦ such

that p has degree 1. We form the ∂-graph G/e by contracting the boundary
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spike, where E(Γ/e) = E(Γ) \ {e, e}, and V (Γ/e) = V (Γ)/ ∼, where ∼ is the
equivalence relation given by p ∼ q. The vertex {p, q} in Γ/e is declared to be
a boundary vertex. We can (and will) identify G/e with a harmonic subgraph
of G by mapping {p, q} to q.

An isolated boundary vertex is a boundary vertex p of degree 0, and
G \ p is the harmonic subgraph formed by deleting it.

We take the terms boundary spike contraction, boundary edge dele-
tion, and isolated boundary vertex deletion to allow multiple (even in-
finitely many) contractions or deletions and to include the trivial identity trans-
formation (removing zero boundary spikes, boundary edges, or isolated bound-
ary vertices). For a contraction of multiple boundary spikes, we require that the
spikes do not share any endpoints. We refer to these transformations collectively
as layer-stripping operations.

An important fact is that layer-stripping operations pull back to sequences
of layer-stripping operations:

Lemma 3.6. If f : G→ H is an unramified harmonic morphism, H1 ⊂ H2 ⊂
H and H1 is obtained from H2 by a layer-stripping operation, then f−1(H1) is
obtained from f−1(H2) by a sequence of layer-stripping operations.

Proof. Suppose that H2 is obtained from H1 by deleting boundary edges. Then
f−1(H2) is obtained from f−1(H1) by deleting boundary edges.

Suppose that H2 is obtained from H1 by deleting isolated boundary vertices.
The preimage of the isolated boundary vertices may contain some collapsed
edges. The collapsed edges are boundary edges in f−1(H1), so we can delete
them and then delete the now-isolated boundary vertices in the preimage of the
isolated boundary vertices of H1.

Suppose that H2 is obtained from H1 by contracting boundary spikes. Note
that some edges in f−1(H1) may map to the boundary endpoints of the spikes
in H1. In this case, they are boundary edges, so we can delete them. Now sup-
pose an edge e maps to a boundary spike and e+ corresponds to the boundary
endpoint and e− corresponds to the interior endpoint. There are two possibil-
ities: If e− is interior, then e is a boundary spike, so we can contract it. If
e− is boundary, then e is a boundary edge, so we can delete it and then delete
the isolated boundary vertex e+. Finally, there may be some isolated boundary
vertices of f−1(H1) that map to the boundary endpoint of the spikes in H1,
and we can delete them. These are the only possibilities; thus, by a sequence of
layer-stripping operations, we can obtain f−1(H2) from f−1(H1).

Remark. The result of Lemma 3.6 does not quite show that sequences of layer-
stripping operations pull back functorially since a given transformation could
be broken up into layer-stripping operations in multiple ways. However, careful
analysis of the last proof shows that a three-step operation of boundary edge
deletion, isolated boundary vertex deletion, and boundary spike contraction will
pull back to another operation of the same type. Moreover, the decomposition
into three steps is unique. Thus, three-step layer-stripping operations pull back
functorially.
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Remark. Lemma 3.6 fails for harmonic morphisms in general: If p is the bound-
ary endpoint of a boundary spike e, then a vertex in f−1(p) might not have
degree 1 since there can be multiple preimages of e attached to it.

We say a ∂-graph G is layerable if there is a filtration of subgraphs

G = G0 ⊃ G1 ⊃ . . .

indexed by N or {0, . . . , n} such that Gj+1 is obtained from Gj by layer-stripping
operation and

⋂∞
j=0Gj = ∅. In this case, we say {Gj} is a layerable filtration

of G. The previous lemma immediately implies

Lemma 3.7. If f : G→ H is a UHM and H is layerable, then G is layerable.

As noted in the introduction, if Γ′ is obtained from Γ by a layer-stripping
operation, then we can compute the boundary behavior of Γ′ from that of Γ
and vice versa. Recall this is one of the steps in the layer-stripping strategy for
the inverse problem described in §2.2.

Lemma 3.8. Suppose that Γ′ is obtained from Γ by a sequence of layer-stripping
operations.

• Any harmonic function u′ on Γ′ extends to a harmonic function u on Γ.

• The extension u is uniquely determined by u′ and the values of u on ver-
tices which are deleted as isolated boundary vertices.

• Knowing the weights of the edges removed, we can compute Λ(Γ) from
Λ(Γ′) and vice versa.

Proof. To obtain Γ from Γ′, we must add isolated boundary vertices, add bound-
ary spikes, and add boundary edges. When we add isolated boundary vertices,
the potential on the new vertices can be chosen freely. When we add boundary
spikes, the potential on the boundary endpoints of the spikes must be chosen to
make the net current at the interior vertices be zero. When we add boundary
edges, there are no new vertices and the Laplacian at the interior vertices is
unchanged, so there is nothing to do. This proves the first and second claims.
The third follows because at each step, the boundary data of the harmonic
extension can be determined from the boundary data of the original function
without knowing its values on the interior of Γ′, and similarly, the boundary
data of u determines the boundary data of u′.

4 Scaffolds

4.1 Definition

As explained in §2.4, scaffolds are a set of oriented edges designed to model
the flow of information in harmonic continuation. The definition of scaffold is
phrased in terms of increasing paths.
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Recall E is the set of oriented edges. A path is a sequence (ej) of oriented
edges indexed by {0, . . . , n} or N, such that (ej)+ = (ej+1)−. A path from p
to q is a path (e0, . . . , en) such that (e0)− = p and (en)+ = q. A cycle is a
nonempty path (e0, . . . , en) with (e0)− = (en)+. We say that empty sequence
is a path from p to p. If e ∈ E, then a path from e to q is path (e0, . . . , en)
such that e = e0 and (en)+ = q.

If f : G → H is a UHM and (ej) is a path from p to q in G, then the
pushforward f∗(ej) is defined by taking the sequence (f(ej)), deleting the
terms that are collapsed by f into vertices, and reindexing the remaining terms
in order such that the zero index is preserved. This defines a path because
f((ej)+) = f((ej)−) for each deleted term.

Let S ⊂ E. We say that a path is increasing with respect to S if there
are at most two consecutive oriented edges in E \ S and no edges in S. It is
decreasing with respect to S if it is increasing with respect to S.

Lemma 4.1. Suppose that f : G→ H is a UHM and S ⊂ E(H).

• If (ej) is a path from p to q, then f∗(ej) is a path from f(p) to f(q).

• If (ej) is a cycle, then f∗(ej) is a cycle.

• If (ej) is increasing with respect to f−1(S), then f∗(ej) is increasing with
respect to S.

• If (ej) is increasing or decreasing with respect to f−1(S) and has infinitely
many terms, then f∗(ej) has infinitely many terms.

Proof. The first two properties are immediate. To prove the third, note that
there is at most one consecutive edge not in f−1(S) for (ej), which implies
that there is at most one consecutive edge not in S for f∗(ej) since none of the
collapsed edges are in f−1(S). To prove the fourth property, note if (ej) has
infinitely many terms, then it has infinitely many in f−1(S) since it cannot have
more than one in a row that is not in f−1(S). Thus, f∗(ej) has infinitely many
terms in S.

We say S ⊂ E is a scaffold if S ∩ S = ∅ and

1. e 7→ e+ and e 7→ e− are injective on S,

2. there is no decreasing path indexed by N,

3. if there is a increasing path from p ∈ V ◦ to y ∈ V ◦, then either p ∈ S+ or
y ∈ S−.

For pronounceability, we will say p is an output of S if p ∈ S+ and it is an
input if p ∈ S−.

To picture what is happening, note (1) is equivalent to saying that p is the
input of at most one edge in S and it is the output of at most one edge in S,
and applying (3) to the trivial path from p to p shows that each interior vertex
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is either an input or an output or both, but there is no such requirement for
the boundary vertices.

This implies that the oriented edges of S form vertex-disjoint directed paths
which span all the interior vertices; each path has a well-defined start point
because there are no decreasing infinite paths by (2). In fact, (2) is equivalent
to saying there is a no decreasing cycle and no decreasing path with infinitely
many distinct edges. However, the path formed by edges in S may increase
infinitely. Because of (3), a path formed by edges in S cannot terminate at
an interior vertex at both endpoints, although it can terminate at an interior
vertex at one endpoint.

We can imagine the whole structure as a rickety scaffold — the paths of S are
vertical ladders and the edges not in S form bridges between them. Condition
(2) says that you cannot walk in a loop by climbing up ladders and walking
across bridges (without crossing two bridges in a row). Condition (3) says that
you cannot get infinitely far down by going down ladders and across bridges.
Condition (4) says that if you are at the bottom of a ladder at an interior point
in the graph, then climbing up ladders and walking across bridges will never
bring you to an interior point at the top of a ladder.

We partition V ⊔E into three sets. We say an edge or vertex is in the End
EndS if there a decreasing path from this vertex or edge to an interior vertex
that is not an output. Symmetrically, an edge or vertex is in the Beginning
BegS if there is a increasing path from this vertex or edge to an interior vertex
that is not an input. Condition (3) guarantees that the End and Beginning
are disjoint. An edge or vertex is in the middle MidS if it not in the End or
Beginning.

The next lemma shows that scaffolds can be pulled back functorially.

Lemma 4.2. Let f : G→ H be a UHM. If S ⊂ E(H) is a scaffold, then f−1(S)
is a scaffold. Moreover,

Beg f−1(S) ⊂ f−1(Beg S),

End f−1(S) ⊂ f−1(EndS),

Mid f−1(S) ⊃ f−1(MidS).

Proof. Clearly, f−1(S) = f−1(S) = f−1(S ∩ S) = ∅. To show e 7→ e+ is
injective on f−1(S), suppose e+ = e′+ = p. Then f(e)+ = f(e′)+ = f(p) and
f(e), f(e′) ∈ S, so that f(e) = f(e′). But by definition of UHM, f restricts
to an injection {ẽ ∈ E(G) : e+ = p} → {ẽ ∈ E(H) : e+ = f(p)}. This
implies that e = e′. Properties (2) and (3) of a scaffold are immediate from the
pushforward properties of paths, and so are the claims about End, Middle, and
Beginning.

Corollary 4.3. Let Scaf G to be the set of scaffolds on G with the partial order
given by inclusion as subsets of E(G). Then G 7→ Scaf G is a contravariant
functor from the category of ∂-graphs and UHMs to the category of posets.
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We will use the following equivalent characterization of scaffolds in terms
of local properties and a global partial order on E/̄ . Here a partial order
on E/¯ is a partial order on the set of unoriented edges, but for notational
convenience, we view it as a partial order on the set of oriented edges in which
e and e occupy the same position in the partial order.

Lemma 4.4. Let S ⊂ E(G) with S ∩ S = ∅. Then S is a scaffold if and only
if there exists a strict partial order ≺ on E/¯ such that

A. (Local Comparison Conditions) if e ∈ S and e+ = e′+, then e ≺ e′, and If
e ∈ S and e− = e′+, then e ≻ e′;

B. (Partial Well-Order) Every subset has a minimal element;

C. (Input/Output Alternative) If e � e′, p = e+ ∈ V ◦, and q = e′+ ∈ V ◦, then
either p ∈ S+ or q ∈ S−.

Proof. If S is a scaffold, then we define the partial order by e ≺ e′ if e 6= e′ and
there is an increasing path from e to e′. Since there are no cycles by (2), this
relation is irreflexive. The local comparison conditions follow from the definition
of increasing path. The partial well-order condition follows from (2), and the
input-output alternative follows from (3).

Conversely, suppose we have a partial order satisfying (A) - (C). Then (A)
implies that if e and e′ are distinct elements of S, then e+ 6= e′+. The partial
order properties and (B) imply that there are no increasing cycles or decreasing
infinite paths, hence (2) is satisfied. Finally, (C) implies (3).

Remark. There can be more than one partial order associated to a given scaffold.
More precisely, we can take any partial order that contains the partial order
constructed in the proof. The partial order constructed in the proof will be
called the partial order induced by S.

4.2 Scaffolds and Layerability

There is a connection between scaffolds and layerability that stems from the
following simple observation:

Lemma 4.5. Let S be a scaffold on G and ≺ the partial order induced by S.
Let e 6∈ EndS. If e is minimal with respect to ≺, then it is a boundary spike or
boundary edge.

Proof. Suppose that e ∈ S∪S and assume without loss of generality that e ∈ S.
If e is minimal, then the local comparison conditions imply that e− has no
neighbors. Since e 6∈ EndS, e− cannot be an interior vertex. Thus, e is a
boundary spike if e+ ∈ V ◦ and a boundary edge if e+ ∈ ∂V .

Suppose that e 6∈ S ∪S. If e is minimal, then e+ and e− cannot be in S+ by
the local comparison conditions. Since e+ and e− are not in EndS, they must
be boundary vertices. Thus, e is a boundary edge.
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By induction, this ought to imply that if S is a scaffold with EndS = ∅, then
G is layerable. Conversely, given a layerable filtration G = G0 ⊃ G1 ⊃ . . . , then
we can create a scaffold with EndS = ∅ by letting S be the set of boundary
spikes removed at some step of the filtration and defining a partial order on
the edges based on which step of the filtration they are removed at. The next
technical lemma makes this idea precise; it may be omitted on a first reading.

Lemma 4.6. For a ∂-graph G with no isolated interior vertices, the following
are equivalent:

a. G is layerable.

b. There exists a scaffold S with EndS = ∅.

c. For any e ∈ E(G), there is a scaffold S with e 6∈ EndS.

d. For any e ∈ E(G), there is a finite partial layerable filtration G = G0 ⊃ · · · ⊃
Gn with e 6∈ E(Gn).

Proof. (a) =⇒ (b). Consider a layerable filtration G = G0 ⊃ G1 ⊃ . . . , and
assume withoul loss of generality that each step in the filtration only involves
one type of layer-stripping operation. Let S be the set of oriented edges that
are removed as boundary spikes at some step of the filtration, oriented so that
e− is the boundary vertex and e+ is the interior vertex. Define a partial order
e ≺ e′ if e is removed at a strictly earlier step than e′. Then similar reasoning
as in Lemma 4.5 shows that the local comparison conditions are satisfied. The
partial well-order condition is satisfied because any subset has an edge removed
at the minimal-indexed step of the filtration.

The input-output alternative and EndS = ∅ will be satisfied if we show
that every interior vertex is in S+. But every interior vertex must be removed
at some step of the filtration. To be removed, it must have been changed into
a boundary vertex, and the only way that can happen is if it was the interior
endpoint of some boundary spike which was contracted. Hence, the vertex must
be in S+.

(b) =⇒ (c) is trivial.
(c) =⇒ (d). Consider a scaffold S with the induced partial order. I claim

that for any e ∈ E(G), there are only finitely many edges e � e0. If we suppose
not, then there is a minimal edge e0 for which the claim does not hold. There
are only finitely many edges e1, . . . , en which incident to and less than e0, and
{e � e0} =

⋃n

j=1{e � ej} ∪ {e0} since any increasing path which ends at e0
must pass through one of the ej ’s. By minimality of e0, {e � ej} is finite, which
implies {e � e0} is finite, which is a contradiction.

Now choose e. Let e1, . . . , ek = e be the edges � e. We can assume they are
listed in some nondecreasing order. Let G0 = G. Then e1 is a minimal edge in
G0. By the Lemma, this edge is a boundary spike or boundary edge. Let G1

be the graph formed by deleting or contracting this edge as appropriate. Then
e2 is a minimal edge in G1, hence a boundary spike or boundary edge. So (d)
follows by induction.
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(d) =⇒ (a). We assumed in §1 that our graphs have countably many edges,
so we can write them in a sequence e1, e2, . . . . For each en, choose a kn and a
sequence of subgraphs G = Gn,1 ⊃ · · · ⊃ Gn,kn

as in (d). Then consider the
following filtration:

G = G1,1, G1,2, . . . G1,k1
,

G1,k1
∩G2,1, G1,k1

∩G2,2, . . . G1,k1
∩G2,k2

G1,k1
∩G2,k2

∩G3,1, . . . G1,k1
∩G2,k2

∩G3,k3

. . . . . .

The consecutive elements of this sequence are obtained by a sequence of layer-
stripping operations (by Lemma 3.6 applied to inclusion maps of subgraphs).
Thus, we have a layerable filtration which removes all the edges in the graph (but
not necessarily all the vertices). We can obtain a new filtration by replacing each
layer-stripping operation with two layer-stripping operations — first remove the
edges in the original layer-stripping, then remove any isolated boundary vertices.
The new filtration will remove all the vertices in the graph as well as all the
edges since there are no isolated interior vertices.

4.3 Scaffolds and Harmonic Continuation

Recall from the introduction that to recover boundary spikes and boundary
edges, we had to prove two claims: First, there was an existence statement
that there was some harmonic function with specified boundary conditions, and
second there was a uniqueness statement that any harmonic function with these
boundary conditions was forced to be zero on some region of the network.

We will show how to use scaffolds to verify both the existence and unique-
ness claims. The idea is exactly the same as in §2.3, though there are some
technical subtleties. First, for each statement, we will only assume a scaffold is
defined on a relevant subgraph, so that our statements can be used for harmonic
continuation in more general situations (although we will not make full use of
this generality). For infinite ∂-graphs it is convenient to use Zorn’s-lemma type
arguments, which necessitates proof by contradiction.

In both statements, we will use harmonic functions defined on subgraphs,
but the subgraphs we use must be compatible with the partial order ≺ induced
by our scaffold. We thus make the following definitions.

Definition. Let ≺ be a partial order on E/̄ . We say T ⊂ E is an initial
subset if e ≺ e′ ∈ T implies e ∈ T .

Definition. Let T ⊂ E′. The subgraph induced by T is the subgraph
GT ⊆ G with edge set given by T and vertex set given by the endpoints of T ,
where a vertex is interior if and only if it is interior in G and all edges incident
to it are in T . In other words, we use the largest possible set of interior vertices
that will make GT a harmonic subgraph.

Definition. Given a partial order on E/̄ , an initial subgraph of G is a
subgraph induced by an initial set of edges.
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Lemma 4.7 (HC: Uniqueness). Let Γ′ be a subnetwork of Γ and S a scaffold
on Γ′. Assume that V (Γ′) \ S+ ⊂ ∂V (Γ). If u is a harmonic function on Γ,
then the values of u on Γ′ are uniquely determined by

u ↾ ∂V (Γ) ∩ V (Γ′) and ∆u ↾ ∂V (Γ) ∩ S−.

Proof. Let u and v be two harmonic functions on Γ such that

u ↾ ∂V (Γ) ∩ V (Γ′) = v ↾ ∂V (Γ) ∩ V (Γ′)

and
∆u ↾ ∂V (Γ) ∩ S− = ∆v ↾ ∂V (Γ) ∩ S−.

Let T be the set of oriented edges e of Γ′ such that u and v agree on both
endpoints of e. Suppose for contradiction T is not all of E(Γ′). Then there is a
minimal element of E(Γ′) \ T with respect to the scaffold S.

• If e ∈ S ∪ S, we can assume e ∈ S. If e− ∈ ∂V (Γ), then u(e−) = v(e−)
and ∆u(e−) = ∆v(e−) by assumption. Moreover, all the other edges
incident to e− are in T by minimality of e. This forces du(e) = dv(e)
and hence u(e+) = v(e+), which is a contradiction. On the other hand,
if e− 6∈ ∂V (Γ), then e− ∈ S+ by assumption. Thus, e− is the output of
some other edge e′ in S. By minimality of e, we have e′ ∈ T and hence
u(e−) = v(e−). Moreover, ∆u(e−) = 0 = ∆v(e−) since e− is interior.
Since all the other edges incident to e− are in T , we once again have a
contradiction.

• Suppose e 6∈ S ∪ S. Each endpoint of e must either be a boundary vertex
or the output of some edge in S ∩ T . In either case, u(e+) = v(e+) and
u(e−) = v(e−), which implies e ∈ T , which is a contradiction.

Lemma 4.8 (HC: Existence). Let Γ′ be a subnetwork of Γ and S a scaffold on
Γ′. Assume that V (Γ′) \ S− ⊂ ∂V (Γ). Then any harmonic function on Γ \ Γ′

extends to a harmonic function on Γ.

Proof. We can assume without loss of generality that Γ has no isolated vertices.
Let v0 be any harmonic function on Γ \ Γ′. Let Z be the collection of pairs

(Σ, v) such that

• Σ is a subnetwork of Γ which contains Γ \ Γ′.

• v is a harmonic function on Σ which agrees with v0 on Γ \ Γ′.

• The subnetwork of Γ induced by E(Σ) is Σ itself.

• Σ ∩ Γ′ is an initial subnetwork of Γ′ with respect to S.

Define a partial order on Z by setting (Σ, v) ≤ (Σ′, v′) if Σ is a subnetwork of
Σ′ and v′|Σ = v. Note that any chain in Z has an upper bound given by taking
the union. Thus, by Zorn’s lemma, Z has a maximal element (Σ∗, v∗).

We claim that Σ∗ is all of Γ. It suffices to show that E(Σ∗) contains all of
E(Γ′). Suppose not. Then there is a minimal element e of E(Γ′) \ E(Σ∗) with
respect to S. Consider two cases:
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• Suppose e ∈ S ∪ S and assume that e ∈ S. Let Σ∗∗ be the subnetwork of
Γ induced by E(Σ∗) ∪ {e, e}. Note that Σ∗∗ ∩ Γ′ is an initial subnetwork
because e was minimal. By assumption, e+ is either a boundary vertex
of Γ or the input of some element of S; if it is the input of e′ ∈ S, then
e ≺ e′, so e′ 6∈ E(Σ∗). In either case, e+ must be a boundary vertex
of Σ∗∗. We can extend v∗ to Σ∗∗ by choosing the potential on e+ so as
to make the net current at e− zero.4 Because e+ is a boundary vertex
of Σ∗∗, this is sufficient to guarantee that the extension v∗∗ is harmonic.
This contradicts the maximality of (Σ∗, v∗).

• Suppose that e 6∈ S ∪ S. Let Σ∗∗ be the subnetwork of Γ induced by
E(Σ∗)∪{e, e}. By the same argument as before, e− and e+ are boundary
vertices of Σ∗∗. Hence, Σ∗∗ has no new interior vertices relative to Σ∗.
Thus, v∗ is harmonic on Σ∗∗, so once again, we have a contradiction to
maximality of (Σ∗, v∗).

4.4 Recovery of Boundary Spikes and Boundary Edges

In §2.4, we mentioned sufficient conditions for recovery boundary spikes and
boundary edges: We say that a boundary spike is recoverable by the scaffold
S if e is not in S ∪ S and e is in the Middle of S. We say that a boundary edge
is recoverable by the scaffold S if e is in S ∪ S and e is in the Middle of S.

Lemma 4.9. If a boundary spike or boundary edge e of G is recoverable by a
scaffold, then w(e) is uniquely determined by Λ(Γ) for any network on G over
any field F.

Proof. We shall handle the case of a boundary edge and leave the case of a
boundary spike to the reader, since the example from §2.3 focused on boundary
spikes. Let e be a boundary edge which is recoverable using the scaffold S, and
suppose e ∈ S. Let Γ1 be the subnetwork induced by {e′ ≺ e} and let Γ2 by the
subnetwork induced by {e′ ≻ e}. Let S1 = S ∩E(Γ1) and S2 = S ∩E(Γ2). Let

P = [∂V (Γ) ∩ V (Γ1)] ∪ {e−}, Q = ∂V (Γ) ∩ (S1)−.

(In the definition of P , we include e− to handle the case where the only neighbor
of e− is e+; otherwise listing e− is redundant.)

First, we verify the uniqueness claim that any harmonic function u with
u|P = 0 and ∆u|Q = 0 must be zero on e− and all its neighbors. We apply
Lemma 4.8 to Γ1 with the scaffold S1. The hypothesis that V (Γ1) \ (S1)+ ⊂
∂V (Γ) is met; indeed, since e is in the middle, Γ1 cannot intersect the End and
hence any interior vertex of Γ which is in Γ1 must be the output of some edge
in S1. The conclusion of the lemma tells us that u must be zero on Γ1. In
particular, for any e′ 6= e incident to e−, we have u = 0 on the endpoints of e′,
so u is zero on the neighbors of e− and on e− itself since e− ∈ P .

4If e− is a boundary vertex, even this is unnecessary.
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Next, we verify the existence claim that there is a harmonic function u with
u|P = 0 and ∆u|Q = 0 and u(e+) = 1 by applying Lemma 4.7 to Γ2. We
define u to be zero on all of Γ \ Γ2 except that u(e+) = 1. Note that in Γ \ Γ2,
e+ is a boundary vertex and its only neighbor is e− which is also a boundary
vertex, and thus u is harmonic on Γ \Γ2. Moreover, since Γ2 does not intersect
the Beginning of S, the hypotheses of Lemma 4.7 are met, so u extends to a
harmonic function on Γ.

The existence and uniqueness claims demonstrate recoverability of w(e) as
explained in §2.3.

4.5 Two Sufficient Conditions for Recoverability

We now have all the pieces in place to formulate sufficient conditions for re-
coverability. We will give two different conditions — recoverability by scaffolds
and total layerability — since unfortunately the more general condition can be
harder to test. As promised, we will show that recoverability by scaffolds “pull
backs” under UHMs.

Definition. Suppose that G has a layerable filtration

G = G0 ⊃ G1 ⊃ . . .

where Gj+1 is obtained from Gj by a layer-stripping operation. Suppose that
each boundary edge deleted and each boundary spike contracted is recoverable
using a scaffold of Gj . Then we say that G is recoverable by scaffolds.

Theorem 4.10. A ∂-graph which is recoverable by scaffolds is recoverable over
any field F.

Proof. This follows from the layer-stripping strategy laid out in §2.2. We recover
the edge weights iteratively by recovering the boundary spikes and boundary
edges at each step of the filtration which witnesses recoverability by scaffolds.
The weights of the boundary edges and boundary spikes can be recovered using
Lemma 4.9 and the boundary behavior of the smaller subnetwork can be found
using Lemma 3.8. Since the filtration will exhaust all the edges in the ∂-graph,
all the edge weights are determined by Λ(Γ).

Recoverability by scaffolds is an annoying condition to check because it re-
quires induction. A more symmetrical and (it turns out) stronger condition is
total layerability. We say a ∂-graph G is totally layerable if for any oriented
edge e, there exists a scaffold S with e ∈ S ∪ S and e in the Middle of S, and
there exists a scaffold S with e 6∈ S ∪ S and e in the Middle of S.

Theorem 4.11. If G is totally layerable, then G is layerable and G is recover-
able by scaffolds. In fact, any layerable filtration can be used for the process of
recovery by scaffolds.
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Proof. Layerability of G is nontrivial and follows from Lemma 4.6. Given any
layerable filtration of G, the boundary spikes and boundary edges removed are
recoverable by scaffolds since we can find an appropriate scaffold on G and
restrict it to Gj using functoriality (Lemma 4.2).

Theorem 4.12. Suppose that f : G→ H is an unramified harmonic morphism.
If H is recoverable by scaffolds, then so is G.

Proof. Let {Hj} be a layer-stripping filtration of H which witnesses recoverabil-
ity by scaffolds. We proceed by cases following the same outline as in Lemma
3.6.

First, suppose Hj+1 is obtained from Hj by deleting boundary edges. The
scaffolds witnessing recoverability of the boundary edges in Hj will pull back to
scaffolds on Hj+1 witnessing the recoverability of the edges in the preimage.

Second, suppose Hj+1 is obtained from Hj by deleting isolated boundary
vertices. We must delete boundary edges in f−1(Hj) that map to the isolated
boundary vertices. Such boundary edges are in components with no interior
vertices. We can easily define a scaffold on each of these components. On the
rest of the ∂-graph, use any scaffold induced from Hj . If we define a scaffold on
each connected component, then that defines a scaffold on the whole ∂-graph.
After deleting the boundary edges from f−1(Hj), we simply delete isolated
boundary vertices and no scaffold is required.

Third, suppose that Hj+1 is obtained from Hj by contracting boundary
spikes. Then consider the following steps:

1. We must delete boundary edges of f−1(Hj) that map to the boundary
vertices of the spikes in Hj . Suppose e is such an edge in f−1(Hj) and
that e′ is the corresponding spike in H ′′

j . There is a scaffold S on Hj where

e′ is not in S ∪ S and e ∈ MidS. Then e′ is not in f−1(S) ∪ f−1(S) since
e′ is collapsed by f and it is in the Middle by Lemma 4.2, so we are done.

2. Next, we must contract boundary spikes of f−1(Hj) that map to the
boundary spikes of Hj . In this case, we can again pull back the scaffolds
witnessing recoverability of the spikes in Hj .

3. We must also delete boundary edges in f−1(Hj) that map to the con-
tracted spikes in Hj . Suppose e is a boundary edge and f(e) is one of the
contracted spikes of H ′′

j , where e+ corresponds to the boundary endpoint
of the spike and e− to the interior endpoint of the spike in Hj . By as-
sumption, there is a scaffold S on Hj where f(e) 6∈ S ∪ S and is in the

Middle. Let S′ = f−1(S). The boundary edge e is not in S′ ∪ S
′
, so we

will modify S′. Let S′′ be obtained from S′ by adding e and removing any
edge e′ with e′− = e−. The latter step is necessary so that e− will not be
the input of two edges in S′; however we do not have to worry about this
problem at e+ since e+ has degree 1 thanks to Step 1. Now if e′− = e−
and we remove e′ from S, that may produce new interior vertices which
are not the outputs of edges in S. However, since e was in the Middle of
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Figure 2: A ∂-graph which is solvable but not totally layerable.
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S′, the new interior vertex which is not an output must be in the Middle
or End of S′ and hence will not cause a problem, and e will still be in the
Middle of S′′.

4. It only remains to delete isolated boundary vertices which map to the
boundary endpoints of spikes in Hj . This step does not require a scaffold.

The proof of this last result is similar in spirit to the last one but easier and
left as an exercise:

Proposition 4.13.

1. If f : G→ H is UHM which does not collapse any edges and H is totally
layerable, then G is totally layerable.

2. A boundary wedge-sum of two totally layerable ∂-graphs is totally layerable.

3. A box product of two totally layerable ∂-graphs is totally layerable.

4.6 An Example

Total layerability and recoverability by scaffolds are not equivalent in general.
Figure 2 shows a ∂-graph which is recoverable by scaffolds, but not totally
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Figure 3: A filtration of the ∂-graph in Figure 2 which witnesses recoverability
by scaffolds.
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Figure 4: A scaffold on the graph from Figure 2. The numbering indicates
one possible total order of the edges which is compatible with the partial order
induced by the scaffold.
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layerable. A filtration witnessing recoverability is shown in Figure 3. A scaffold
used for recovering the first boundary spike (and several of the later steps is
shown in Figure 4. The construction of the scaffolds for the remaining steps is
left as an exercise.

However, this ∂-graph is not totally layerable. Let’s index the vertices as
in Figure 2 and denote by (i, j) the oriented edge from vertex i to vertex j. I
claim that there does not exist a scaffold in which (1, 2) is in S ∪ S and MidS.

Suppose for contradiction such a scaffold S exists.5 As a result of Lemma
5.9 in §5.6, we can assume without loss of generality that each boundary vertex
is incident to at most one edge in S. For finite ∂-graphs, S is a scaffold if and
only if S is a scaffold, so we can also assume (1, 2) ∈ S. Now we have

(1, 3) ≺ (1, 2) ≺ (2, 3).

Since (1, 2) is assumed to be in the middle of S, we know 3 is both the input
and the output of some edge in S. Hence, (3, 6) and (3, 7) are both in S ∪ S,
and one must be oriented going into 3 and one going out. Since each boundary
vertex (in particular, vertex 6 or 7) is incident to at most one edge in S, we
conclude that (9, 7) and (9, 6) are not in S ∪ S.

We now treat two cases:

• Suppose (6, 3) ∈ S and (3, 7) ∈ S (in that orientation). Then

(9, 7) ≻ (3, 7) ≻ (2, 3) ≻ (1, 2),

and so (9, 7) 6∈ BegS. Hence, 9 must be the input of some edge in S. We
already know (9, 7) and (9, 6) are not in S, either (9, 8) or (9, 10) must be
in S. It cannot be (9, 8) because in that case

(9, 8) ≺ (8, 6) ≺ (6, 3) ≺ (3, 7) ≺ (7, 9) ≺ (9, 8),

a contradiction. So suppose (9, 10) is a ladder with 9 as its foot. In that
case, 5 is incident to only one edge in S, namely (4, 5), since all the other
boundary vertices adjacent to 5 already some edge in S incident to them.
Since (5, 1) ≺ (1, 2) ∈ MidS, vertex 5 must be the output of some edge in
S. But since

(5, 10) ≻ (9, 10) ≻ (9, 7) ≻ (3, 7) ≻ (2, 3) ≻ (1, 2),

vertex 5 must be the input of some edge in S as well. This contradicts
the fact that 5 can only be incident to one edge in S.

• Suppose (7, 3) ∈ S and (3, 6) ∈ S (in that orientation). By similar reason-
ing as before, since (9, 7) ≺ (1, 2), we have (9, 7) 6∈ EndS, hence 9 must

5For best results when reading this proof, the reader should keep referring to Figure 2 and
mark in pencil the ladders and planks in each of the scenarios considered. Time and space
constraints prevent me from including figures for each case.
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be the output of some edge in S. We know (8, 9) cannot be in S, since
then we would have

(8, 9) ≺ (9, 7) ≺ (7, 3) ≺ (3, 6) ≺ (6, 8) ≺ (8, 9).

On the other hand, if (10, 9) is in S, then similar to before, 5 can only be
incident to one edge in S. Since

(5, 10) ≺ (10, 9) ≺ (9, 7) ≺ (7, 3) ≺ (3, 1) ≺ (1, 2) ∈ MidS,

we know 5 must be the output of some edge in S. But since

(5, 6) ≻ (6, 3) ≻ (2, 3) ≻ (1, 2) ∈ MidS,

we know 5 must be the input of some edge in S. Thus, we have another
contradiction.

5 IO-Graphs and Factorization

5.1 The Category of Linear Relations

As explained in §2.5 and §2.6, we consider certain linear relations of boundary
data on electrical networks. In preparation, we state the definition and basic
properties of the category of linear relations. The proofs are left as exercises.

Definition. In the category of linear relations F-LinRel, the objects are
finite-dimensional vector spaces over F. A morphism T : V  W is a linear
relation between V and W , that is, a linear subspace of V ×W . Here we use
“ ” to emphasize that T is not necessarily a function. If S : U  V and
T : V  W , then we define T ◦ S : U  W by

T ◦ S = {(x, z) : ∃y ∈ V such that (x, y) ∈ T and (y, z) ∈ S}.

The identity morphism idV is the diagonal subspace of V × V .

Definition. If T : V  W , we define T : W  V by {(y, x) : (x, y) ∈ T }.
Generalizing the notions of kernel and image from linear algebra, we define

kerT = {x ∈ V : (x, 0) ∈ T }, imT = {y ∈ W : (x, y) ∈ T for some x}.

Definition. Note that T defines a linear isomorphism imT/ kerT → imT/ kerT .
We define

rankT = dim imT − dimkerT = dim imT − dim kerT = rankT .

Lemma 5.1. rank(T ◦ S) ≤ min(rankT, rankS).

Lemma 5.2. Let T : V  W . Then

• T is an isomorphism if and only if T defines a linear bijection V →W .
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• T is a monomorphism if and only if imT = V and kerT = 0.

• T is an epimorphism if and only if imT =W and kerT = 0.

Lemma 5.3. If S is an epimorphism, then

dimkerT ◦ S = dimkerT + dim kerS.

Symmetrically, if T is a monomorphism, then

dimkerT ◦ S = dimkerT + dimkerS.

Lemma 5.4. If S : U  V is an epimorphism and T : V  W is a monomor-
phism, then

• rank(T ◦ S) = dimV .

• dimkerT ◦ S = dimkerS.

• dimkerT ◦ S = dimkerT .

5.2 The Category of IO-Graphs

The following constructions are adapted from [1]. The motivation is explained
in §2.6.

Definition. We define the category of IO-graphs as follows: The objects
are finite sets. A morphism P → Q is an equivalence class of triples (G, i, j),
where G is a finite graph and i : P → V (G) and j : Q → V (G) are injective
maps called labelling functions. Here we say that (G, i, j) and (G′, i′, j′) are
equivalent if there is a graph isomorphism f : G → G′ such that the following
commutes:

PQ

V (G)

V (G′)

ij

i′j′

f

We denote the morphism by [G, i, j].
We define the composition of two morphisms [G, i, j] : P → Q and [G′, i′, j′] :

Q → R as follows: Let G∗ be “the” disjoint union of G and G′ modulo the
identifications j(q) ∼ i′(q) for q ∈ Q. We let [G′, i′, j′] ◦ [G, i, j] = [G∗, i, j′],
where we view i and j′ as functions from P and R into V (G∗) by precomposing
with V (G) → V (G∗) and V (G′) → V (G∗).

Definition. For a morphism [G, i, j], we call the vertices i(P ) inputs and the
vertices of j(Q) outputs.
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It is an standard exercise to verify that composition is well-defined and
associative. Moreover, the identity transformation P → P is given by a graph
with vertex set P and no edges, and i : P → P and j : P → P are the identity
function.

Definition. The category of IO-networks F-IO-net is defined in the same
way, with graphs replaced by networks without specified boundary vertices. An
isomorphism of networks is assumed to preserve the edge weights. We denote
the network by Γ and the morphism by [Γ, i, j], hoping that the distinctions will
be made clear by context.

Definition. The IO-boundary behavior functorX : F-IO-net → F-LinRel
is defined as follows. For a finite set P , we define X(P ) = (FP )2. Now suppose
[Γ, i, j] : P → Q is a morphism of F-IO-net. Let i∗ and j∗ be the inclusions
FP → FV and FQ → FV and let i∗ and j∗ be the projections FV → FP and
FV → FQ. We define X([Γ, i, j]) : (FP )2  (FQ)2 as the set of all

(x, y) = ((x1, x2), (y1, y2)) ∈ (FP )2 × (FQ)2

such that there exists u ∈ FV with

i∗u = x1, j∗u = x2, ∆u = j∗y2 − i∗x2.

This definition says that u agrees with x1 on P and y1 on Q. Moreover,
∆u(p) is zero for any vertex p which is not in i(P ) or j(Q), so u is harmonic on
the network with ∂V = i(P )∪ j(Q). The boundary current is ∆u(i(p)) = x2(p)
for −i(p) ∈ i(P ) \ j(Q), it is ∆u(j(q)) = y2(q) for j(q) ∈ j(Q) \ i(P ), and
it is ∆u(r) = y2(q) − x2(p) whenever r = i(p) = j(q). Thus, it matches the
description in §2.6. The verification that X is a functor is left as an exercise
(see §2.6 and Proposition 3.2).

5.3 Elementary IO-network Morphisms

We define the following types of elementary IO-graph morphisms, and call
them uncreatively type 1, . . . , type 4:

1. A graph where each component is either an isolated vertex or two vertices
connected by a single edge. Each of the isolated vertices is both an input
and an output. Each edge has one endpoint as an input and one as an
output.

2. A graph where all the vertices are both inputs and outputs with some
edges between them.

3. A graph with no edges in which all the vertices are inputs, but not all are
outputs. The non-outputs are called input stubs.

4. A graph with no edges in which all the vertices are outputs, but not all
are inputs. The non-inputs are called output stubs.
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The elementary IO-network morphisms are defined the same way, except
with weights attached to the edges.

Let us compute X for each of the elementary IO-network morphisms. If
[Γ, i, j] is type 1, then X([G, i, j]) is an isomorphism. Explicitly, let us index the
inputs and the outputs by [n] = {0, . . . , n}, such that the input and output in the
same component have the same index. Assume that the components with edges
correspond to indices 1, . . . , k with weights w1, . . . , wk. Then (x, y) ∈ X([G, i, j])
if and only if

(

y1
y2

)

=

(

1
∑k

j=1 w
−1
j Ej,j

0 1

)(

x1
x2

)

,

where the blocks are n × n and Ei,j is the matrix with a 1 in the (i, j) entry
and zeros elsewhere.

Remark. Note that for the case of 1 edge, this is the transformation as in §2.2
for changing the boundary data when adding a boundary spike. We will explain
this more fully in §5.5.

If [Γ, i, j] is type 2, then X([G, i, j]) is an isomorphism. Explicitly, let us
index the inputs and outputs by [n] with the input and output indices equal to
each other. Suppose that we have edges between vertices pj and qj with weight
wj for j = 1, . . . , k. Then X([G, i, j]) is given by

(

y1
y2

)

=

(

1 0
∑k

j=1 wj(Epj ,pj
+ Eqj ,qj − Epj ,qj − Eqj ,pj

) 1

)(

x1
x2

)

If [Γ, i, j] is type 3, then X([Γ, i, j]) is an epimorphism. Explicitly, let us
index the inputs by [n] and the outputs by [k] ⊂ [n]. Then

X([Γ, i, j]) = {(x, y) : x1|[k] = y1, x1|[n]\[k] = 0}.

The dimension of the kernel is n− k.
If [Γ, i, j] is type 4, then X([Γ, i, j]) is a monomorphism and the same formula

holds switching the inputs and outputs.

5.4 Elementary Factorizations and the Rank-Connection

Principle

An elementary factorization of [Γ, i, j] : P → Q is a factorization

[Γ, i, j] = [Γn, in, jn] ◦ · · · ◦ [Γ1, i1, j1],

where each factor is an elementary IO-network morphism and the type 3 mor-
phisms come before the type 4 morphisms in the order of composition. If
[Γk, ik, jk] : Pk−1 → Pk, then we define the width of the factorization to be
mink |Pk|.

Remark. In an elementary factorization, the type 3 networks represent obstacles
to existence of harmonic extensions and the type 4 networks represent obstacles
to uniqueness.
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With all the setup we have done it is now easy to show that the rank-
connection principle holds for [Γ, i, j] : P → Q whenever it has an elementary
factorization. We first handle the algebraic quantities:

Lemma 5.5. Suppose [Γ, i, j] : P → Q admits an elementary factorization.
Then

• rankX([Γ, i, j]) is twice the width of the factorization.

• dimkerX([Γ, i, j]) is the number of input stubs.

• dim imX([Γ, i, j]) is twice the width plus the number of input stubs.

The same holds with P and Q reversed. In particular, all these quantities are
independent of the choice of edge weights and of the field.

Proof. Suppose
[Γ, i, j] = [Γn, in, jn] ◦ · · · ◦ [Γ1, i1, j1],

where [Γk, ik, jk] : Pk−1 → Pk. Pick Pℓ with |Pℓ| minimal, so that |Pℓ| is the
width of the factorization. Since the type 3 networks decrease the size of Pk and
the type 4 networks increase it, we know that the type 3 networks come before Pℓ

and the type 4 networks come after Pℓ. Let Σ1 be the morphism P → Pℓ and Σ2

the morphism Pℓ → Q formed by composing the morphisms in the factorization.
Then from our description of the boundary behavior for elementary networks,
X(Σ1) is a composition of epimorphisms, hence an epimorphism and X(Σ2) is
a composition of monomorphisms, hence a monomorphism. Thus, Lemma 5.4
implies that rankX([Γ, i, j]) is the dimension of (FPℓ)2, which is twice the width
of the factorization.

Now the epimorphisms [Γ1, i1, j1], . . . , [Γk, ik, jk] have a zero-dimensional
kernel in the case of type 1 and 2, and in the case of a type 3 network, the
dimension is the number of input stubs. This implies by Lemma 5.3 that the
dimension of kerX(Σ1) is the total number of input stubs. Similarly, the di-
mension of kerX(Σ2) is the total number of output stubs. This proves the first
and second claims, and the third claim follows by “rank-nullity” arithmetic.

Now we must deal with the geometric quantity of the maximum size con-
nection, whose precise definition is as follows:

Definition. Let G be a ∂-graph and let P,Q ⊂ ∂V (G); then a connection
from P to Q is a collection of disjoint paths in G such that each path has its
starting point in P and no other points in P and has its ending point in Q and
no other points in Q. Note that this makes sense even if P and Q intersect,
but in this case the only paths allowable for vertices in P ∩ Q are the trivial
paths connecting a vertex to itself. We define m(P,Q) to be the maximum size
connection from P to Q. If [G, i, j] : P → Q is an IO-graph morphism, then we
define m([G, i, j]) = m(i(P ), j(Q)) in the ∂-graph with ∂V = i(P ) ∪ j(Q).
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Lemma 5.6. Suppose that [G, i, j] : P → Q admits an elementary factoriza-
tion. Then the maximum size connection between P and Q is the width of
the factorization. In particular, the width of the factorization only depends on
[G, i, j].

Proof. Note that if [G, i, j] is a type 1, 2, or 3 elementary morphism, then
there are disjoint paths from any subset of j(Q) to some subset of i(P ). If
[G, i, j] : P → Q is composed of several elementary morphisms of types 1, 2,
and 3 we can join the paths in each elementary morphism together to conclude
that there are disjoint paths from all of j(Q) to some subset of i(P ). Similarly,
if [G, i, j] is composed of type 1, 2, and 4 elementary morphisms, then there are
disjoint paths from all of i(P ) to some subset of j(Q).

If [G, i, j] admits an elementary factorization, then it can be written as
[G2, i2, j2] ◦ [G1, i1, j1], where [G1, i1, j1] : P → R is composed of types 1, 2,
3 and [G2, i2, j2] : R → Q is composed of types 1, 2, 4. There are paths through
G1 connecting all the vertices of j1(R) to some of the vertices of i1(P ) and paths
through G2 connecting all the vertices of i2(R) to some of the vertices of j2(Q).
Joining these paths together provides a connection of size |R| from i(P ) ot j(Q).
Thus, the maximum size connection is at least as large as the width |R|.

On the other hand, any path from i(P ) to j(Q) must pass through i2(R).
Thus, there can be at most |R| disjoint paths.

Combining these two lemmas, together with the fact that |P | is is the width
of the factorization plus the number of input stubs, yields

Theorem 5.7 (Rank-Connection Principle 1). If [Γ, i, j] : P → Q admits an
elementary factorization, then

• rankX([Γ, i, j]) = 2m([Γ, i, j]);

• dimkerX([Γ, i, j]) = |P | −m([Γ, i, j]);

• dim imX([Γ, i, j]) = |P |+m([Γ, i, j]).

The same holds with P and Q reversed.

5.5 Elementary IO-Graph Morphisms and Layer-Stripping

Operations

We can think of IO-networks as transformations to apply to ordinary networks
in the following way. If Γ0 is a finite network, then we can view Γ0 as a morphism
[Γ0, i0, j0] : ∅ → [n], where n = |∂V | and j0 is any labelling of ∂V by [n]. In
this case, X([Γ0, i0, j0]) = {0} × Λ(Γ0).

Now if [Γ, i, j] : [n] → [m] is an IO-networkmorphism, then [Γ, i, j]◦[Γ0, i0, j0]
is a network with m boundary vertices. This gives a geometric meaning to the
postcomposition map

[Γ, i, j] ◦ − : HomF−IO−net(∅, [n]) → HomF−IO−net(∅, [m]).

In the case of elementary morphisms, postcomposition yields the following:
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• If [Γ, i, j] is type 1, then postcomposing it adds some boundary spikes to
the network.

• If [Γ, i, j] is type 2, then postcomposing it adds some boundary edges to
the network.

• If [Γ, i, j] is type 3, then postcomposing it changes some boundary vertices
to interior.

• If [Γ, i, j] is type 4, then postcomposing it adds some isolated boundary
vertices.

Thus, elementary morphisms are a geometric realization of the inverses of layer-
stripping operations. By application of the functor X , we see that each of these
transformations modifies the boundary behavior Λ of the original network by
postcomposing with the linear relation corresponding to the elementary mor-
phism.

In particular, if Γ′ is obtained from Γ by attaching a boundary spike or
boundary edge, then we have

Λ(Γ′) = Ξ · Λ(Γ),

where Ξ is the invertible matrix corresponding to the elementary morphism
described in §5.3.

Now if Γ is a finite layerable network, then we can express the morphism
[Γ, i, j] : ∅ → [n] as

[Γ, i, j] = [Γn, in, jn] ◦ · · · ◦ [Γ0, i0, j0],

where [Γ0, i0, j0] : ∅ → [n] is a network with V = ∂V = [n] and no edges, and
the other morphisms are type 1 or type 2. This implies that

Λ(Γ) = Ξn ◦ · · · ◦ Ξ1(F
n × {0})

since Λ(Γ0) = Fn × {0} ⊂ Fn × Fn.

Remark. This is an efficient way to compute a basis for Λ(Γ) since each Ξj

amounts to 1 row operation for each boundary spike added or 4 row opera-
tions for each boundary edge added (as a consequence of the formula for the Ξ
matrices).

In the same spirit as [20], these considerations lead us to define the electrical
linear group ELn(F) as the group of matrices generated by

{X([Γ, i, j]) for [Γ, i, j] : [n] → [n] is type 1 or type 2}.

It is generated by the matrices corresponding to morphisms with only one edge,
which we name as follows:

Ξj(a) =

(

1 aEj,j

0 1

)

, Ξi,j(a) =

(

1 0
a(Ei,i − Ei,j − Ej,i + Ej,j) 1

)

.
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Note that a 7→ Ξj(a) and a 7→ Ξi,j(a) are group homomorphisms from the
addtive group F to the multiplicative group GL2n(F). In particular, the inverse
of each generator is another generator of the same type. Thus, in terms of
boundary data, contracting a spike of weight w is equivalent to adding a spike
of weight −w, and the same goes for boundary edges.

We define the electrical Grassmannian EGn(F) as the set of subspaces
Λ ⊂ F2n that are the boundary behaviors of some electrical network with
∂V = [n]. Then by construction, ELn acts on EGn by applying the trans-
formation Ξ ∈ ELn to the subspace Λ ∈ EGn, which corresponds to a sequence
of operations of adding boundary spikes or boundary edges.

Remark. In §8, we will give a explicit characterization of ELn and EGn in terms
of symplectic transformations and Lagrangian subspaces of F2n using ideas from
[20] and [1]. The matrices Ξj and Ξi,j were written down in [16], but without
any explanation of their significance in terms of boundary behavior.

5.6 Elementary Factorizations and Scaffolds

As explained in §2.6, elementary factorizations and scaffolds are two ways of
geometrically modeling the same process of harmonic continuation. Here we
give the conversion between the two frameworks, so that we can use the two
tools interchangeably when convenient. For an example, refer to Figure 1.

Proposition 5.8. Let [G, i, j] : P → Q and consider G as a ∂-graph with
∂V = i(P ) ∪ j(Q). The following are equivalent:

1. [G, i, j] admits an elementary factorization.

2. There is a scaffold on S on G such that S− ∩ ∂V = i(P ) \ j(Q) and
S+ ∩ ∂V = j(Q) \ i(P ).

One can always arrange that the input stubs are V \ j(Q) \S−, the output stubs
are V \ i(P ) \ S+, and S is precisely the set of edges in the type 1 networks
oriented from input to output.

Proof. First, suppose [G, i, j] has an elementary factorization into [G1, i1, j1],
. . . , [Gn, in, jn]. Define the scaffold S as the set of oriented edges that are in
the type 1 networks, oriented from the input side to the output side. To check
this is a scaffold, we use the characterization in terms of a partial order and
local comparison conditions from Lemma 4.4. The partial order is defined by
e′ ≺ e if the elementary morphism that contains e′ comes before the elementary
morphism that contains e in the order of composition. If e ∈ S and e′ is incident
to its starting endpoint e−, then e

′ must be in some elementary morphism before
e, and similarly, if e′ is incident to e+, then e

′ must come after e, so the local
comparison condition (A) in Lemma 4.4 is satisfied. Condition (B) is trivial
since the ∂-graph is finite. To prove condition (C) by contrapositive, suppose
p ∈ V ◦ \ S+ and q ∈ V ◦ \ S−. Then p is forced to be an input stub in some
[Gk, ik, jk] and q is an output stub in some [Gℓ, iℓ, jℓ]. Then k < ℓ. Any edge
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incident to p must come before step k and any edge incident to q must come
after step ℓ, so (C) holds.

Conversely, suppose that G admits a scaffold S satisfying (2). Let ≺ be
the induced partial order on E/̄ . The elementary factorization is constructed,
roughly speaking, by starting with a minimal edge and “peeling off” elementary
morphisms corresponding to the edges in the Beginning and Middle, and next
starting with the maximal edge and “peeling off” elementary morphisms corre-
sponding to the edges in the End. More precisely, the Beginning or Middle is
nonempty, we first check if there is an isolated boundary vertex in i(P ) \ j(Q),
and if there is, then we factor out a type 3 morphism from [G, i, j]. If there
are no such isolated vertices, then a minimal edge must be a boundary spike
or boundary edge with boundary endpoints in i(P ) by similar reasoning as in
Lemma 4.5, and in this case, we can factor out a type 1 or type 2 morphism. We
repeat this inductively until the Beginning and Middle are empty, and then if
the End is nonempty, we “peel off” layers from the End using maximal edges in-
stead of minimal ones. The reader may verify that this produces an elementary
factorization as we claim.

Remark. When choosing an elementary factorization from a scaffold, one can
always arrange that e is in the Middle if and only if it comes after the type 3
networks and before the type 4 networks. On the other hand, when constructing
a scaffold from an elementary factorization, the Middle of the scaffold might be
strictly larger than the “middle” of the factorization.

There are many scaffolds that do not fit the description in the last proposi-
tion. The scaffolds on the last proposition always have S+ ∩ S− ∩ ∂V = ∅, but
this is not true of all scaffolds. If f : G→ H is a UHM and S is a scaffold on H
with S+ ∩ S− ∩ ∂V (H) = 0, then f−1(S) does not necessarily satisfy the same
conditions, since a boundary vertex of G might map to an interior vertex of H
which is in S+ ∩ S−. This is one reason why elementary factorizations cannot
be pulled back functorially under UHMs in any nice way.

However, given any scaffold S, it is possible to construct one for which
S+ ∩ S− ∩ ∂V is empty by removing some edges from S. In the next lemma,
we will carry out this process while leaving any given edge in the Middle of the
scaffold untouched. Essentially the same proof works even when there are no
edges in the Middle, but we leave this case to the reader. Once S−∩S+∩∂V = ∅,
then we can construct an elementary factorization as in the last Proposition,
for properly defined i, P, j,Q.

Lemma 5.9. Suppose S is a scaffold on G with e in the Middle. Then we can
obtain a scaffold S′ by deleting edges 6= e such that e is still in the Middle of S′

and S′
+ ∩ S′

− ∩ ∂V = ∅.

Proof. Let R = S+ ∩ S− ∩ ∂V . Each p ∈ R is the output of one edge in S and
the input of one edge in S. We will delete one of these two edges from S. But
in doing this we will make V ◦ \ S+ or V ◦ \ S− larger, so we must make sure
that none of the “input stubs” come after the “output stubs” and e is still in
the Middle. Let ≺ be the partial order induced by S; then ≺ can be completed
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to a total order such that the edges in the Beginning come before those in the
Middle which come before those in the End. If r ∈ R and r = (e1)+ = (e2)−,
then e1 ≺ e2. Hence, either e1 ≺ e or e2 ≻ e. If e1 ≺ e, we delete e1 from S,
and otherwise we delete e2 from S. The new vertices in V ◦ \ S′

− will be before
e and the new vertices in V ◦ \ S′

+ will be after e, so we are done.

The preceding lemma and remarks yield the following proposition, which al-
lows us to test recoverability by scaffolds using elementary factorizations instead
of scaffolds:

Proposition 5.10. Let G be a finite ∂-graph and e ∈ E(G). The following are
equivalent:

• There exists a scaffold S with e in the middle of S and in S ∪S (resp. not
in S ∪ S).

• There exists an elementary factorization of some morphism [G, i, j] where
e is in a type 1 (resp. type 2) network that comes after the type 3 networks
and before the type 4 networks.

6 Layering ∂-Graphs on Surfaces

We have not yet given a general way of constructing scaffolds and elementary
factorizations from scratch. We have only constructed scaffolds from other scaf-
folds or converted between elementary factorizations and scaffolds. This section
will describe how to construct scaffolds and elementary factorizations for graphs
on surfaces using medial graphs. We outline an approach that potentially ap-
plies to general surfaces and execute it for critical circular planar ∂-graphs and
∂-graphs in the half-plane.

Any connected graph embedded in the disk has a medial graph. Medial
graphs were invented by Steinitz and their construction is decribed in [5], §6
(for instance). A medial graph on the disk is shown in Figure 5. The medial
graph is an invaluable tool for studying circular planar networks and was central
to the results of [5], [9], [16], and [28]. This is not surprising since medial graphs
are related to layer-stripping: Examining Figure 5, we can see that boundary
edges and boundary spikes correspond to small boundary triangles in the medial
graph, and contracting a spike or deleting a boundary edge corresponds to
uncrossing the medial strands that meet at the empty boundary triangle (see
[8]).

6.1 Medial Strand Arrangements

The construction of the medial graph in [8] works for connected graphs that are
embedded nicely on a surface. However, applying layer-stripping operations (or
just passing to a subgraph) might easily produce a graph which is disconnected,
has isolated bounary or interior vertices, or is not embedded as nicely. To apply
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Figure 5: A lensless strand arrangement for a ∂-graph embedded on the disk.
The medial strands are purple. As an exercise, color in all the cells which have
vertices of G.
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our theory of scaffolds and elementary factorizations without hiccups, we need
medial graphs to make sense even in these degenerate cases.

Unfortunately, this means that “the” medial graph will no longer be well-
defined. But this is not really a problem. We will be happy as long there is some
medial graph that we can manipulate. Rather than constructing the medial
graph as in [8], we will say what it means for a medial graph to be compatible
with a given embedded graph as in [16]. We will also make the definition work
for infinite ∂-graphs in order to understand the infinite supercritical half-planar
graphs of [28].

The medial graph depicted in Figure 5 can be viewed as an embedded graph
where the interior vertices correspond to the edges of G and each have degree
4. However, it will be more consistent with our later manipulations to view
the medial graph as a collection of curves where only two curves (or segments
of curves) intersect at any point. In general, the curves can be loops and are
allowed to be infinite if S is not compact. We will formalize our requirements
in the definition of “strand arrangement” below.

The compatibility between the medial strands and the graph is roughly de-
scribed as follows: As in Figure 5, half of the medial cells contain vertices of G
and half of them do not. If we color the cells with vertices black and the cells
without vertices white, then two cells that share an edge have opposite colors.
The black cells are in bijective correspondence with the vertices of G, and the
medial vertices are in bijective correspondence with the edges of G.

For simplicity and to rule out pathologies, we will assume that all our graph
embeddings and medial strands are smooth. We recall the following terminology
and facts from basic manifold theory:

• The smooth 1-manifolds with boundary are [0, 1], S1, [0,+∞), and R (up
to diffeomorphism). The boundaries of [0, 1] and [0,+∞) are the sets of
endpoints and the boundaries of S1 and R are empty.

• If J is a 1-manifold with boundary and S is a smooth 2-manifold with
boundary then f : J →M is an immersion if and only if f ′ 6= 0.

• Suppose J1 and J2 are 1-manifolds with boundary and f1 : J1 → S and
f2 : J2 → S are smooth maps and that f1(t1) = f2(t2) = x. Then
the intersection is transversal if and only if f ′

1(t1) and f
′
2(t2) are linearly

independent.

• A continuous map f : X → Y between topological spaces is proper if the
preimage of a compact set is compact.

Definition. For any graph G, there is a corresponding topological space, the
quotient space obtained from E × [0, 1] by identifying (e, t) with (e, 1 − t) and
identifying (e, 0) and (e′, 0) if e+ = (e′)+. We will call this topological space G
as well since no confusion will result.

Definition. A smooth embedding of a ∂-graph on a surface with boundary
S is a proper continuous injective map f : G→ S such that
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• f(G) ∩ ∂S = ∂V (G),

• f |e is a smooth immersion of [0, 1] → S,

• For each vertex p and edges with e− = e′− = p, (f |e)
′(0) and (f |e′)

′(0) are
not positive scalar multiples of each other. That is, the edges all exit p in
different directions.

Remark. Note that we do not require the components of S◦ \G are homeomor-
phic to the disk. Thus, the embeddings may be rather degenerate.

Definition. A strand arrangement on a surface with boundary S is a col-
lection of curves {sα} in S such that:

• Each sα admits a smooth parametrization fα by a 1-manifold with bound-
ary Jα, which is an immersion.

• For each α, we have f−1
α (∂S) = ∂Jα.

• The map F :
⊔

α Jα → S induced by fα is proper.

• Only two segments of curves can intersect at any point and they cannot
intersect on ∂S, that is, #F−1(x) ≤ 2 and is #F−1(x) ≤ 1 if x ∈ ∂S.

• The intersections between two curves and the intersections of a curve with
itself are transversal.

The curves sα are called strands, the intersections points are called vertices,
and the components of S◦ \

⋃

α sα are called cells. Note that the parametriza-
tions fα are injective except at the vertices and the cells are open in S.

Definition. Note that the boundary of a cell A consists of segments of strands.
Two cells A and B are adjacent if their boundaries share some nontrivial curve
segment. Given a strand arrangement {sα}, a two-coloring of the cells is
an assignment of “white” or “black” to each cell such that adjacent cells have
opposite colors.

Definition. A medial strand arrangment M for a ∂-graph G embedded in
S is a strand arrangement on S with a two-coloring of the cells such that

• Each black cell is homeomorphic to the open disk and has compact clo-
sure.6

• There is a bijection p 7→ Ap from V (G) to the black cells of M such that
p ∈ Ap.

• We have p ∈ ∂V (G) if and only if Ap intersects ∂S.

• There is a bijection e 7→ xe from the unoriented edges of G to the vertices
of M such that e ∩M = {xe}.

6However, the closure might not be homeomorphic to the closed disk.
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Figure 6: Compatibility between a graph and a medial strand arrangement near
an edge e from p to q.

p q

Ap Aq

xe

• The edges of G intersect the strands transversally.

Remark. It follows from the definition that an edge e from a vertex p to q 6= p
must exit Ap directly into Aq through xe. At xe, e must cross two strands (or
possibly two parts of the same strand) as shown in Figure 6. If e is a self-loop,
then e goes fromAp into itself and this is the case whereAp is not homeomorphic
to the closed disk.

Definition. We say the medial strand arrangement is nondegenerate if ∂Ap∩
∂S is a single arc for each p ∈ ∂V (rather than multiple distinct components).

6.2 Producing Scaffolds from the Medial Strands

We now describe how to produce scaffolds using medial strands (see Figure 7).
We will assign an orientation for each strand and then choose the edges in S as
in Figure 8. Since we assumed that the edges intersect the strands transversally,
the assignments of edges in S are determined by looking at any circular ordering
of the tangent vectors to the curves at xe. The partial order on E/̄ induced by
the scaffold will correspond to the partial order on the medial vertices defined
by x ≺ y if there is a positively oriented path from x to y along the medial
strands.

Not all orientations of the medial strands will produce a scaffold, of course.
We will describe sufficient conditions and prove their validity using Lemma
4.4 which characterizes scaffolds in terms of local comparison conditions and a
partial order.

Definition. A piecewise orientation of ∂S is a division of ∂S into arcs
and an assigned orientation for each arc, such that any compact set intersects
only finitely many arcs. An orientation of a strand arrangement {sα} is an
assigned orientation for each strand sα specifying whether the parametrization
fα is orientation-preserving or orientation-reversing, together with a piecewise
orientation of ∂S.
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Figure 7: Scaffold produced by orienting medial strands in the disk. Medial
strands are purple. The edges in S are orange.

eiθ

Figure 8: Assignment of oriented edges of a scaffold based on orientations of
the medial strands.
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Figure 9: Desired Behavior of oriented medial strands on the boundary of medial
black cell containing an interior vertex. Let’s orient ∂Ap counterclockwise. If
the arc I consists of the two sides on the right of the cell and the arc J consists
of the three sides on the left, then I is positively oriented and J is negatively
oriented with respect to O.

Definition. For an orientation O, let TO be the set of oriented edges which
intersect the medial strands like the oriented orange edge in Figure 8.

Definition. For an orientationO, we can define a relation ≺=≺O on the medial
vertices by x ≺ y if there is a positively oriented path from x to y along segments
of medial strands and arcs of ∂S. Note that ≺ is automatically transitive and
it defines a partial order if and only if there are no positively oriented loops in
M. In this case, we say M is acyclic.

Definition. Assume G has no self-looping edges. Suppose O is an orientation
of a medial strand arrangement for G and Ap is a black cell. Then ∂Ap can be
bijectively parametrized by S1 and hence given two different orientations. We
say an orientation O has the Desired Behavior at Ap if ∂Ap can be oriented
and partitioned into two arcs I and J , such that I is positively oriented with
respect to O and J is negatively oriented with respect to O. The Desired
Behavior at an interior vertex is shown in Figure 9. Note that the definition
is independent of which orientation of ∂Ap is chosen, and thus it makes sense
even if the surface is non-orientable.

Lemma 6.1. Let G be a graph smoothly embedded on S, let M be a medial
strand arrangement, and let O be an orientation of M. Suppose that

a. M is acyclic.

b. There is no negatively oriented path in M with a proper continuous parametriza-
tion by [0,+∞).

c. O has the Desired Behavior at each medial black cell.

Then the set TO is a scaffold; moreover, every edge is in MidTO.
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Proof. We will use Lemma 4.4. Note that (a) implies ≺=≺O defines a partial
order on the medial vertices, hence a partial order on E/̄ . Next, (b) implies
that there is no infinite decreasing chain x0 ≻ x1 ≻ . . . , and hence every subset
of E/̄ has a minimal element, which verifies (B) of Lemma 4.4.

Examining Figure 9 and the definition of Desired Behavior, we can see that
each interior vertex p has exactly one edge e in TO entering it and one e′ exiting
it — namely, the edges corresponding to the two medial vertices which divide
∂Ap into the two arcs I and J . Following the oriented arcs I and J shows that
all the other edges incident to p are between e and e′ with respect to ≺, and
hence the local comparison conditions (A) of Lemma 4.4 are satisfied. A similar
argument verifies that (A) holds for p ∈ ∂V . Finally, (C) is trivial since every
interior vertex is both an input and an output of some edge in TO.

Therefore, TO is a scaffold and every vertex and edge is in the Middle of
TO.

Remark. There is no reason that we could not divide the strands into segments
and give a different orientation to each segment, so long as the segment divisions
do not fall on medial vertices. In this case, the division into two arcs for the
Desired Behavior might not fall on a medial vertex, and this will mean that
some vertices are not the inputs or outputs of edges in TO. One has to do more
work to determine when this defines a scaffold and what the Middle is. But this
approach is potentially more flexible and adaptable to general surfaces, though
we will not need it for the disk.

6.3 Scaffolds for Critical Circular Planar ∂-Graphs

Lemma 6.1 provides a strategy for constructing scaffolds, which we will now
implement for critical circular planar ∂-graphs. We will show that such ∂-graphs
are totally layerable, hence recoverable, and thus reprove one of the main results
of [5] and [9].

Definition. A circular planar ∂-graph is a ∂-graph embedded in the surface
D = {|z| ≤ 1} ⊂ C with boundary ∂D = {|z| = 1}.

Definition. We say a strand arrangement M is lensless if none of the strands
intersects itself or forms a loop, and no two strands intersect each other more
than once. Note that for D or any compact surface with boundary, this im-
plies that each strand is parametrized by [0, 1] and has two endpoints on the
boundary.

Definition. If G is circular planar and admits a lensless strand arrangement,
then we say G is critical.

Definition. LetM be a lensless strand arrangement in D, and suppose eiθ ∈ ∂D
is not the endpoint of any strand. We define Oθ as follows: If s is a strand with
endpoints eia and eib such that θ < a < b < θ+2π, then the positive orientation
of s moves from eia to eib. We choose an interval I of ∂D that does not contain
any endpoints of strands and orient ∂D \ I counterclockwise and I clockwise.
(See Figure 5.)
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Lemma 6.2. If M is a lensless strand arrangement in D, then Oθ is an acyclic
orientation.

Proof. The proof is by induction on the number of strands. It clearly holds for
one strand. Suppose it holds for n− 1 strands and consider n strands s1, . . . , sn
with endpoints eiαj and eiβj with θ < αj < βj < θ + 2π. Without loss of
generality, αn = min(αj).

From the Jordan curve theorem, we know that D \ sj has two components,
one on the left of sj and one on the right of sj . Since the strand arrangement is
lensless, sj can only cross sk in one direction and the direction can be detected
from the positions of the start and end points of sj and sk on ∂D. For any
j 6= n, we have θ < αn < αj , and this implies that sj either does not cross sn
or sj crosses sn from right to left. Thus, there is no strand that crosses sn from
left to right.

From the induction hypothesis, s1, . . . , sn−1 and the boundary circle do not
form any oriented loops. Thus, if a loop exists it must contain some segment of
sn and clearly it cannot be entirely contained in sn. Thus, the loop must exit
sn at some point. After that, it must move into the left component of D \ sn
because no strand crosses sn from left to right. But then at some point the loop
must return to (or cross) sn from the left component of D \ sn at some point x.

Since no strand crosses sn from left to right, the only possibility is that the
part of the path before x was part of the oriented boundary. The boundary
crosses sn from left to right only at the start point eiαn of sn. There are no
endpoints of strands between eiθ and eiαn , and we chose an interval I around
eiθ which is oriented clockwise. Thus, there is no way the loop could have
entered the counterclockwise oriented segment between I and eiαn . This causes
a contradiction, so there is no loop.

Lemma 6.3. Let A be a cell of a lensless strand arrangement on D. Let
s1, . . . , sn be the strands that intersect ∂A, listed in CCW order around ∂A
and oriented in the same direction as the CCW orientation of ∂A (with A on
the left of each sj). Let xj and yj be respectively the start and end of sj. Then
x1, . . . , xn occur in CCW order around ∂D, and so do y1, . . . , yn.

Remark. We do not assume in the hypothesis that s1, . . . , sn are distinct, al-
though that turns out to be true.

Proof. Note that for a lensless strand arrangement on the disk, each medial
cell is bounded by a Jordan curve formed by segments of the strands (as can be
proved using the Jordan curve theorem and induction on the number of strands).
Hence, the boundary of the cell has a well-defined counterclockwise orientation.

Suppose A is an interior cell. Let z be the vertex of ∂A where s1 and s2
intersect. Let C be the counterclockwise arc of ∂D from x1 to x2. Let h1 and
h2 be the arcs of s1 and s2 from x1 and x2 to z, so that C, h1, and h2 bound a
triangle T .

Suppose for contradiction that there is some other xj ∈ C. Let w be the
first point where sj hits ∂T . If w ∈ h2, then sj crosses s2 there from left to
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right. It cannot intersect s2 again since M is lensless, but that implies it cannot
intersect ∂A because A is on the left side of s2. So suppose w ∈ h1. Then at w,
sj crosses from the left to the right side of s2, and this occurs before the point z
along s2, which implies z ∈ ∂A is on the right side of sj . This also is impossible
because A is supposed to be on the left side of sj .

This contradiction proves that there is no xj between x1 and x2, and the
same argument applies to xk and xk+1 for all k, hence x1, . . . , xn occur in
counterclockwise order. By a symmetrical argument, y1, . . . , yn occur in coun-
terclockwise order. In the case of a boundary cell, similar reasoning applies
except that arcs of ∂D may intervene between the strand segments; details left
to the reader.

Lemma 6.4. Let M be a lensless strand arrangement on D. Then Oθ has the
Desired Behavior at each medial cell A.

Proof. Consider an interior medial cell A. Let sj and xj and yj as in Lemma
6.3. Suppose that xj = eiaj and yj = eibj . We can assume without loss of
generality that θ < a1 < a2 < · · · < an < θ + 2π, that b1 < · · · < bn < b1 + 2π,
and that aj < bj < aj + 2π. Then whenever bj < θ + 2π, the orientation of sj
given by Oθ matches the CCW orientation of ∂A, and whenever θ + 2π < bj ,
the orientations are opposite. Let k be the last index with bk < θ + 2π. Then
∂A can be divided into two arcs

∂A∩ (s1 ∪ · · · ∪ sk), ∂A∩ (sk+1 ∪ · · · ∪ sn),

such that Oθ orients the first arc CCW around A and the second CW. This
shows that the strands that bound A have the Desired Behavior.

The case of a boundary cell is similar and follows from casework (which is
easier if the medial graph is nondegenerate, but works in the general case).

It now follows from Lemmas 6.2 and 6.4 together with Lemma 6.1 that

Proposition 6.5. Suppose G is a ∂-graph on D with a lensless medial strand
arrangement M. Then Oθ defines a scaffold where all edges are in the Middle.

Theorem 6.6 (cf. [5] Theorem 2, [9], and [16] Theorem 6.7). Any critical
circular planar ∂-graph is totally layerable, hence recoverable by scaffolds, and
recoverable over any field F.

Proof. Let e be any edge and let x be the corresponding medial vertex, and
s1 and s2 the strands that meet there. Note s1 and s2 divide D into four
components, and e is contained in two opposite components. If eiθ is on the
boundary of one of the components that contains e, then e is an edge which
is not in the scaffold TOθ

, and if eiθ is on the boundary of one of the other
components, then e is in the scaffold. In either case, e ∈ MidTOθ

since all edges
are in the Middle.

Thanks to the general setup of §4, we also know that

Corollary 6.7. If f : G → H is a UHM and H is circular planar, then G is
recoverable by scaffolds, hence recoverable for any field F.

60



6.4 Embedded Subgraph Partitions and Elementary Fac-

torizations

Embeddings and medial strand arrangements provide a way of constructing ∂-
subgraph partitions of a graph. Indeed, we can use a collection of curves to cut
the surface S into smaller surfaces Sα with piecewise smooth boundary. Each
Sα will correspond to a subgraph Gα of G whose vertices are given by pieces of
medial cells in Sα and whose edges are given by the medial vertices in Sα.

More precisely, suppose G is a ∂-graph embedded on S with medial strand
arrangement M. Let C be another strand arrangement such that C ∪M also
forms a strand arrangement. Let {Sα} be the components of S \ C. Assume
that for each medial cell A, A ∩ Sα is homeomorphic to a disk. Then we can
define a subgraph Gα of G as follows:

• The vertices of Gα are the vertices of G whose medial cells intersect Sα.

• The edges of Gα are the edges of G whose medial vertices are contained
in S◦

α.

• A vertex of Gα is interior if and only if its medial cell is contained in S◦
α.

Then the Gα’s form a ∂-subgraph partition of G (exercise), and we say that it
is an embedded subgraph partition.

Remark. Gα can be embedded in Sα with medial strand arrangement M∩ Sα.
However, this requires a perturbation of the original embedding of G, and it
might not be possible to achieve this for all Gα’s simultaneously. Thus, it is
better to build our geometric intuition on what happens to the medial cells
rather than the original vertices of G.

An embedding also provides a way to assign input and output vertices to
makeG into an IO-graph morphism. Take a partition of ∂S into two setsD1 and
D2 (for instance, two arcs of the boundary of a disk). Then declare p ∈ ∂V (G)
to be input if the closure of its medial cell intersectsD1 and output if the closure
of its medial cell intersects D2.

We can produce an factorization of G into IO-graph morphisms [Gk, ik, jk]
by using a strand arrangement to “cut S into thin regions” S1, . . . , Sn corre-
sponding to G1, . . . , Gn as shown in Figure 10. To state what is happening
precisely, suppose that

• C0, C1, . . . , Cn are smooth curves.

• C0 ∪ Cn = ∂S.

• C1, . . . , Cn−1 form a strand arrangement C.

• Suppose that Ck−1∪Ck is the piecewise smooth boundary of a surface Sk,
and that S =

⋃

k Ck ∪
⋃

k Sk and ∂Sk ∩ ∂Sk+1 = Ck.

• C induces a an embedded subgraph partition of G into G1, . . . , Gn (as
described above), where Gk corresponds to Sk.
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Figure 10: An elementary factorization for a graph embedded in a strip. This
can be viewed as a factorization for a circular planar ∂-graph if we identify the
top ends of the vertical lines to a point and the bottom ends to another point.

C0

S1

C1

S2

C2

S3

C3

S4

C4

S5

C5

S6
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G1 G2 G3 G4 G5 G6 G7
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Let Pk be the set of vertices p such that Ap ∩ Ck 6= ∅. Then Gk defines
an IO-graph morphism Pk−1 → Pk, and [Gn] ◦ · · · ◦ [G0] is a factorization of
[G] : P0 → Pn. We call this construction a embedded factorization.

6.5 Elementary Factorizations in the Disk

Any two “cut-points” eiθ and eiφ divide ∂D into two arcs; let D1 be the CCW
arc from eiθ to eiφ and let D2 be the other arc. Let P and Q be the sets of
vertices of G whose medial cells touch D1 and D2 respectively. Then P and Q
are called a circular pair. P ∩Q contains at most two vertices. The strands fall
into three types:

• A strand with both endpoints on D1 is called D1-reentrant.

• A strand with both endpoints on D2 is called D2-reentrant.

• A strand with one endpoint on D1 and one on D2 is called transverse.

The following theorem combines the “cut-point lemma” of [8] (see also [28])
with the machinery of elementary factorizations. For an example, refer to Figure
10.

Theorem 6.8. Let G be a ∂-graph on D with a lensless nondegeneral medial
strand arrangement M. Suppose P and Q are a circular pair corresponding
to boundary arcs D1 and D2. Then the IO-graph morphism [G, i, j] : P → Q
represented by G admits an embedded elementary factorization. Hence, the rank-
connection principle holds for P and Q for any network Γ on G. Moreover,

• rankX([Γ, i, j]) = 2m(P,Q) = #(transverse strands) + |P ∩Q|.

• dimkerX([Γ, i, j]) = #(input stubs) = #(D1-reentrant strands).

• dimkerX([Γ, i, j]) = #(output stubs) = #(D2-reentrant strands).

Proof. Our first goal is to find one of the following:

a. A D1-reentrant medial strand s with no medial vertices on it. In this case,
there is a black cell on one side of s. Because the closure of a medial cell
only intersects D1 in one arc, not two, the black medial cell must be one
component of D \ s and must represent an isolated boundary vertex of G on
D1.

b. A triangular medial cell formed by two medial strand segments and an arc
of D1. The two strand segments meet at some medial vertex a. If the cell
is black, then a represents a boundary spike of G and the black cell is the
boundary vertex of the spike and is in P and not Q. If the cell is white, then
a represents a boundary edge of G between two vertices in P .
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Let eiθ and eiφ be the two cut points dividing ∂D into D1 and D2, and con-
sider the orientation Oθ. The transverse strands are all oriented to start at D1

and end at D2. We claim that the medial vertices on the D1-reentrant strands
come before those on the D2-reentrant strands in the partial order induced by
Oθ, when they are comparable. Let Ω1 be the union of the regions bounded by
D1-reentrant strands and (arcs of) D1, and let Ω2 be the union of the regions
bounded by the D2-reentrant strands and D2. Note that Ω1 and Ω2 are disjoint
by a simple Jordan curve theorem argument.

Moreover, there is no positively oriented path from Ω2 to Ω1 since any such
path would have to exit Ω2 at some point x. When it exits, it is moving along
some strand s which cannot be D2-reentrant and hence has its starting point on
D1. But s must be crossing a reentrant strand s′, from the inside to the outside
of the region bounded by s′ and D2. Since s cannot cross s′, this implies that
the start point of s is inside the closure of the region bounded by s′ and D2,
and hence s starts on D2, which is a contradiction.

Let W be the set of medial vertices x in D \ Ω2. The previous argument
showed that W is an initial subset of the medial vertices with respect to ≺.

Assume (a) does not occur and that W is nonempty, and we will prove (b)
occurs. Let x1 be a minimal element of W . Then two medial strands s1 and t1
meet at x1, and s and t have no medial vertices between C1 and x1. Let T1 be
the triangle formed by C1 and the segments of s1 and t2 from C1 to x1. Now T1
may be medial cell satisfying (b). However, if the medial strand arrangement is
disconnected, T1 may contain some entire medial strands, which are necessarily
D1-reentrant. In this case, let M1 be the union of the medial strands contained
in T1. Let x2 be a minimal medial vertex in M1. Then x2 is the vertex of
a medial triangle T2 by the same reasoning as before. T2 either satisfies (b)
or contains some M2. This process must terminate after finitely many steps
since Mj+1 contains strictly fewer strands than Mj . Hence, there is a triangle
satisfying (b).

Therefore, either (a) or (b) occurs or else there are no D1-reentrant strands
and W is empty. If (a) or (b) occurs, we can write [G, i, j] = [G′, i′, j′] ◦
[G1, i1, j1], where G1 is an elementary IO-graph of type 1, 2, or 3 and the
factorization can be represented by cutting D into two components with a curve
C1 from eiθ to eiφ.

Let U1 be the component of D\C1 containing G′. Then U1 is homeomorphic
to D (by standard results from topology) and the orientation satisfies all the
same properties as before. (Cutting the disk into two regions with C1 may
produce medial cells which intersect ∂U1 in two arcs, but it cannot produce any
which intersect C1 in two arcs or D2 in two arcs.) If there are medial vertices
in W contained in U1, we can repeat this process with U1 instead of D and C1

instead of D1. After finitely many iterations, we produce curves C1, . . . , Ck

which induce an embedded factorization of G into elementary type 1, 2, and 3
morphisms represented by G1, . . . , Gk, and some other morphism represented
G∗, such that G∗ is embedded in the region bounded by Ck and D2 and this
region contains no vertices of W .

Next, we repeat this process starting at D2 instead of D1, using a D2-
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reentrant strand with no medial vertices or a maximal medial vertex in our
partial order, and hence finding a boundary edge, boundary spike, or isolated
boundary vertex on the output side D2. We “peel off layers” from the output
side rather than the input side. When this process ends, the two layer-stripping
processes from the input side and the output side must meet in the middle
and produce a complete factorization. Indeed, since both processes terminated,
there cannot be any more medial vertices or reentrant strands in the region
that is left, and hence all the strands are transverse and do not intersect, and
the IO-graph morphism in this region is the identity. Thus, the factorization is
complete.

It follows from Theorem 5.7 that the rank-connection principle holds. Thus,
it only remains to establish the relationship between the strands and the number
of input stubs, the number of output stubs, and the maximum size connection.

Each time we factored out a type 3 morphism from the input side, we re-
moved a reentrant strand on the input side. However, we when factored out
a type 1 or type 2 morphism, this did not change the number of reentrant
strands. Thus, the D1-reentrant strands correspond to input stubs. Similarly,
the D2-reentrant strands correspond to the output stubs. Factoring out any of
the elementary networks did not change the number of transverse strands or
the maximum size connection. Thus, to prove the claim about the transverse
strands, we can reduce to the case where all the strands are transverse and do
not intersect each other, and here the claim follows from easy casework.

Remark. The scaffold corresponding to the factorization in Theorem 6.8 can be
represented by an orientation of the medial strands, if we allow two segments
of the same strand to have opposite orientations.

6.6 Supercritical Half-Planar ∂-Graphs

In [28], a ∂-graph G embedded in the upper half-plane H ⊂ C is called super-
critical if it has compatible lensless medial strand arrangement such that each
medial strand begins and ends on R rather than going off to ∞. [28] adapts the
techniques of [16] to prove recoverabiliy of supercritical half-planar ∂-graphs.
We shall prove

Theorem 6.9. Any supercritical half-planar ∂-graph G is totally layerable, that
is, for each edge e0 there is a scaffold S such that e0 is in S∪S and in MidS and
a scaffold such that e0 is not in S ∪ S and e0 ∈ MidS. Moreover, the scaffolds
can be chosen so that {e : e ≻ e0} is finite.

Finiteness of {e : e ≻ e0} implies that the harmonic functions constructed for
solving the inverse problem in §4.3 are finitely supported. This is useful because
it allows flexibility in defining the Λ(Γ) in the infinite case. For positive real edge
weights, one might want to consider the boundary data of finitely supported,
bounded, or finite-power harmonic functions rather than all harmonic functions
(see [28]). However, harmonic continuation might a priori produce unbounded
or infinite-power harmonic functions. On the other hand, finitely supported
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functions automatically satisfy whatever growth conditions one wants to impose
at infinity.

Without the finiteness condition on {e : e ≻ e0}, one can prove that a super-
critical half-planar ∂-graph is totally layerable using an orientation of the medial
strands, similar to the method for the disk, but slightly more complicated, be-
cause we must make sure every subset has a minimal element. However, the
finiteness condition makes the proof more tricky. The basic plan is as follows:

Let t0 < t1 be two points on the real line that are not the endpoints of medial
strands. The goal is to construct a scaffold such that the harmonic continuation
process where the “inputs” are on (−∞, t0]∪ [t1,∞) and “output” are on [t0, t1].
This cannot be accomplished by simply orienting each medial strand. Instead,
we will divide H into three regions, produce a scaffold on each region, and then
patch the scaffolds together. The most annoying part of the proof is finding the
correct way of cutting up H. This proof is technical and may be omitted on a
first reading.

Division of H into Three Regions: Each strand divides H into two
components–one is bounded, and we will call it the “inside,” and the other is
unbounded, and we will call it the “outside.” Each strand has an endpoint
which is further left on the real axis and one which is further right, and hence
there is a left-to-right orientation of each strand. In the left-to-right orientation
of the strand, the inside is on the right of the strand and the outside is on the
left.

Let U be the union of all the following regions:

• The inside of a [t0, t1]-reentrant strand.

• Any triangle bounded by a segment of a strand with one endpoint on
(−∞, t0] and one endpoint on [t0, t1], a strand with one endpoint on [t0, t1]
and one endpoint on [t1,∞), and a segment of [t0, t1].

Claim. U is the region to the right of some oriented Jordan arc C0 formed by
strand segments and segments of [t0, t1] such that

• The path starts at t0 and ends at t1.

• Each strand used in the path has at least one endpoint on [t0, t1].

• For each strand segment in the path, the orientation of the path matches
the left-to-right orientation of the strand.

• For each segment of [t0, t1] in the path, the orientation in the path matches
the increasing orientation of [t0, t1].

Proof. Let O be the orientation of M formed by orienting each strand from
left to right and real line from negative to positive. Then O is acyclic. Indeed,
any cycle would be formed by only finitely many strands s1, . . . , sn. If F is a
conformal map of H onto D and eiθ = F (∞), then the orienation O of s1, . . . , sn
corresponds to Oθ on the disk. But we already showed this is acyclic. Thus, O
defines a partial order on the medial vertices. This can be extended to a partial
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Figure 11: The region U and curves C0 and C′
0.

C0

C1

U

t′0 t0 t1 t′1

order on the medial vertices and endpoints of strands such that if two endpoints
x, y are on the real line with x < y in R, then x ≺ y.

We say that a region satisfies (∗) if it is the region to the right of some path
satisfying the conditions of the Claim. Note that U is defined as the union of
finitely many regions which satisfy (∗). Thus, it suffices to show that if U1 and
U2 satisfy (∗), then so does U1 ∪ U2. Let g1 and g2 be the corresponding paths
and extend them to infinite paths by adjoining an interval of the form (−∞, a]
to the beginning and [b,+∞) to the end. The intersection points / intervals of
g1 and g2 must occur in increasing order along g1 and in increasing order along
g2 since they are both positively oriented paths with respect to O. Hence, the
intersections occur in the same order for g1 and g2. Thus, we can form a path
g3 as follows: Start at −∞. As long as g1 and g2 agree, we follow along their
common path, and when g1 and g2 split up, we choose the path farther to the
left. Then U1 ∪ U2 is the region to the right of g3, hence satisfies (∗).

We next produce another curve C′
0 that “hugs the outside of C0” but does

not contain any medial vertices:

Claim. There exists an oriented Jordan arc C′
0 such that

• C′
0 does not contain any medial vertices.

• If s is a medial strand with one endpoint on [t0, t1] and one endpoint on
(−∞, t0] ∪ [t1,+∞), then C′

0 intersects s exactly once.

• The region to the left of C′
0 contains U and does not contain any medial

vertices not in U .

• The start point t′0 of C′
0 is to the left of t0 with no endpoints of strands

in between them. The end point t′1 of C′
0 is to the right of t1 with no

endpoints of strands in between.
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Proof. Let A1, . . . ,An be the medial cells outside U whose closures intersect C0,
listed in order along C0. Construct C1 inductively starting on R ∩ ∂A1, then
going into A2, and so forth.

The hardest condition to verify is the second one: Suppose s is a medial
strand with one endpoint on (−∞, t0] and one endpoint on [t0, t1]. If s crosses
C′

0, then it must enter U immediately afterward. At the point where it enters
U , it must either cross a [t0, t1]-reentrant strand or enter a triangle formed by
strands s1 and s2, where s1 has endpoints on (−∞, t0] and [t0, t1], and s2 has
endpoints on [t0, t1] and [t1,+∞). Move along s starting at the endpoint on
(−∞, t0]. If s crosses a [t0, t1]-reentrant strand, then it cannot cross it again,
and hence is trapped inside U and cannot cross C′

0 again. If it enters a triangle
formed by s1 and s2, then it must have crossed s2 at some point since it started
outside s2. Then the triangle formed by s1 and s is inside U , so the rest of s
must also be inside U . A symmetrical argument works if s has one endpoint on
[t0, t1] and one on [t1,∞).

Claim. There is a point z on C′
0 such that

• Any strand starting on (−∞, t0] and ending on [t0, t1] must intersect C′
0

before z (“before” along C′
0).

• Any strand starting on [t1,+∞) and ending on [t0, t1] must intersect C′
0

after z.

Proof. Let A1, . . . ,An be as above. Since C′
0 ends on the outside of all strands

with endpoints on (−∞, t0] and [t0, t1], there must be a first Aj that is on the
the outside of all such strands. Let z be a point of C′

0 inside Aj , and let s1 be
the last strand with endpoints on (−∞, t0] before Aj .

Suppose for contradiction s is a strand with endpoints on [t1,∞) and [t0, t1]
that intersects C′

0 before z. Since s only intersects C′
0 once, the only way it can

do this is by crossing s1 outside of C′
0, which contradicts the definition of U .

Claim. There exists an oriented curve C1 injectively parametrized by [0,+∞)
such that

• C1 starts at z and goes to complex ∞.

• C1 does not contain any medial vertices.

• C1 intersects each strand at most once.

• C1 only crosses strands from inside to outside.

• C1 never intersects C′
0 again.

Proof. For a given medial cell A bounded by strands s1, . . . , sn, there are two
possibilities:

1. A is on the inside of some sj .
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Figure 12: Division of H into three regions. The orange arrows show the general
direction of harmonic continuation. Here C′

0 = C1 ∪C2 and R3 is slightly larger
than U .

z

t′0 t′1

C1

C2 C3

R1 R2

R3

2. A is on the outside of each sj . In this case, by a connectedness argument,
A is exactly the intersection of the outsides of the sj ’s, and hence is
unbounded.

We construct C1 inductively cell by cell, starting at z. As long as we are in a
cell where (1) holds, we can continue into another cell by crossing a strand from
inside to outside. If we ever reach a cell where (2) holds, we can stay inside the
cell and go to ∞. Because we only ever cross strands from inside to outside, we
never cross the same strand twice or enter the same medial cell twice.

We never entered U because to do that, we would have to cross from the
outside to the inside of some strand (by previous Claims about U). Thus, we
can arrange that we never cross C′

0 (since C′
0 was defined to “skirt the outside

of” U).
Now we prove the path goes to ∞. This is trivial if (2) ever occurs.
If (1) occurs infinitely many times, then I claim the path is eventually outside

any given strand s. The path crosses infinitely many strands from inside to
outside. However, the inside of s only intersects finitely many strands, so the
path cannot stay inside s forever, and once it goes outside of s it cannot come
back inside.

Suppose K ⊂ H is compact, and we will show that the path is eventually
outside of K. Only finitely many medial cells intersect K. Let K ′ be the union
of the medial cells that intersect K and satisfy (1). Since we assumed (2) never
occurs, the path never enters any unbounded cells, so it suffices to show the path
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is eventually outside K ′. But any cell of K ′ is on the inside of some strand, and
we just proved that the path C1 is eventually outside every strand.

Claim. Let C2 be the arc of C′
0 before z and let C3 be the arc of C′

0 after z. Then
C1, C2, and C3 divide H into three simply connected regions homeomorphic to
the disk:

• R1 is the region outside C′
0 and to the left of C1. It is bounded by (−∞, t′0],

C1, and C2.

• R2 is the region outside C′
0 and to the right of C2. It is bounded by

[t′1,+∞), C1, and C3.

• R3 is the region inside C′
0. It is bounded by [t′0, t

′
1], C2 and C3.

Proof. Use the Jordan curve theorem and conformal equivalence of the half-
plane and disk.

Claim. Let G1, G2, G3 be the ∂-subgraph partition of G induced by the division
of H into R1, R2, and R3, and let M1,M2,M3 be the corresponding medial
strand arrangements. Then

• Any strand of M1 either has both endpoints on (−∞, t′0] or one endpoint
on (−∞, t′0] and one on C2 ∪ C1.

• Any strand of M2 either has both endpoints on [t′1,+∞) or one endpoint
on [t′1,+∞) and one on C3 ∪ C1.

Proof. Consider a medial strand s from the original medial strand arrangement
M.

• If s is [t0, t1]-reentrant since then it would is entirely contained in U ⊂ R3,
so there is nothing to prove.

• Suppose s has one endpoint on (−∞, t0] ∪ [t1,+∞) and one on [t0, t1].
Then it crosses C′

0 exactly once. Since C1 only crosses strands from inside
to outside and it starts outside s, we know s never crosses C1, so we are
done.

• Suppose s has one endpoint on (−∞, t0] and one on [t1,+∞), and that
it never crosses C′

0. Then we are done since C1 intersects each strand at
most once.

• Suppose s has one endpoint on (−∞, t0] and one on [t1,+∞), and that
it crosses C′

0 at some time. Orient s to start on (−∞, t0] and end on
[t1,+∞). Note s cannot intersect a [t0, t1]-reentrant strand. Thus, once s
enters U , it must be inside one of the triangles in the definition of U , hence
it has gone to the inside of a strand s′ with one endpoint on [t0, t1] and
one endpoint on [t1,+∞). Since C1 is outside of s′, s can never intersect
C1 after this point. But by a symmetrical argument, s can never intersect
C1 before exiting U . Thus, it can never intersect C1 at all.
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Furthermore, if s crosses C2 and hence enters U , it is inside s′ and hence
remains outside R1 and never crosses C2 again. Thus, s can must cross
C2 exactly once and C3 exactly once by symmetry.

Construction of Scaffold: The scaffold will be defined so that the direc-
tion of harmonic continuation is roughly as follows:

• In G1, it will go from (−∞, t′0] to C2 ∪ C1.

• In G2, it will go from [t′1,+∞) to C3 ∪ C1.

• In G3, it will go from C2 ∪ C3 to [t′0, t
′
1].

We will define scaffolds on G1, G2, and G3, then paste them together.

Claim. Let O1 be the orientation of M1 defined as follows:

• A (−∞, t′0]-reentrant strand is oriented from right to left.

• A strand with one endpoint on (−∞, t′0] and one on [t′0, t
′
1] is oriented to

start on (−∞, t′0].

• The boundary is oriented counterclockwise except for a small interval near
t′0.

Then O1 defines a scaffold S1 on G1.

Proof. Let F : H → D be a conformal map and let eiθ = F (t′0). The orientation
O1 matches Oθ on the disk, and hence is acyclic. The same argument shows
that the medial cells have the Desired Behavior.

To show that every subset has a minimal element, it suffices to show that
any descreasing path of medial strand segments must terminate. Let C be any
such path, and let Z be the set of strands used in the path. Let s0 be the strand
with the endpoint closest to t′0 on the real line. Then no strand can cross from
the right (outside) of s to the left (inside) of s. Hence, once the decreasing path
reaches s, it remains trapped in the closure of the region inside s, which contains
only finitely many medial vertices. Hence, the path must terminate.

Claim. Symmetrically, Let O2 be the orientation of M2 defined as follows:

• A [t′1,+∞)-reentrant strand is oriented from right to left.

• A strand with one endpoint on [t′1,+∞) and one on [t′0, t
′
1] is oriented to

start on [t′1,+∞).

• The boundary is oriented counterclockwise except for a small interval near
t′1.

Then O2 defines a scaffold S2 on G2.
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To construct a scaffold on G3, note there is a homeomorphism F : R3 → D

(by corollaries of the Jordan curve theorem), and the homeomorphism extends
to the closures. In particular, G3 is circular planar with no lenses in the medial
strands. Let S3 be the scaffold obtained by pulling back Oθ through F , where
θ is chosen with eiθ = F (t′1). This is chosen so that all the strands with one
endpoint on C2 ∪ C3 and one on [t′0, t

′
1] are oriented from C2 ∪ C3 to [t′0, t

′
1].

Now S = S1 ∪ S2 ∪ S3 is not necessarily a scaffold on G. But observe that

• Any interior vertex of G1 or G2 or G3 is both an input and an output of
the edges in S.

• If p is a vertex of G1 whose cell touches C1 ∪ C2, then p cannot be an
input of an edge in S1 since there are no oriented strands exiting C1 ∪C2.
A symmetrical claim holds for G2.

• If p a vertex of G1 which is interior in G and its medial cell touches C1∪C2,
then its medial cell does not touch R, and this vertex must be an output
of an edge in S1. A symmetrical claim holds for G2.

• Similarly, any vertex p in G3 which is interior in G and touches C2 ∪ C3

must be an input of S3. Any vertex which touches C2 ∪ C3 cannot be an
output of edges in S3 since there are no strands in M3 entering C2 ∪ C3.

We define S′ as S minus the edges in e ∈ E(S2) such that the medial cell of e+
in M2 touches C1 ∪ C2. Now every interior vertex of G is the output of some
edge in S, but any vertex is the output of at most one edge in S and the input
of at most one edge in S.

Claim. S is a scaffold.

Proof. We can use the partial order ≺ defined by using the partial orders asso-
ciated to S1, S2, and S3, and declaring that edges in G1 are less than edges in
G2 which are less than edges in G3. The local comparison and partial well-order
conditions of Lemma 4.4 are verified by casework. The input-output alternative
is trivial since every interior vertex is the output of some edge in S.

Claim. E(G3) ⊂ MidS.

Proof. Any interior vertex of G which is in G3 is the input of some edge in S.
Thus, any edge incident to a vertex in V ◦(G) \ S− is in G1 or G2 and hence is
≺ the edges in G3 by definition of our partial order.

Proof of Theorem 6.9: Choose an edge e0. By choosing t0 and t1 correctly
and constructing a scaffold S as above, we can arrange that the medial vertex of
e0 is on a [t0, t1]-reentrant strand, hence in U and hence in G3. We can arrange
e0 is either in S ∪S or not in S ∪S as desired. Thus, the Theorem follows from
the previous claim.
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7 The Rank-Connection Principle

One can show using Lemma 4.1 of [5] or the determinantal formulas of [11]
that the rank-connection principle holds for any finite network for generic edge
weights in any algebraically closed field. Here we want to understand what hap-
pens in the general rather than the generic case. We will show that rankX([Γ, i, j]) ≤
m([Γ, i, j]) always, and give a geometric characterization of morphisms [G, i, j]
such that the rank-connection principle holds for all edge weights over any field,
using a slight generalization of elementary factorizations.

7.1 Completely Reducible ∂-Graphs

Our task is even more subtle than it might first appear, since it turns out that
a harmonic function is not necessarily uniquely determined by its boundary
data. Even if the ∂-graph is connected, there can be degenerate edge weights
for which some nonzero harmonic functions have zero potential and zero net
current on the boundary. As stated, the rank-connection principle pertains to
the boundary behavior rather than the space of harmonic functions; we want to
know how the input data on P and output data on Q are related, even though
we might have no control over the values of u on the interior between them!

For one example of nonzero harmonic functions with zero boundary data,
consider the “triangle-in-triangle” network with boundary vertices {1, . . . , 6}
and interior vertices {7, 8, 9} and edges with coefficients w(e) shown in the
figure. (This ∂-graph was considered in [20].) The matrix of ∆ is





























0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 1 0 −1 1 0 0 0 0
0 −1 1 0 −1 1 0 0 0
1 0 −1 1 0 −1 0 0 0





























.

Let ep be the vector with 1 on vertex p and zero elsewhere. Then e7 + e8 + e9
is a harmonic potential which is zero on the boundary and also has net current
zero at each boundary vertex.

As a warm-up to handling the rank-connection principle, we will first give a
geometric characterization of ∂-graphs for which a harmonic function is always
uniquely determined by its boundary data. This proposition was proved by Avi
Levy and the author in [15]. The necessity of using boundary wedge-sums in
the characterization was pointed out by Will Dana, Austin Stromme, and Collin
Literell, students at the University of Washington REU 2015.

Definition. A finite ∂-graph is completely reducible if it can be reduced
to the empty graph by layer-stripping operations and splitting apart boundary
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Figure 13: Singular edge weights on the triangle-in-triangle network. Boundary
vertices are colored in. Vertices are labelled with their index. Edges are labelled
with their conductance.
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wedge-sums. In other words, completely reducible ∂-graphs are the smallest
class of finite ∂-graphs which is closed under adding isolated boundary ver-
tices, adding boundary edges, adding boundary spikes, and joining two graphs
together into a boundary wedge-sum.

Definition. We define U0(Γ) = {u ∈ U(Γ) : u|∂V = 0,∆u∂V = 0}.

Proposition 7.1. A finite ∂-graph G is completely reducible if and only U0(Γ) =
0 for all nonzero edge weights over any field. In fact, for any given infinite field
F, G is completely reducible if and only if U0(Γ) = 0 for all nonzero edge weights
in F.

Proof. To prove the forward direction, it suffices to show that the class of ∂-
graphs for which U0(Γ) is always zero is closed under the operations of adding
spikes, boundary edges, and isolated boundary vertices, and under boundary
wedge-sums. This follows from similar reasoning as in Lemma 3.5 and Lemma
3.8.

Now consider the converse implication. Let F be an infinite field and sup-
pose G is not completely reducible. By applying layer-stripping operations and
breaking apart boundary wedge-sums and connected components we can find
a harmonic subgraph H which has no boundary spikes, boundary edges, or
isolated boundary vertices, and cannot be written as a boundary wedge-sum or
disjoint union. It suffices to find edge weights on H which will make U0 nonzero,
since any harmonic function with zero potential and current on a subgraph can
be extended to be zero on the larger network.

We can assume without loss of generality that there are no self-looping edges
since these edges have no effect on ∆ or on complete reducibility (they can always
be removed as boundary edges once the endpoint is a boundary vertex).

Our strategy will be to choose a potential function u first with u|∂V = 0,
and then choose edge weights such that ∆u ≡ 0. Let S be the set of edges in H
that are contained in a cycle. Define u to be zero on any component of H \ S
that contains boundary vertices of H , and assign u a distinct, nonzero value on
each of the other components. It follows from the definition of S that any edge
in S must have endpoints in distinct components of H \ S.

To guarantee that u does not vanish on any interior vertex, it suffices to
show that any edge e with endpoints e− = p ∈ ∂V and e+ = q ∈ V ◦ must
be contained in a cycle. By hypothesis, e is not a self-loop or boundary spike.
Thus there is some edge e′ 6= e with e′− = e−. If e′+ = e+, then e and e′ form
a two-cycle. Otherwise, let r = e′+ 6= q. Since G is not a boundary wedge-sum,
deleting p leaves G connected. Thus, there is a path from q to r avoiding p.
Hence, there is a cycle containing e and e′. Consequently, u is nonzero on all
the interior vertices.

Now we choose the edge weights. Choose oriented cycles C1, . . . , Ck such
that S =

⋃k

j=1 Cj ∪ Cj . For each j, define

wj(e) = wj(e) =

{

1/du(e), for e ∈ Cj

0, for e 6∈ Cj ∪Cj .
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Then wj(e)du(e) is 1 on Cj and −1 on Cj and vanishes elsewhere. Thus,
∆wj

u = 0. For each e ∈ S, there is a weight function wj with wj(e) 6= 0.
Since F is infinite and the graph is finite, we may choose αj ∈ F such that
∑k

j=1 αjwj(e) 6= 0 for all e ∈ S simultaneously.

Set w = 1S +
∑k

j=1 αjwj . Then w(e) 6= 0 for each e. Since ∆wj
u = 0

for each j and du(e) = 0 when e 6∈ S, we have ∆wu = 0 by linearity. Thus,
U0(H,w) 6= 0 as desired.

7.2 A Max-Flow Min-Cut Principle

One ingredient in our rank-connection theorem is the following result, which is
also of interest in its own right. The number m(P,Q) can be thought of as the
“maximum flow” from P to Q, although our setup is different than the standard
max flow problem in that the flow through each vertex is limited rather than
just the flow through each edge. The correct analogue of “minimum cut” can
be phrased in terms of factorizations in the IO-graph category.

Proposition 7.2 (Max-Flow Min-Cut). Let [G, i, j] : P → Q. Then m([G, i, j])
is the minimum value of |R| such that [G, i, j] factors as the composition of two
morphisms P → R and R → Q.

Proof. To simplify notation, we assume that P , Q, and R are literally subsets
of V (G) rather than merely labels, and write [G] : P → Q rather than [G, i, j] :
P → Q. We will also write graphs without specifying boundary vertices, with
the understanding that if we write [G] : P → Q, then we are treating P ∪Q as
the set of boundary vertices.

Let n be the minimum value of |R| and let m be the maximum size connec-
tion. It is clear that m ≤ n since for any factorization into morphisms P → R
and R → Q, any path from P to Q must pass through R.

We prove the reverse equality by induction on the number of edges. If there
are zero edges, then the maximum connection is taken by using the trivial paths
from P∩Q to P∩Q. On the other hand, the IO-graph morphism can be factored
into maps P → P ∩Q→ Q.

Suppose G has at least one edge. Choose an edge e with endpoints p and q
and let H be obtained from G by deleting e without changing the vertex set. By
the induction hypothesis [H ] : P → Q has a factorization into two subgraphs

[H1] : P → R, [H2] : R → Q

such that |R| = mH(P,Q).
Suppose p and q are both in V (H1) or both in V (H2). By symmetry, we can

assume without loss of generality p, q ∈ V (H1). Then we have a factorization
of G into

[H1 ∪ e] : P → R, [H2] : R → Q.

Any maximum size connection from P to Q in H is also a connection in G.
Since there is a connection of size |R| and a factorization through R, we have
m ≥ n as desired.
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On the other hand, if p and q are not both in V (H1) or V (H2), then by
symmetry, we can assume p ∈ V (H1) \V (H2) and q ∈ V (H2) \V (H1). There is
a connection in H of size |R|, and this connection must restrict to a connection
from P to R in H1 which uses all the vertices of R. Thus, mH1

(P,R∪{p}) ≥ |R|,
so it is either |R| or |R|+ 1 = |R ∪ {p}|. Assume that

mH1
(P,R ∪ {p}) = |R|+ 1 = mH2

(R ∪ {q}, Q).

Then there is a connection in H1 from P to R ∪ {p} that uses all the vertices
of R ∪ {p} and a connection in H2 from R ∪ {q} to Q that uses all the vertices
of R ∪ {q}. Joining these connections together with the edge e from p to q
provides a connection of size |R|+ 1 in G from P to Q. On the other hand, we
can factorize [G] : P → Q as

[H1 ∪ e] : P → R ∪ {q}, [H2] : R ∪ {q} → Q.

Therefore, m ≥ |R|+ 1 ≥ n.
The only case that remains is when p ∈ V (H1) \ V (H2) and q ∈ V (H2) \

V (H1) and either mH1
(P,R ∪ {p}) or mH2

(R ∪ {q}, Q) equals |R| rather than
|R|+1. Assume that mH1

(P,R∪{p}) = |R| since the other case is symmetrical.
Then since H1 has fewer edges, the induction hypothesis yields a factorization
of [H1] : P → R ∪ {p} into

[H ′
1] : P → P ′ [H ′′

1 ] : P
′ → R ∪ {p}

such that |P ′| = |R|. Then we may factorize [G] : P → Q into

[H ′
1] : P → P ′ [H2 ∪ e] ◦ [H

′′
1 ] : P

′ → R ∪ {p} → Q.

This implies that m ≥ |R| = |P ′| ≥ n, so we are done.

The max-flow min-cut principle allows us to prove the following version of the
rank-connection principle, which works for all finite networks, but only yields
an inequality:

Proposition 7.3 (Rank-Connection Principle 2). Let [Γ, i, j] : P → Q. Then

rankX([Γ, i, j]) ≤ 2m([Γ, i, j]).

Proof. By Proposition 7.2, we can write [Γ, i, j] = [Γ2, i2, j2] ◦ [Γ1, i1, j1] : P →
R→ Q. Then

rankX([Γ1, i1, j1]) ≤ dim(FR)2 = 2|R| = 2m([Γ, i, j]).

Applying Lemma 5.1 to X([Γ2, i2, j2]) ◦X([Γ1, i1, j1]) completes the proof.
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7.3 Semi-Elementary Factorizations

We will now give a geometric characterization of when the rank-connection prin-
ciple holds for all edge weights. Inspired by Proposition 7.1, we want to extend
the framework of elementary factorization to incorporate boundary wedge sums.
We define two types of “semi-elementary” networks which roughly correspond
to attaching components to the input side or to the output side by boundary
wedge-sums or disjoint unions.

Definition. A morphism [G, i, j] : P → Q is called type 3’ if every output
vertex is also an input and any two outputs are in separate components of the
graph. Type 4’ is defined the same way with inputs and outputs switched.
Note that type 3’ includes type 3 and type 4’ includes type 4.

Definition. A semi-elementary factorization of [G, i, j] : P → Q is a factor-
ization into morphisms of types 1, 2, 3’, 4’ such that the type 3’ morphisms come
before the type 4’. The width of a factorization into morphisms Pk → Pk+1 is
mink |Pk|.

Theorem 7.4 (Rank-Connection Principle 3). Let [G, i, j] : P → Q. The
following are equivalent:

1. [G, i, j] admits a semi-elementary factorization.

2. For any network Γ on G, we have rankX([Γ, i, j]) = 2m([Γ, i, j]).

Proof. If [G, i, j] admits a semi-elementary factorization, then a similar argu-
ment to Lemma 5.6 shows that the maximum size connection is the same as the
width of the factorization.

Next, note that if [Γ, i, j] : P → Q is type 3’, then X([Γ, i, j]) is an epimor-
phism in the category of linear relations. Indeed, we can achieve any potentials
on j(Q) using a harmonic function which is constant on each component of the
graph. Since j(Q) ⊂ i(P ), we can then achieve whatever output current we want
on j(Q) by cancelling it with the input current on P . Similarly, type 4’ mor-
phisms produce monomorphisms in the category of linear relations. Thus, the
same argument as in Lemma 5.5 shows that if [G, i, j] admits a semi-elementary
factorization, then rankX([Γ, i, j]) is twice the width.

These two steps complete (1) implies (2). Now we prove (2) implies (1).
Let F be an infinite field. Suppose [G, i, j] does not admit a semi-elementary
factorization. By Proposition 7.2, we can factorize [G, i, j] into [G1, i1, j1] : P →
R and [G2, i2, j2] : R → Q such that |R| = m([G, i, j]). Since [G, i, j] does not
admit a semi-elementary factorization, we know that either

• [G1, i1, j1] does not admit a factorization into types 1, 2, and 3’, or

• [G2, i2, j2] does not admit a factorization into types 1, 2, and 4’.

By symmetry, we can assume the first case holds. By Lemma 5.1, it suffices
to construct a network Γ1 on G1 such that rankX([Γ1, i1, j1]) < 2|R|. In fact,

78



it suffices to arrange that kerX([Γ1, i1, j1]) is nonzero, that is, there is nonzero
data on R compatible with zero data on P .

We now follow the same strategy as in Proposition 7.1. If G1 has any bound-
ary spikes, boundary edges, or isolated boundary vertices on the input side, or
if it is possible to “break off” components from the input side using boundary
wedge-sums or disjoint unions, then we first remove them. Precisely, we factor
[G1, i1, j1] as

[G∗, i∗, j∗] ◦ [G′
n, i

′
n, j

′
n] ◦ · · · ◦ [G

′
1, i

′
1, j

′
1],

where the [G′
k, i

′
k, j

′
k] are morphisms of type 1, type 2, or type 3’, such that it

is no longer possible to factor out any more elementary morphisms from the
beginning of [G∗, i∗, j∗]. Then it suffices to find edge weights on [G∗, i∗, j∗] such
that kerX([Γ∗, i∗, j∗]) 6= 0.

Let P ∗ and Q∗ be the inputs and outputs of [G∗, i∗, j∗] considered as literal
subsets of V (G∗). Assume there are no self-looping edges. Let S be the set
of edges which are contained in a cycle or a path from Q∗ to Q∗ with no self-
intersections. We define u to be zero on any component of G∗ \S that contains
a vertex of P ∗, and set it to a different nonzero value on each of the other
components.

Choose a collection of sets Sj which are cycles or paths from Q∗ to Q∗ such
that S =

⋃

j Sj ∪ Sj . As in Proposition 7.1, we can choose wj which is nonzero

on Sj ∪ Sj such that ∆wj
u = 0 on V \ Q∗. Since F is infinite, we can also

choose αj such that
∑

j αjwj is nonzero on all of S simultaneously. We then set
w = 1G∗\S +

∑

j αjwj . This ensures that u|P∗ = 0 and ∆u|V (G∗)\Q∗ = 0. Then
we can choose a compatible assignment of input and output currents which will
make the data on P ∗ identically zero.

It only remains to arrange that the data on Q∗ is not identically zero.
Case 1: Suppose Q∗ ⊂ P ∗. Then since [G∗, i∗, j∗] is not type 3’, there must

be some path connecting distinct vertices q1 ∈ Q∗ and q2 ∈ Q∗. We can assume
this path is one of the Sj ’s. Then ∆wj

u(q1) 6= 0 since nonzero current flows
along the path. Since F is infinite, we can choose the αj ’s such that ∆wu(q1) is
still nonzero. Then since the input current on q1 ∈ P ∗ must be zero, the output
current is nonzero.

Case 2: Suppose there exists q ∈ Q∗ \ P ∗. Then we claim that u(q) 6= 0.
It suffices to show that any vertex of P ∗ is in its own different component of
G∗ \ S, since u was only zero on the components with vertices of P ∗. We claim
that any edge with one endpoint in P ∗ must be contained in a cycle or in a path
from Q∗ to Q∗ and hence is in S. Choose e with e− = p ∈ P ∗ and e+ = r.

• Suppose p ∈ P ∗ ∩Q∗. Then because it is not possible to factor out a type
3’ network, we know that deleting p does not create any components that
are disconnected from Q∗. Thus, there is some path from r to Q∗ which
does not use p. This implies there is a path from p to a different vertex
in Q∗ which uses e.

• On the other hand, suppose that p ∈ P ∗ \Q∗. Since e is not a boundary
spike on the input side, there must be some other edge e′ with e′− = e−.
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If e′+ = e+, then they form a cycle already. Otherwise, let r′ = e′+. There
exist paths from r and r′ to Q∗. Joining these paths with e and e′ produces
a path from Q∗ to Q∗. If the path has any self-intersections, then we can
choose a subset containing e and e′ which is either a cycle or a path from
Q∗ to Q∗ with no self-intersections.

This completes case 2 and hence the proof.

7.4 Unique Complete Connections

The following theorem relates boundary data, connections, elementary factor-
izations, and scaffolds. It characterizes, for instance, existence and uniqueness
for mixed-data boundary value problems in terms of connections. Let us call a
connection from P to Q complete if it uses all the vertices in P and all the
vertices in Q.

Theorem 7.5. Let G be a finite ∂-graph with no self-loops. Assume ∂V = P∪Q
with |P | = |Q| = n. Let P ′ = P \Q and Q′ = Q \ P . Let [G, i, j] : P → Q be
the corresponding IO-graph morphism. The following are equivalent:

a. There is exactly one complete connection from P to Q and this connection
uses all the interior vertices.

b. There is a scaffold S on G such that V \ S− = P and V \ S+ = Q.

c. [G, i, j] admits an elementary factorization into type 1 and type 2 networks.

d. rankX([Γ, i, j]) = 2n for all edge weights and G has no nontrivial harmonic
subgraphs with one boundary vertex.

e. For any v ∈ FP and w ∈ FP ′

, there is a unique harmonic function u with
u|P = v and ∆u|P ′ = w and every interior vertex has degree at least 2.

Proof. (b) and (c) are equivalent by Proposition 5.8.
(e) =⇒ (d). Note that (e) implies rankX([Γ, i, j]) = 2n. Hence, G has a

semi-elementary factorization. But (e) also implies that a harmonic function is
uniquely determined by its boundary data, and hence G is completely reducible.
This implies that any harmonic subgraph is also completely reducible. The only
completely reducible ∂-graphs with one boundary vertex are trees (graphs with
no cycles). Any nontrivial tree would have to have an interior vertex with degree
1, which contradicts our assumption. Thus, (d) holds.

(d) =⇒ (c). By Theorem 7.4, [G, i, j] admits a semi-elementary factoriza-
tion. Since rankX([Γ, i, j]) = 2n for any edge weights, we know the maximum
size connection is n. Thus, in the factorization every type 3’ or type 4’ IO-graph
must have n inputs and n outputs. This implies that any component of the type
3’ or type 4’ morphism must be a harmonic subgraph of G with one boundary
vertex. Thus, it is trivial, so in fact, there are no nontrivial type 3’ or type 4’
morphisms, so (c) holds.
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(c) =⇒ (e). We know that rankX([Γ, i, j]) = 2n by Theorem 7.4, we
know that for any v ∈ FP and w ∈ FP ′

, there exists a harmonic function u with
u|P = v and ∆u|P ′ = w, and the boundary data on Q is uniquely determined by
the boundary data on P . But G must be layerable, hence completely reducible,
so any harmonic function is uniquely determined by its boundary data. Thus,
the first condition of (e) holds. For the second condition, note that every interior
vertex must have degree at least 2 since it is contained in a path from P to Q
along the edges in the type 1 networks.

(c) =⇒ (a). This follows from a straightforward induction on the number
of type 1 and type 2 factors.

(a) =⇒ (b). Let S be the set of oriented edges in the paths of the unique
complete connection. Since it is assumed to use all the interior vertices, we have
V \ S− = P and V \ S+ = Q. Thus, there are no non-input or non-output
interior edges. The graph is also finite, so the only scaffold condition left to
check is that there is no increasing path which forms a cycle. The idea is that
if we had such a loop, then we could construct a different connection between
P and Q as shown in Figure 14.

To make this rigorous, consider the increasing loops with the minimal num-
ber of oriented edges not in S, and from those, choose one with the minimal
number of oriented edges overall. Let α1, . . . , αn be the paths in the connection.
Then observe:

• Any loop must contain some edges not in S ∪ S, since otherwise it would
have to be contained in one of the αm’s, which is impossible.

• In the chosen loop the oriented edges must be distinct, since otherwise we
could find a smaller loop.

• Call our loop e1, e2, . . . eK . Suppose there are some i < j < k where ei
and ek are edges in S in the same path αm, and ej is not in αm and that
ei comes before ek in the path αm. If we replace the segment ei+1 . . . ek−1

of the loop with the segment of αm from ei to ek, then we get a loop
with fewer edges not in S ∪ S. Thus, this cannot happen in our chosen
loop. The same reasoning holds for any cyclic permutation of the indices
1, . . . ,K. Thus, the loop must intersect each path in an “interval”; that is,
Im = {k : ek ∈ αm} is of the form {1, . . . , k} after some cyclic permutation
of the indices.

Hence, our loop has the following form: It moves forward along some path of
the connection (which we will call α1 after reindexing), then crosses by an edge
not in S ∪ S to some other path α2, and it continues in the same way until it
crosses from some αℓ back to α1. The paths α1,. . . ,αℓ are distinct. It follows
that the vertices in our loop must be distinct and the loop looks essentially
like the one portrayed in the Figure except that it might not visit every path
of the connection. If the remaining paths are αℓ+1, . . . , αn, then we construct
our new complete connection as follows: α′

j = αj for j = ℓ + 1, . . . , n. For
j = 1, . . . , ℓ, α′

j follows αj until it meets an endpoint of a plank from the loop,
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Figure 14: Proof of Theorem 7.5: (a) =⇒ (b)
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then it crosses along the loop over to αj−1, and it continues along αj−1 until
it reaches Q (indices written mod ℓ). This contradicts the uniqueness of the
original complete connection, so in fact, we have a scaffold.

The following much weaker corollary is surprising in itself:

Corollary 7.6. Suppose that P ′, Q′ ⊂ ∂V (G). Suppose that there is exactly
one complete connection from P ′ to Q′ and that it uses all the interior vertices.
Then G is layerable.

8 Symplectic Properties

The relationship between electrical networks and symplectic forms is well-known,
especially among physicists. The results of this section draw on [1] and [20]
(see also [24]). We characterize the possible subspaces of Fn × Fn that arise
as the boundary behavior of a networks, and the linear relations that arise as
X([Γ, i, j]). This is analogous to the characterization of response matrices as
being symmetric with row sums zero, but slightly harder to prove.

We also characterize the electrical linear group defined in §5.5. We discuss
the star-mesh transformation over arbitrary fields and use it to show that any
Lagrangian subspace of Fn × Fn can be represented as the boundary behavior
of a circular planar network with nonzero edge weights in F, for a field F 6= F2.

8.1 Symplectic Vector Spaces and Relations

We recall the following definitions from the theory of symplectic vector spaces.
A bilinear form ω on a vector space V is called symplectic if it is non-

degenerate, that is,

ω(x, y) = 0 for all y =⇒ x = 0

and totally isotropic, that is,

ω(x, x) = 0 for all x.

A symplectic vector space is a vector space V equipped with a symplectic
form. The standard symplectic form on Fn × Fn is

ω((x1, x2), (y1, y2)) = 〈x2, y1〉 − 〈x1, y2〉 =
(

xT1 xT2
)

(

0 −1
1 0

)(

y1
y2

)

,

where 〈−,−〉 is the “inner product” 〈x, y〉 =
∑

j xjyj . We will use the same

symplectic form on FP ×FP for P a finite set. It turns out that any symplectic
form can be written in this way after a change of basis and hence a symplectic
vector space must be even-dimensional (reference).

If V is a symplectic vector space of dimension 2n, then we say a subspace
U is isotropic if ω|U×U = 0 and Lagrangian if it is isotropic with dimension
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n. A linear relation T : V  W is called symplectic if ωV (v, v
′) = ωW (w,w′)

whenever (v, w) ∈ T and (v′, w′) ∈ T . Equivalently, T is symplectic if it is an
isotropic subspace of V ×W with respect to the symplectic form

ω((v, w), (v′, w′)) = ωV (v, v
′)− ω(w,w′).

In particular, a linear transformation T : V →W is symplectic if and only if it
preserves the symplectic form. We say a linear relation T is Lagrangian if it
is a Lagrangian subspace of V ×W with respect to the symplectic form given
above.

8.2 Symplectic Characterization of Boundary Behavior

Our goal in this section is to prove

Theorem 8.1. Let T : (Fm)2  (Fn)2. Then T = X([Γ, i, j]) for some IO-
network morphism [Γ, i, j] : [m] → [n] if and only if T is Lagrangian and contains
the vector ((1, . . . , 1, 0, . . . , 0), (1, . . . , 1, 0, . . . , 0)).

The forward direction of this theorem is proved in [1] modulo changes of
notation. However, the converse direction, which requires us to construct an
electrical network for any Lagrangian relation containing the constant-potential
vector, will be proved using layer-stripping and the electrical linear group. As
we shall see, the Lagrangian property has to do with the fact that the Laplacian
is a symmetric matrix, and the property concerning (1, . . . , 1, 0, . . . , 0) has to do
with the fact that constant functions are harmonic.

This theorem contains the following proposition as a special case when n = 0,
which characterizes the electrical Grassmannian EGm:

Proposition 8.2. Let Λ ⊂ (Fm)2. Then Λ is the boundary behavior of some
network with ∂V = [m] if and only if Λ is a Lagrangian subspace and contains
(1, . . . , 1, 0, . . . , 0).

Another important special case is when m = n and T is an invertible trans-
formation:

Proposition 8.3. Let T be an invertible linear transformation T : (Fn)2 →
(Fn)2. Then T = X([Γ, i, j]) for some [Γ, i, j] : [n] → [n] if and only if T is
symplectic and preserves the vector (1, . . . , 1, 0, . . . , 0).

Before presenting the crux of the proof of Theorem 8.1, we first reduce to
the special case stated in Proposition 8.2 by a tedious computation:

Lemma 8.4. Theorem 8.1 foillows from Proposition 8.2. More precisely, each
implication of Theorem 8.1 follows from the corresponding implication in Propo-
sition 8.2.
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Proof. Suppose that T = X([Γ, i, j]) for [Γ, i, j] : [m] → [n]. Set

∂V = i([m]) ∪ j([n])

P = i([m]) \ j([n])

Q = j([n]) \ i([m])

R = i([m]) ∩ j([n]).

Suppose that (x, y) and (x′, y′) in X([Γ, i, j]) correspond to harmonic functions
with boundary data (φ, ψ) and (φ′, ψ′) in Λ(Γ). Assuming that Λ(Γ) is La-
grangian, we have

〈φ′, ψ〉 − 〈φ, ψ′〉 = 0.

Now consider

ω((x, y), (x′, y′)) = ω(x, x′)− ω(y, y′)

= 〈x′1, x2〉 − 〈x1, x
′
2〉 − 〈y′1, y2〉+ 〈y1, y

′
2〉

We split the computation into the sets P , Q, and R to obtain

〈x′1|P , x2|P 〉+ 〈x′1|R, x2|R〉 − 〈x1|P , x
′
2|P 〉 − 〈x1|R, x

′
2|R〉

− 〈y′1|Q, y2|Q〉 − 〈y′1|R, y2|R〉+ 〈y1|Q, y
′
2|Q〉+ 〈y1|R, y

′
2|R〉 ,

where by a slight abuse of notation, we have identified P , Q, and R with subsets
of [m] and [n]. Recall that by definition of X , we have

x1|R = y1|R = φ|R y2|R − x2|R = ψ|R

as well as

x1|P = φ|P , y1|Q = φ|Q, x2|P = −ψ|P , y2|Q = ψQ.

The same holds for x′, y′, φ′, ψ′. Substituting this shows that

ω((x, y), (x′, y′)) = −〈φ′, ψ〉+ 〈φ, ψ′〉 = 0.

Thus, X([Γ, i, j]) is isotropic.
To compute the dimension of X([Γ, i, j]), note that (x, y) 7→ (φ, ψ) is a

surjective map X([Γ, i, j]) → Λ. The kernel consists of (x, y) such that x1 =
0 = y1, x2|P = 0, y2|Q = 0, and x2|R = y2|R. Thus, the kernel has dimension
R. Therefore, using the assumption that Λ is Lagrangian

dimX([Γ, i, j]) = |R|+ dimΛ = |R|+ |∂V | = |R|+ |P |+ |Q|+ |R| = m+ n,

and hence X has the correct dimension.
Finally, because (1, . . . , 1, 0, . . . , 0) is in Λ, we knowX contains (1, . . . , 1, 0, . . . , 0)×

(1, . . . , 1, 0, . . . , 0).
To prove the other implication of Theorem 8.1, suppose that T is Lagrangian

and contains (1, . . . , 1, 0, . . . , 0)× (1, . . . , 1, 0, . . . , 0). Define Λ ⊂ (Fm+n)2 by

Λ = {((x1, y1), (x2,−y2)) : (x, y) ∈ T }.
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Then Λ is Lagrangian with respect to the standard symplectic form on (Fm+n)2

and contains (1, . . . , 1, 0, . . . , 0). We assume that Λ can be represented as the
boundary behavior of some electrical network Γ with ∂V = [m + n]. Then
the same computation as before (with R = ∅) shows that T is X(Γ) with the
obvious labelling of the boundary nodes.

Now that that is out of the way, we prove the forward implication of Propo-
sition 8.2:

Lemma 8.5. If Λ ⊂ (Fn)2 is the boundary behavior of a network with ∂V = [n],
then

a, Λ is isotropic,

b, dimΛ = n.

c, Λ contains (1, . . . , 1, 0, . . . , 0).

Proof. Let Γ be a network with ∂V = [n].
To prove (a), recall that the linear map ∆ : FV → FV is given by the matrix

∆p,q =

{
∑

e:e+=p w(e), p = q

−
∑

e:e+=p
e−=q

w(e),

or equivalently

∆p,q =

{
∑

e:e−=p w(e), p = q

−
∑

e:e−=p
e+=q

w(e).

The matrix ∆ is symmetric, and hence

〈u1,∆u2〉 = 〈u2,∆u1〉

for any u1, u2 ∈ FV . If u1 and u2 are harmonic on V ◦, then

〈u1|∂V ,∆u2|∂V 〉 = 〈u1,∆u2〉 = 〈u2,∆u1〉 = 〈u2|∂V ,∆u1|∂V 〉 .

Since Λ consists of all pairs
〈

u|∂V ,∆u||∂V |

〉

for harmonic u, this implies that Λ
is isotropic.

To prove (b), let U be the space of harmonic functions on Γ. Let Φ : U → Λ
be given by u 7→ (u|∂V ,∆u|∂V ). Note that Φ is surjective by definition of Λ. Let
∆V ◦,V be the submatrix of the Laplacian consisting of the rows corresponding
to interior vertices. Then

U = ker∆V ◦,V .

On the other hand, note that

kerΦ = {u ∈ U : u|∂V = 0,∆u|∂V = 0}

∼= {w ∈ F
V ◦

: ∆V,V ◦w = 0} = ker∆V,V ◦ ,
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where ∆V,V ◦ is the submatrix with columns indexed by the interior vertices. By
symmetry, ∆T

V,V ◦ = ∆V ◦,V . Therefore, when we apply the rank-nullity theorem
to Φ and ∆V,V ◦ and ∆V ◦,V , we obtain

dimΛ = dimU − dimkerΦ

= dimker∆V ◦,V − dimker∆V,V ◦

= (|V | − rank∆V ◦,V )− (|V ◦| − rank∆V,V ◦)

= |V | − |V ◦| = |∂V | = n.

This completes (b), and (c) is trivial since the constant function u ≡ 1 is har-
monic.

The last lemma was straightforward for the most part. The only subtlety is
that sometimes dimU > dimΛ because there can be harmonic functions with
zero potential and zero current on the boundary, as remarked in §7.1.

Now we consider the converse direction of Proposition 8.2, showing that any
Lagrangian subspace of F2n containing (1, . . . , 1, 0, . . . , 0) can be realized as the
boundary behavior of a network. The first step is purely algebraic:

Lemma 8.6. Suppose V is a Lagrangian subspace of F2n. For S ⊂ [2n], let
πS : F2n → FS be the coordinate projection. Then there is a partition of [n] into
two sets S and T such that

• πS(x) = 0 implies π[n](x) = 0 for x ∈ V .

• πS∪(n+T ) defines an isomorphism V → FS∪(n+T ).

In electrical language, the lemma says the following:

Corollary 8.7. If Γ is a linear network over F, then there is a partition of ∂V
into two sets P and Q such that potentials on P and net currents on Q uniquely
determine the other boundary data.

Proof of Lemma 8.6. LetW = {w ∈ Fn : (0, w) ∈ V }. If (x, y) ∈ V and w ∈W ,
then

0 = ω((x, y), (0, w)) = −〈x,w〉 ,

and hence

W ⊂ π[n](V )⊥ = {w ∈ F
n : 〈w, x〉 = 0 for x ∈ π[n](V )}.

However, note thatW ∼= ker(π[n]|V ), hence by the rank-nullity theorem dimW+
dimπ[n](V ) = dimV = n. We also know by the rank-nullity theorem that

dimπ[n](V ) + dimπ[n](V )⊥ = n for any field. Therefore, W = π[n](V )⊥.
From basic linear algebra, we can choose S ⊂ [n] such that πS : Fn → FS

restricts to an isomorphism π[n](V ) → FS . Let T = [n]\S. SinceW = π[n](V )⊥,
this implies that πT : Fn → FT defines an isomorphismW → FT (details7). This

7π[n](V )∩(FT ×0S) = 0 in Fn, which implies π[n](V )+(FT ×0S) = Fn since dim π[n](V ) =

|S| = n− |T |. Hence taking orthogonal complements π[n](V )⊥ ∩ (FS × 0T ) = 0
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implies that πS∪(n+T ) : F
2n → FS∪(n+T ) defines an isomorphism V → FS∪(n+T ).

One way to see this is to by applying the five-lemma to the diagram

0 W V π[n](W ) 0

0 FT FS∪(n+T ) FS 0.

Lemma 8.8. Let Λ be a Lagrangian subspace of F2n containing (1, . . . , 1, 0, . . . , 0).
Then Λ is the boundary behavior of some linear network over F.

Proof. Choose a partition of [n] into two sets S and T as in the previous lemma.
By reindexing the coordinates, assume that S = [ℓ] for some ℓ ≤ n. Let m =
n− ℓ. Then we can choose a basis x1, . . . , xn of Λ such that





| . . . |
x1 . . . xn
| . . . |



 is of the form









I 0
∗ 0
∗ ∗
0 I









,

where the sizes of the blocks are








ℓ× ℓ ℓ×m
m× ℓ m×m
ℓ× ℓ ℓ×m
m× ℓ m×m









.

Then define Λ′ := Ξℓ+1(1) . . .Ξn(1)(Λ) and note that

Λ′ = im

(

I Eℓ+1,ℓ+1

0 I

)

. . .

(

I En,n

0 I

)









I 0
∗ 0
∗ ∗
0 I









= im









I 0
∗ I
∗ ∗
0 I









= im









I 0
0 I
∗ ∗
∗ I









,

which can be written as

V ′ = im

(

I
L

)

with n× n blocks.
Since we have already proved the forward direction of Proposition 8.2 and

hence Theorem 8.1, we know Ξj(t) is symplectic and fixes (1, . . . , 1, 0, . . . , 0).
This can also be verified by direct computation. In any case, Λ′ is a Lagrangian
subspace that contains (1, . . . , 1, 0, . . . , 0). This implies L is symmetric and has
row sums zero. Thus, L has the form

L =
∑

i<j

−Li,j(Ei,i − Ei,j − Ej,i + Ej,j),
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and this implies that
(

I
L

)

=
∏

i<j

(

I 0
−Li,j(Ei,i − Ei,j − Ej,i + Ej,j) I

)(

I
0

)

,

or in other words,

Λ′ =
∏

i<j

Ξi,j(−Li,j)(F
n × 0n),

so that

Λ =

n
∏

k=ℓ+1

Ξk(−1)
∏

i<j

Ξi,j(Li,j)(F
n × 0).

Using the ideas of §5.5, Λ is the boundary behavior of the network obtained by
taking n isolated boundary vertices, adjoining boundary edges of conductances
Li,j between vertices i and j whenever Li,j 6= 0, and then adjoining boundary
spikes of conductance −1 to the vertices ℓ+ 1, . . . , n.

This completes the proof of Proposition 8.2 and hence Theorem 8.1. The
proof of the last lemma leads to the following corollaries:

Corollary 8.9. Any Λ ∈ EGn(F) can be expressed as the boundary behavior of
a layerable network with at most 1

2n(n− 1) + 1 edges.

Proof. In the previous proof, the number of boundary edges added was the
number of nonzero entries of Λ above the diagonal. Since

Λ =

(

∗ ∗
∗ I

)

,

with the last block being m × m, the number of nonzero entries above the
diagonal is at most 1

2 ℓ(ℓ − 1) + ℓm. The number of boundary spikes adjoined
was m, so recalling ℓ+m = n, the total number of edges is at most

m+
1

2
(n−m)(n−m−1)+(n−m)m=

1

2
n(n−1)−

1

2
m(m−3) ≤

1

2
n(n−1)+1.

Remark. In the simple case when the Dirichlet-to-Neumann map exists, one
can represent Λ by a network on a complete graph. Thus, the number of edges
needed generically should be 1

2n(n− 1). The corollary says that even in degen-
erate cases, we can get away with at most one more edge.

Corollary 8.10. Let Y = {(i, j) ∈ [n] × [n] : i < j}. For S ⊂ n, define
̥S : FY → EGn(F) by

̥S((ti,j)) =
∏

k∈S

Ξk(−1)
∏

i<j

Ξi,j(ti,j)(F
n × 0n).

Then the images US = ̥S(F
Y ) cover EGn(F) and the transition maps ̥

−1
S ◦

̥S′ are rational functions. In particular, for F = R or C, EGn is a smooth
real/complex manifold of dimension n(n− 1)/2.
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Proof. The fact that the US ’s cover EGn follows from the previous proofs, and
the transition functions are rational because they can be computed in terms of
multiplying and inverting matrices.

Remark. It is perhaps not surprising that EGn is a smooth manifold given by
these symplectic equations for real or complex edge weights. What is remarkable
is that the same characterization works for any field, even fields which have no
nice topological or algebraic properties. It seems that this could only be proved
by an elementary and explicit argument such as the one given here.

8.3 Characterization of the Electrical Linear Group

Proposition 8.3 showed that an invertible matrix arises as X([Γ, i, j]) for some
network if and only if it is symplectic and preserves (1, . . . , 1, 0, . . . , 0). In partic-
ular, the group ELn generated by matrices of the form Ξk and Ξj,k is contained
in the group of symplectic matrices which fix (1, . . . , 1, 0, . . . , 0). However, we
will show in this section that in fact ELn is equal to this group. The proof once
again is elementary, but a bit tedious. We will construct explicit factorizations
in terms of the generators Ξj and Ξi,j . The argument works for any field other
than F2, the field with two elements.

For brevity, we write

c0 = (1, . . . , 1, 0, . . . , 0)

and

Ω =

(

0 −1
1 0

)

.

We recall that A is symplectic if and only if ATΩA = Ω.

Theorem 8.11. Suppose F 6= F2. If A is symplectic and Ac0 = c0, then
A ∈ ELn(F).

Proof. We proceed by induction on n. For n = 1, any symplectic matrix A that
fixes c0 must be of the form

A =

(

1 t
0 1

)

= Ξ1(t).

For the induction step, it suffices to find A1, . . . , Aℓ ∈ ELn(F) such that

A1 . . . AℓA =









∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1









,

where each “∗” is (n− 1)× (n− 1). Heuristically, A1 . . . AℓA is the behavior of
IO-network where the nth input vertex equals the nth output, and this vertex
is isolated; we are thus reducing to the case of networks with n− 1 inputs and
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outputs. If we can find such matrices A1, . . .Aℓ, then the matrix A′ formed by
deleting the nth and 2nth row and column of A1 . . . AℓA must be symplectic
and fix c0 ∈ F2(n−1). So by the induction hypothesis A′ ∈ ELn−1(F), which
implies A ∈ ELn(F).

Our first goal is to findA1, . . . , Am generators ofELn(F) such that Am . . . A1A
fixes e2n (the last column is e2n). Heuristically, Am . . . A1A corresponds to an
IO-network where the nth input vertex is the same as the nth output, but is
not necessarily an isolated vertex. Let x = Ae2n; it suffices to show that by
multiplying by elements of ELn we can map x to e2n. There are several cases:

1. Suppose that the “potential” xn 6= 0 and that the “net currents” xn+1, . . . , x2n−1 6=
0. Let

y =

(

n−1
∏

k=1

Ξk(−xk/xn+k)

)

x.

Then y1, . . . , yn−1 = 0, yn = xn 6= 0. Next, let

z =

(

n−1
∏

k=1

Ξk,n(−yn+k/yn)

)

y.

Then z1, . . . , zn−1 = 0 and zn+1, . . . , z2n−1 = 0. But ω(c0, z) = ω(c0, x) =
1, so z2n = 1. Thus, multiplying by Ξn(−zn) will make the nth entry zero,
yielding e2n.

2. If xn = 0 but xn+1, . . . , x2n−1, x2n 6= 0, then we can multiply by Ξn(1) to
make xn 6= 0, then proceed to Case 1.

3. Suppose that some of the “currents” xn+1, . . . , xn+k are zero, but the
“potentials” x1, . . . , xn are not all equal. For each j with xn+j = 0, we
can find a k with xj 6= xk. Then multiply by some Ξj,k(t) to make it
nonzero. In order to guarantee that the “net current” at k is still nonzero,
we choose t 6= 0 and t 6= −xn+k/(xk − xj). This is possible because F has
at least three elements. Once we have done this for every j, proceed to
Case 2.

4. Suppose that x1, . . . , xn are all equal to some constant t. Since the vec-
tor c0 is fixed by A and all matrices in ELn, it is not possible that
xn+1, . . . , x2n are all zero. Hence, there is some xn+k 6= 0, and we can
multiply by some Ξk(1) to make the new xk 6= t. Then proceed to Case 3.

Thus, if we let A1, . . . , Am be the matrices used in the above operations and
B = Am . . . A1A, then Be2n = e2n.

Our next task is find Am+1, . . . , Aℓ such that Aℓ . . . Am+1B fixes both e2n
and en. Let x = Ben, and consider the following cases:

1. Suppose that the “net currents” xn+1, . . . , x2n are all nonzero. Observe

xn = ω(e2n, x) = ω(Be2n, Ben) = ω(e2n, en) = 1.
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Let

y =

(

n−1
∏

k=1

Ξk(xk/xn+k)

)

x,

so that y1, . . . , yn−1 = 0 and yn = 1. Then let

z =

(

n−1
∏

k=1

Ξk,n(−yn+k)

)

y.

Then z1 = y1, . . . , zn = yn, and zn+1, . . . , z2n−1 = 0. But ω(c0, z) =
ω(c0, en) = 0, so z2n = 0 as well. Hence, z = en.

2. If some of “currents” xn+1, . . . , xn+k are zero, but the “potentials” x1, . . . , xn
are not all equal, we can multiply by Ξj,k(t)’s to make all the “currents”
nonzero (as in the previous part of the proof). Then proceed to Case 1.

3. Suppose that x1, . . . , xn are all equal to 1. One of the “net currents” must
be nonzero; so in fact, at least two of them are nonzero. Hence, we can
multiply by Ξk(1) for some k 6= n to make the new xk 6= 1. Then proceed
to Case 2.

In all these cases, we never multiplied by a Ξn(t) matrix. Thus, if we let Am+1,
. . . , Aℓ be the matrices used in the above operations, then each one fixes e2n,
and thus

C = Aℓ . . . Am+1B = Aℓ . . . A1A

also fixes e2n, besides fixing en.
Because CTΩC = Ω, we know CT = ΩC−1Ω−1. Since C−1 fixes en and e2n,

we know CT fixes Ωen = e2n and Ωe2n = −en. Thus, the nth and 2nth rows
of C are en and e2n, and so are the nth and 2nth columns. Thus, C has the
desired form and the induction step is complete.

Remark. The theorem fails in the case of F2. For instance, for n = 2,









1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1









6∈ EL2(F2)

despite being symplectic and fixing c0. An easy way to see this is to compute the
orbit of e4 under the action of EL2(F2) on F4

2; the orbit has only four elements
and does not contain e1 + e2 + e4, which is the last column of the matrix of
above.8

8I have not worked out precisely what happens for F2, but might do it later. This would
be a good problem for REU students.
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As with EGn(F), the construction in Theorem 8.11 provides parametriza-
tions of ELn(F) for which the transition functions are rational. For a given A,
we parametrize a “neighborhood” using the parameters for Case 1 of each step,
keeping the parameters in the other steps fixed. From this, we work out that
the “dimension” of ELn(F) is n(2n− 1), which is the same as for EG2n(F).

The action of ELn(F) on EGn(F) is transitive; indeed, the proof of Lemma
8.8 showed that every element of EGn(F) is in the orbit of Fn × 0. However,
the action is not faithful: There exist nontrivial elements of ELn which fix
every element of EGn. These elements are the kernel of the homomorphism Υ
from ELn to the group of bijections EGn → EGn given by Ξ 7→ FΞ, where
FΞ : EGn → EGn : L 7→ Ξ(L). The reader can verify that (for F 6= F2) the
kernel consists of matrices of the form

(

I + 1αT 1βT + β1T

0 I − α1T

)

,

where 1 is the vector with every entry 1 and α, β ∈ Rn with
∑n

k=1 αk = 0.

8.4 Network Planarization

Given a network, we want to find a circular planar network with the same bound-
ary behavior. This has long been a goal of electrical engineers, who desired to
print out flat circuit components with certain behavior. For instance, [27] sug-
gests using the star-mesh transformation to find planar equivalents. Thanks to
[5] Theorem 4 (and related results), we now know exactly what response ma-
trices can occur for circular planar networks with positive linear conductances,
which ought to be the end of the matter as far as positive edge weights are
concerned. Many non-planar networks with positive real edge weights cannot
have the same boundary behavior as a circular planar network with positive
edge weights.

However, if we allow negative edge weights, it is much easier to planarize a
network. The REU paper [25] conjectured that any real response matrix could
be represented by a circular planar network with signed real conductances, and
[13] and [16] suggest using the star-mesh transformation with signed conduc-
tances. This turns out to be true for all fields other F2, as we will prove in
Theorem 8.15 below.

We will use the electrical linear group and the star-mesh transformation. We
first review the star-mesh transformation described in [23] and [14], generalizing
to arbitrary fields. The n-star ⋆n is the ∂-graph with n boundary vertices
{1, . . . , n} and one interior vertex 0, and edges from the interior vertex to each of
the boundary vertices. The n-meshMn is the graph with n boundary vertices,
no interior vertices, and edges between any two boundary vertices.

The star-mesh transformation replaces a network on ⋆n with a network
on Mn with the same boundary behavior and vice versa (if possible). Using
the principle of subnetwork splicing described in 3.2, we can replace a star
subnetwork in a larger network with a mesh subnetwork without affecting the
boundary behavior.
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The star-mesh transformation in the special case n = 4 produces relations
between the generators of ELn. This reduces our original set of generators of
ELn to a smaller set of generators corresponding to “circular planar” operations
of adjoining boundary spikes and boundary edges between boundary vertices
with adjacent indices (Lemma 8.13 and Proposition 8.14). We already know
that any boundary behavior can be represented by a layerable network, and
Proposition 8.14 allows us to replace any operation of adjoining a boundary
edge with an equivalent operation that preserves network planarity and thus to
prove Theorem 8.15.

Lemma 8.12 (adaptation of [23]). Let n ≥ 3.

• Consider a network Γ on ⋆n whose jth edge weight is aj. Then Γ has the
same boundary behavior as a network on Mn if and only if σ =

∑n

j=1 aj 6=
0. In this case, the edge weights on Mn are given by bi,j = aiaj/σ.

• Consider a network Γ′ on Mn with edge weight bi,j. Then Γ′ has the same
boundary behavior as a a network on ⋆n if and only if bi,jbk,ℓ = bi,kbj,ℓ
for distinct i, j, k, ℓ and

∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

6= 0 for some i, k, ℓ.

In this case, the edge weights on the star are given by

ai =
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

,

which is independent of the choice of k and ℓ.

Proof. Observe that for any edge weights on Mn, the Dirichlet problem has a
unique solution, that is, there is a unique harmonic function that achieves any
given boundary potentials. If Γ is a network on an n-star and σ =

∑

j aj = 0,
then any harmonic function u must satisfy

∑

j aju(j) = 0. Hence, the Dirichlet
problem does not always have a solution. Therefore, the star cannot have the
same boundary behavior as a network where the Dirichlet problem always has
some solution.

On the other hand, if σ 6= 0, then the Dirichlet problem has a unique solution
given by u(0) =

∑n

j=1 aju(j)/σ. Moreover, if we set bi,j = aiaj/σ, then ∆u(j) =
aj(u(j)− u(0)) =

∑

i bi,j(u(j)− u(i)). Thus, the star has the same behavior as
a network on Mn, and the bi,j ’s are also uniquely determined.

To prove the second claim, suppose Γ′ is a network on Mn. If the network
has the same boundary behavior as some n-star, then the previous argument
shows that bi,j = aiaj/σ. Thus, for distinct i, j, k, ℓ,

bi,jbk,ℓ =
aiajakaℓ

σ2
= bi,kbj,ℓ.
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Also,
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

=
∑

j 6=i

aiaj
σ

+
aiakaiaℓ
σakaℓ

= ai 6= 0.

Suppose conversely that Γ′ satisfies bi,jbk,ℓ = bi,kbj,ℓ for distinct i, j, k, ℓ and

∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

6= 0 for some i, k, ℓ.

Fix i and choose distinct k, ℓ 6= i, and let

ai =
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

.

The “quadrilateral rule” bi,jbk,ℓ = bi,kbj,ℓ guarantees that the right hand side
is independent of k and ℓ. By assumption at least one of the ai’s is nonzero.
By extending F to a larger field if necessary, we can assume that there exists ci
with

c2i = bi,kbi,ℓ/bk,ℓ for distinct k, ℓ 6= i,

and again this is independent of k, ℓ. Then

c2i c
2
j =

bi,kbi,j
bj,k

bj,kbi,j
bi,k

= b2i,j

so that cicj = ±bi,j. By choosing c1 first and then modifying cj for j 6= 1 if
necessary, we can guarantee c1cj = b1,j for j 6= 1. Then for i 6= 1 we have

cicj = b1,ib1,j/c
2
1 = bi,j

as well. Then

ai =
∑

j 6=i

bi,j +
bi,kbi,ℓ
bk,ℓ

=
∑

j 6=i

cicj + c2i = ci

n
∑

j=1

cj .

Since at least one ai is nonzero, we have
∑n

j=1 cj 6= 0; hence, all the ai’s are
nonzero. Moreover,

σ =

n
∑

i=1

ci

n
∑

j=1

cj =

(

n
∑

i=1

ci

)2

6= 0.

The network Γ′ is equivalent to the network on the star because

aiaj
σ

=
(ci
∑n

k=1 ck) (cj
∑n

k=1 ck)

(
∑n

k=1 ck)
2 = cicj = bi,j.

Lemma 8.13. Let F 6= F2. For any distinct indices i, j, k, Ξi,k(t) can be ex-
pressed in terms of Ξi,j’s, Ξj’s, and Ξj,k’s.
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Proof. For simplicity in drawing pictures, we will assume i = 1, j = 2, and
k = 3. We can also assume n = 3, since for general n, one simply has to add
more rows/columns to all the matrices, filling the new spaces with ones on the
diagonal and zeroes elsewhere (this corresponds to adding isolated input/output
boundary vertices to an IO-network for the indices larger than 3).

We begin with an IO-network representing Ξ1,3(a) for given a 6= 0. Here the
inputs are red and the outputs green, and the inputs/outputs 1, 2, and 3 are in
order from top to bottom:

a

For some parameter b to be chosen later, add in a series with conductances b
and −b, representing Ξ2(1/b) and Ξ2(−1/b) = Ξ2(1/b)

−1:

−b b
a

Next, add some cancelling parallel edges. Two of them, for instance, correspond
to inserting Ξ1,2(a) and its inverse Ξ1,2(−a) into our factorization in ELn. In
the picture, the crossing edges in the middle are not labelled; their weights are
shown in the previous picture.

−b b

b

a

a

−b

−b

−a

−a

We want to choose b so that the 4-mesh subnetwork in the middle will be
equivalent to a star. Examining the formulas in Lemma 8.12, we choose b 6= 0
so that a+ 3b 6= 0, which is possible because F has at least three elements. Set

c = 3a+ a2/b = (a+ 3b)(a/b) 6= 0, d = a+ 3b,

and then the 4-mesh is equivalent to a 4-star with conductances c, d, d, d, and
hence our network becomes
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−b
c

d
d

d

−b

−b

−a

−a

This represents Ξ1,3(a) as the product of9

Ξ2(−1/b)

Ξ1,2(−b)Ξ2,3(−b)

Ξ2(1/c)

Ξ1,2(d)Ξ2,3(d)

Ξ2(1/d)

Ξ1,2(−a)Ξ2,3(−a),

which completes the proof.

Proposition 8.14. Let F 6= F2. The electrical linear group is generated by
Ξj(t) for j = 1, . . . , n and Ξj,j+1(t) for j = 1, . . . , n− 1 and t ∈ F \ {0}.

Proof. For k > j, we want to show that Ξj,k(t) can be expressed in terms of
Ξj(t) for j = 1, . . . , n and Ξj,j+1(t) for j = 1, . . . , n − 1. By induction on
k − j, it suffices to show Ξj,k(t) can be expressed in terms of Ξk−1’s, Ξj,k−1’s
and Ξk−1,k’s, which follows from the last lemma.

Theorem 8.15. For F 6= F2, every element of EGn(F) can be represented by a
layerable circular planar network.

Recall that we defined ELn(F) using Ξj(t) together with Ξj,k(t) for all j 6= k.
The smaller set of generators in Proposition 8.14 more closely resembles [20]’s
definition of the electrical linear group. If we view ELn(F) as acting on EGn(F)
by adjoining boundary spikes and boundary edges to networks, the theorem says
that it suffices to consider adjoining boundary edges between consecutively-
indexed boundary vertices, rather than between any pair of boundary vertices.

Proof of Theorem 8.15. By Corollary 8.9, any element of EGn(F) can be rep-
resented by a layerable network, and hence has the form

A(Fn × 0n) for some A ∈ ELn(F).

But A can be represented as a product of the generators in Proposition 8.14,
which implies that A(Fn × 0n) is the boundary behavior of a network obtained
from a network of isolated boundary vertices by adjoining boundary spikes, and
adjoining boundary edges between consecutively-indexed boundary vertices. If

9The matrix at the top of the list is applied first, which means that it goes on the right

when we write the product out.
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we embed the original network with n isolated boundary vertices in the disk with
the boundary vertices indexed in CCW order, then at each step the modified
network can still be embedded in the disk with the boundary vertices indexed
in CCW order, so Theorem 8.15 follows.

Remark. Our proof of Theorem 8.15 is a terribly inefficient algorithm for con-
structing a circular planar network representing a given boundary behavior, in
the sense that it adds too many unnecessary edges. Future research may find
a better method — perhaps by giving a circular planar version of the proof of
Lemma 8.8 or Theorem 8.11.

One might hope to show that any boundary behavior can be represented by
a critical circular planar network, but this is overly optimistic. Consider the
following network:

a

b

c

d

Suppose that a + b + c = 0 and 1/b + 1/c + 1/d = 0 (which can happen for
most fields). In this case, the boundary potentials do not uniquely determine
the boundary currents, nor do the boundary currents determine the boundary
potentials up to constants. However, there does not exist a critical circular
planar network, or indeed any network recoverable over positive linear conduc-
tances, which has this property and has only three boundary vertices. For the
Dirichlet problem to not have a unique solution, it must have an interior ver-
tex, and the interior vertex must have degree ≥ 3 for the network to be critical
circular planar, since a series is not recoverable. Since a recoverable network
with 3 boundary vertices cannot have more than 3 edges by consideration of the
number of variables, the only possibility is a Y . However, in a Y , the Neumann
problem has a unique solution.

This example also shows that not every network is equivalent to a network
with ≤ 1

2n(n − 1) edges, as we might hope, so the bound in Corollary 8.9 is
sharp in this case.

9 Generalizations and Open Problems

9.1 Nonlinear Networks

Johnson’s treatment of harmonic continuation [16] was motivated by the ques-
tion of how to recover networks with non-Ohmic resistors. The current on each
edge is given as a nonlinear function of the voltage, that is, γe(du(e)), where
γe : R → R. For γe to be physically reasonable, one would require that γe(0) = 0
and γe is increasing. However, as we shall see, the inverse problem can be solved
whenever γe(0) = 0 and γe is a bijection.
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Another more algebraic generalization was described by Avi Levy and the
author in [15], motivated by the algebraic-topological perspective on the graph
Laplacian in [10]. We can take the edge weights to be units in a ring R, and
consider potential and current functions taking values in R, or more generally
in an R-module M . The Z-module of harmonic functions on the network could
be studied using homological algebra.

A little reflection shows that all our harmonic continuation arguments work
in very general situations, including the two described above. It relied exclu-
sively upon the following ingredients:

• The currents on edges and the potentials on vertices can be added together.

• The current on an edge is a function by the voltage across the edge.

• Conversely, the voltage on an edge is a function of the current on the edge.

• Zero voltage corresponds to zero current.

This motivates the following definition:

Definition. LetM be an abelian group, written additively. ABZ(M)-network
is a ∂-graph together with a bijection γe :M →M such that

γe(0) = 0 and γe(x) = −γe(−x),

where the second condition guarantees that the current on e is negative the
current on e and that γe is uniquely determined by γe.

Remark. The set-up given here can be generalized even further. For instance,
Kenyon considers a vector bundle Laplacian where the potentials at each vertex
take values in some vector space [18]. There is a different vector space for
each vertex, and each edge has an associated “parallel transport” isomorphism
between the different vector spaces, which allows us to compare potentials on
the two endpoints. We omit this case for the sake of simpler notation and leave
it to the reader to generalize to cases that interest them.

The arguments given here adapt almost word for word to show that

Theorem 9.1. If a ∂-graph is recoverable by scaffolds, then it is recoverable over
BZ(M) for any M , that is, the function γe : M → M for each e is uniquely
determined by Λ(Γ).

In particular, we have reproved the main result of [16] that critical circular
planar networks are recoverable in the nonlinear case.

The category of IO-networks generalizes easily to the BZ(M) case, and the
IO boundary behavior X is now a functor from the category of nonlinear IO-
networks to the category of relations (not necessarily linear). Now suppose we
have an elementary factorization of [Γ, i, j] : P → Q consisting of [Γk, ik, jk] :
Pk−1 → Pk and choose Pℓ with |Pℓ| = m = m(P,Q). Suppose there are k input
stubs and ℓ output stubs. Then, starting in the middle with Pℓ and working
toward the beginning and the end of the factorization, we can use harmonic
continuation to parametrize X([Γ, i, j]) by (MPℓ)2 ×Mk ×M ℓ.10

10However, the same argument does not work for semi-elementary factorizations.
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This implies that if there is an elementary factorization, then the rank-
connection principle generalizes to the nonlinear case, provided we have a suit-
able notion of dimension. For instance, if M is finite, then {x : ∃y with (x, y) ∈
X([Γ, i, j])} has cardinality |M |2m+k and {x : (x, 0) ∈ X([Γ, i, j])} has cardi-
nality |M |k. Thus, m can be detected from X([Γ, i, j]) by looking at the size
of these sets. Similarly, if M = R and γe : M → M is a homeomorphism,
then {x : ∃y with (x, y) ∈ X([Γ, i, j])} has dimension 2m + k as a topological
manifold and {x : (x, 0) ∈ X([Γ, i, j])} has dimension k. So again, m can be
detected from the boundary behavior.

Another consequence of elementary factorizations is

Proposition 9.2. SupposeM = R and consider networks where γe : R → R is a
homeomorphism. If Γ is a finite layerable network with n boundary vertices, then
Λ(Γ) is properly embedded topological submanifold of R2n which is homeomorphic
to Rn.

Proof. Assume [n] = ∂V . Since Γ is layerable, as discussed in §5.5, we can
express [Γ, i, j] : ∅ → [n] as

[Γn, in, jn] ◦ · · · ◦ [Γ0, i0, j0],

where [Γ0, i0, j0] : ∅ → [n] is a network consisting of isolated boundary vertices,
and the other morphisms correspond to adding boundary spikes or bound-
ary edges. Since γe is a homeomorphism, we can see that for k ≥ 1, Xk =
X([Γ, ik, jk]) defines a homeomorphism R2n → R2n. Now

Λ(Γ) = Xn ◦ · · · ◦X1(R
n × 0),

which proves the asserted claims.

In the smooth case, we can refine this to

Proposition 9.3. Let Γ be a finite network over R. Suppose that γe : R → R

is a diffeormorphism. Then

• Λ(Γ) is a smooth submanifold of R2n which is diffeomorphic to Rn.

• If duΓ is the linear network with edge weights γ′e(u(e+)− u(e−)), then the
tangent space

T(u|∂V ,∆u|∂V )Λ(Γ) = Λ(duΓ).

• The tangent space to Λ(Γ) at each point is a Lagrangian subspace of R2n,
which means that Λ(Γ) is a Lagrangian submanifold of R2n.

Proof. Proceeding as in the previous proof, we see that Xk is a diffeomorphism,
which establishes the first claim. Moreover, by direct computation, the deriva-
tive DXk at the point corresponding to a potential function u is given by the
symplectic matrix corresponding to adjoining spikes or boundary edges of weight
γ′e(u(e+)−u(e−)). Thus, D(Xn ◦ · · · ◦X1) is the product of symplectic matrices
corresponding to adding edges of weight γ′e(u(e+)−u(e−)). This establishes the
second claim, and the third follows immediately from Theorem 8.1.
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The fact that Λ(Γ) is a submanifold is nontrivial and does not hold for all
networks. Indeed, consider the following network:

1 2

3

4

e1 e2

e4e3

Define γe : R → R by γe = ρ−1
e , where ρe1(t) = ρe3(t) = t + 1

2 sin t (the
orientation of the edge does not matter since the function is odd), and ρe2(t) =
ρe3(t) = −t. These are bijective C∞ resistance functions with a C∞ inverse.

We can view ρe as a resistance function which gives the voltage on an edge
as a function of the current. The series with resistance functions ρe1 and ρe2
is equivalent to a single-edge with resistance ρe1 + ρe2 . Thus, the network is
equivalent to a parallel connection

1 2

e1

e2

in which each edge has resistance function ρ(t) = 1
2 sin t. Though this is not a

BZ(M) network, it still makes sense to talk about harmonic functions as being
given by a potential u : V → R and a compatible current function c : E → R

with c(e) = −c(e). Though the manipulations we are about to do can be
understood without reducing the series to a single edge with a rather degenerate
resistance function, we think that this is conceptually simpler.

Let e1 and e2 be the oriented edges shown in the picture. Thus, a potential
function u has a compatible current function c : E → R if and only if

u1 − u2 = 1
2 sin ce1 = 1

2 sin ce2 .

Now sin ce1 = sin ce2 is equivalent to ce2 = ce1 + 2πn or ce2 = π − ce1 + 2πn. If
ce1 = ce2 +2πn, then the net current ψ1 = ce1 + ce2 = 2ce1 +2πn and ψ2 = −ψ1

and u1 − u2 must be 1
2 sinψ1/2. If ce2 = π − ce1 + 2πn, then ψ1 = (2n + 1)π

and ψ2 = −ψ1 and u1 − u2 could be any number in [−1, 1]. Thus,

L ={(φ, ψ) : φ1 − φ2 = 1
2 sinψ1/2, ψ1 = −ψ2}

∪ {(φ, ψ) : φ1 − φ2 ∈ [−1, 1], ψ1 = (2n+ 1)π, ψ2 = −ψ1}.

This is not a smooth manifold in any neighborhood of the points where φ1−φ2 =
±1 and ψ1 = (2n+ 1)π.
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9.2 More General Sufficient Conditions for Recoverability

The condition of recoverability for scaffolds is not as general as possible. One
improvement on recoverability by scaffolds stems from the observation that Lem-
mas 4.8 and 4.7 only used “partial scaffolds” defined on subgraphs of G. More-
over, in the proof of Lemma 4.9, we did not use all of the scaffold S, but only
the parts in the regions Γ1 and Γ2. Thus, we can define a class of ∂-graphs that
are recoverable through partial scaffolds. This condition would be more
complicated to state and more unwieldy in many situations. But it would still
pull back through UHMs, since the scaffolds defined on subgraphs can still be
pulled back functorially.

Similar to the generalization of elementary factorizations in §7.3, we can
adapt the definition of scaffolds to account for harmonic continuation steps that
define a function to be constant on some subnetwork. Moreover, we can use the
fact that a boundary wedge sum of recoverable networks is recoverable, provided
one of them is finite. However, the preimage of a boundary wedge-sum under
a UHM is not a boundary wedge-sum. Similarly, the more general notion of
harmonic continuation given by semi-elementary factorizations does not pull
back functorially under UHMs.

We did not develop these more general conditions systematically because
they were not needed for most graphs on surfaces or examples that one usually
comes up with by hand. Nonetheless, such conditions might have some hope
of geometrically characterizing recoverability, though it not clear to the author
how to prove this.

Moreover, the notion of “recoverability” is subtle. A network can be re-
coverable for generic edge weights over some algebraically closed field without
being recoverable for all edge weights. It is known that some networks which
are not even completely reducible are recoverable for positive real edge weights.
Given that the geometric characterizations in this paper correspond to algebraic
conditions holding for all edge weights in an infinite field, we expect that it is
easier to give a geometric characterization for universal recoverability over an
infinite field, but testing weaker forms of recoverability would require a different
approach.

A major weakness of the machinery developed here for solving the inverse
problem is that it is useful almost exclusively for proving positive results. We
have not described how to prove a ∂-graph is not recoverable, not recoverable
by scaffolds, or not totally layerable. It would be very useful to have some
algebraic or combinatorial invariants (not directly related to the inverse prob-
lem) that could be used to prove negative results about recoverability, or about
recoverability by scaffolds.

9.3 Infinite Networks

Recoverability for scaffolds makes sense for infinite networks, but much of our
theory has not been fully fleshed out in the infinite case. For instance,
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• What is the analogue of completely reducible ∂-graphs in the infinite case,
and does a version of Proposition 7.1 hold?

• Can we generalize Theorem 7.4 if we allow an infinite size connection to
correspond to an infinite rank?

• Can we define elementary factorizations with infinitely many factors using
categorical limits and prove a version of Proposition 5.8?

Moreover, as mentioned in §6.6, there are several reasonable definitions of
Λ(Γ) in the infinite case. Over arbitrary fields, the two feasible choices are
(1) the boundary data of all harmonic functions and (2) the boundary data of
finitely supported harmonic functions. We have adopted the first definition, but
the idea of recoverability by scaffolds works using the second definition as well,
so long as we guarantee that harmonic continuation produces finitely supported
functions.

It is not clear in general whether recoverability using (1) and (2) are equiv-
alent or whether either one implies the other.
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