
Solving the Inverse Problem through Optimization Methods

Melanie Ferreri and Christine Wolf

August 12, 2016

Introduction

The inverse problem on electrical networks involves taking a graph and the response matrix produced
by that graph and recovering the conductances of the edges. This problem has solutions for certain
families of graphs, but they tend not to work for any arbitrary connected graph. Thus, we created
a computer program that would allow a graph and response matrix to be fed in and produce the
corresponding conductances, which is in essence solving the inverse problem.

Suppose we are given a known graph of a network G and an experimental response matrix Λ,
which may or may not contain some error. Then we attempt to recover the original conductances
of the network. We do this by using various optimization methods, such as gradient descent, the
BFGS method, and the Gauss-Newton method, to minimize the two-norm of the difference between
the experimental Λ and a valid response matrix generated by a guess of the true conductance vector.
We also applied the program to graphs with different conductances that map to the same response
matrix in an attempt to recover all solution sets.

Contents

1 Definitions and Notation 2

2 The Inverse Problem 2

3 Optimization Methods 3
3.1 Computing the Gradient of 1

2‖Λ0 − Λ(γ)‖2 . 3
3.2 Gradient Descent . 6
3.3 BFGS Method . 9
3.4 Gauss-Newton Method . 10

3.4.1 Derivative of h(c(x̄) +∇c(x̄)(x− x̄)) + Lβ
2 ‖x− x̄‖

2 11

4 The Program 13
4.1 Implementation of Algorithms . 13
4.2 Example Network . 14

5 Comparing Methods 15
5.1 Gradient Descent Method . 16
5.2 BFGS Method . 16
5.3 Gauss-Newton Method . 17
5.4 Combining Methods . 17

6 n-to-1 Graphs 17
6.1 Running the Program on n-to-1 Graphs . 18
6.2 Examples . 18

6.2.1 2-to-1 Graph . 18
6.2.2 3-to-1 Graph . 20

7 Remaining 20

8 MATLAB Code 21

1

1 Definitions and Notation

Graph of the Network
We denote a graph G by the notation G : (∂V , int V), where ∂V represents the boundary vertices
of a graph (denoted visually with solid dots) and int V represents the interior vertices (denoted
visually with outlined dots). If ∂V consists of m vertices and int V consists of n vertices, then we
order the vertices such that v: { 1 . . .m,m+ 1 . . .m+ n }. Aside from this condition, the ordering
of the vertices is arbitrary.

The Kirchhoff Matrix
Suppose we are given a graph that represents some electrical network, where the weights on each
edge correspond to conductances on the network. We can format this information in matrix form,
which we call the Kirchhoff Matrix, K. The entries of K are given by

Kij =


−γij for iηj∑n
iηj γij for i = j

0 otherwise

We say iηj if there is an edge between i and j.

The Response Matrix
Due to the symmetry of the matrix K, we can partition K into the following four blocks:

K =

[
A B
BT C

]
where if we let p represent the number of boundary vertices and q represent the number of interior
vertices, A is p × p, B is p × q, and C is q × q. Taking the Schur Complement of this matrix,
we find the response matrix, which we denote as Λ, by the following equation: (see (1) for further
explanation of the Schur Complement)

Λ = A−BC−1BT

L-Lipschitz and β-smooth
A function f is L-Lipschitz if

∀x, y |f(x)− f(y)| ≤ L‖x− y‖ for some L

A function f is β-smooth if

∀x, y ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ for some β

2 The Inverse Problem

If the forward problem is generating the response matrix Λ from a given graph with known conduc-
tances, then we define the inverse problem as finding unknown conductances from a given Λ. The
main problem we will be discussing in this paper is a variation of the inverse problem on electrical
networks. For this problem, we take a graph of vertices specified as boundary or interior, with some
unknown conductances on its edges. If we set the voltages on the boundary vertices, it generates a
response, which we can encode in a response matrix based on the indexing of the vertices. For the
inverse problem we want to recover the conductances of the edges based on this response matrix.
To see a more detailed and comprehensive explanation of the inverse problem, see (1).

2

Now suppose we have a graph and a response matrix Λ0 that corresponds to the graph but
may or may not be a mathematically correct response matrix. For example, if Λ0 is measured
experimentally, the values will have some experimental error. We want to find the vector γ containing
the conductance of each edge in the graph such that Λ(γ) is as close as possible to Λ0. We chose to
do this by finding the result of the equation:

min
γ≥0

1

2
‖Λ0 − Λ(γ)‖2

with the norm being the Frobenius norm. That is, we found the γ that minimized the square of the
2 norm of the difference between the given and calculated response matrices. Because γ directly
produces the Kirchhoff matrix, and the response matrix can be calculated from the Kirchhoff matrix
by taking its Schur complement, testing this equation with a given value of γ is fairly simple to do.
However, the complex process of recovering γ when given only Λ(γ) makes the idea of finding the
gradient of the function, setting it equal to zero, and solving for γ impractical at best. Therefore,
we tried using optimization methods instead to find the solution to the equation. These methods
generally utilize an iterative checking of the result of the equation when plugging in different guesses,
which are then strategically updated. This takes advantage of the ease of computing the result of
the equation when given a guess, and thus proved effective in solving our problem.

3 Optimization Methods

We experimented with several different methods of finding the solution to the inverse problem
through finding the γ that solves the equation

min
γ≥0

1

2
‖Λ0 − Λ(γ)‖2

All of these methods require that we find the gradient of the function, so we found an efficient
method to do this.

3.1 Computing the Gradient of 1
2
‖Λ0 − Λ(γ)‖2

Let

f(γ) =
1

2
‖Λ0 − Λ(γ)‖2

We will compute the gradient of f(γ). By the chain rule, to get the kth component of the gradient
vector for a function g ◦ h(γ) we have

∂g ◦ h
∂γk

=

n∑
i=1

n∑
j=1

∂g

∂yij
· ∂hij
∂γk

where n is the dimension of the matrices and y = h(γ), for any functions g and h. If we take the
functions to be h(γ) = Λ0 − Λ(γ) and g(y) = 1

2‖y‖
2 = 1

2

∑
i,j y

2
ij , then

g ◦ h(γ) =
1

2
‖Λ0 − Λ(γ)‖2 = f(γ)

Thus, to take the gradient of f(γ) we can apply the chain rule formula. We have that to find the
partial derivative of g with respect to yij , we can say

∂g

∂yij
=

∂

∂yij
(
1

2

∑
p,q

y2
pq) =

∂

∂yij
(
1

2
y2
ij) = yij

3

since all the other components of the matrix y, the ypq’s where p 6= i or q 6= j, are constant with
respect to yij . Since y = h(γ), we have

∂g

∂yij
= yij = h(γ)ij = (Λ0 − Λ(γ))ij

To finish finding the gradient, we then needed to find a way to compute
∂hij

∂γk
. We have

∂hij
∂γk

=
∂

∂γk
((Λ0 − Λ(γ))ij) = − ∂

∂γk
Λ(γ)ij

Thus, we computed the matrix ∂
∂γk

Λ(γ). In our first attempt to do this, we took advantage of the
result in Dr. Morrow’s paper “Derivative of Λ” that for any response matrix Λ, the directional
derivatives can be computed through the following formula:

DεΛ = εA − εBC−1BT −BC−1εTB +BC−1εCC
−1BT

where B and C are the block components of the Kirchhoff matrix corresponding to Λ, and ε repre-
sents the direction of the derivative. Because we wanted the gradient, we constructed ε to be in the
unit directions. While this gave us the correct matrix, because of the volume of computations that
gradient descent required us to perform we wanted a less computationally intense method in order
to optimize our algorithm. Thus, we used another formula developed by Dr. Morrow to give us the
same result with less computations.

Theorem 3.1. If we have a Kirchhoff matrix

K =

[
A B
BT C

]
and we let

D =

[
I

−C−1BT

]
then the response matrix Λ corresponding to the Kirchhoff matrix can be given by

Λ = DTKD

and
∂

∂γk
Λ(γ) = DT

[
∂K
∂γk

]
D

Proof. By the definition of the Kirchhoff matrix, we can write

K =

[
A B
BT C

]
Since we have

D =

[
I

−C−1BT

]
DT =

[
I −BC−1

]
then we have that

DTKD =
[
I −BC−1

] [A B
BT C

] [
I

−C−1BT

]
=
[
A−BC−1BT

]
= Λ

4

since A−BC−1BT is exactly the Schur complement of K.
Now we will show that

∂

∂γk
Λ(γ) = DT

[
∂K
∂γk

]
D

By the product rule, we have that

∂

∂γk
Λ(γ) =

∂

∂γk
(DTKD) =

(∂

∂γk
DT
)
KD +DT

(∂

∂γk
K
)
D +DTK

(∂

∂γk
D
)

We have that
∂

∂γk
D =

∂

∂γk

[
I

−C−1BT

]
=

[
0

∂
∂γk

(−C−1BT)

]
and

∂

∂γk
DT =

∂

∂γk

[
I −BC−1

]
=
[
0 ∂

∂γk
(−BC−1)

]
Thus, since

KD =

[
A B
BT C

] [
I

−C−1BT

]
=

[
A−BC−1BT

0

]
=

[
Λ
0

]
and

DTK =
[
I −BC−1

] [A B
BT C

]
=
[
A−BC−1BT 0

]
=
[
Λ 0

]
by the definition of Λ, we have(∂

∂γk
DT
)
KD =

[
0 ∂

∂γk
(−BC−1)

] [
Λ
0

]
= 0

and

DTK
(∂

∂γk
D
)

=
[
Λ 0

] [0
∂
∂γk

(−C−1BT)

]
= 0

Therefore, we have that

∂

∂γk
Λ(γ) =

(∂

∂γk
DT
)
KD+DT

(∂

∂γk
K
)
D+DTK

(∂

∂γk
D
)

= 0+DT
(∂

∂γk
K
)
D+0 = DT

[
∂K
∂γk

]
D

Thus,
∂

∂γk
Λ(γ) = DT

[
∂K
∂γk

]
D

as desired. �

Finding
[
∂K
∂γk

]
is actually fairly easy. Because the vector γ simply contains all the non-zero γij ’s in

an arbitrarily imposed ordering, γk represents a particular γij . This γ will by the definition of the
Kirchhoff matrix appear in exactly the spots Kij and Kji as −γij , as well as along the diagonal in
Kii and Kjj as part of the positive sum of the conductances appearing in the corresponding row.

Thus, because all other terms are constant with respect to γk, we have that
[
∂K
∂γk

]
is a matrix of

mostly zeros, but with -1’s at Kij and Kji and 1’s at Kii and Kjj , which is simple to create.
Putting together all of this information gives us that the gradient of the function

f(γ) =
1

2
‖Λ0 − Λ(γ)‖2

5

is the vector where the kth component is given by

∂f

∂γk
=

n∑
i=1

n∑
j=1

(Λ0 − Λ(γ))ij ·
(
−
(
DT

[
∂K
∂γk

]
D
)
ij

)
We can compute each of the matrices present in the sum fairly simply with knowledge of γ and take
their outer product in order to get the gradient that we want.

3.2 Gradient Descent

We first approached this problem using the optimization method of gradient descent. This method
uses the recursive formula

xk = xk−1 − tk∇f(xk−1)

to choose the next guess, where xk is the kth guess, f is the function to minimize, and tk is some
constant factor that can be incremented as needed. In our case, we have

f(γ) =
1

2
‖Λ0 − Λ(γ)‖2

In order to utilize this method, we evaluated the gradient of f(γ), which can compute using the
formula described above.

In order to quantify the efficiency of the gradient descent algorithm, we sought to prove that the
number of iterations of the method required to show that ‖∇f(xk)‖ < ε has an upper bound. To
do so, we proved the following theorem.

Theorem 3.2. Suppose f is β-smooth, and x is incremented by gradient descent such that

xk = xk−1 −
1

β
∇f(xk−1)

Let f∗ be the minimum value of f . Then min
k=1...n

‖∇f(xk)‖2 ≤ 2β
n (f(x0)− f∗).

Proof. By the definition of gradient descent, we have

xk = xk−1 −
1

β
∇f(xk−1)

Because f is β smooth, by the definition of β smooth we have

∀y, f(y) ≤ f(x̄) + 〈∇f(x̄), y − x̄〉+
β

2
‖y − x̄‖2

We can let x̄ = xk−1, and since this is true for all y, we can let y = xk. Substituting these into the
formula gives

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
β

2
‖xk − xk−1‖2

Because xk = xk−1 − 1
β∇f(xk−1), xk − xk−1 = − 1

β∇f(xk−1), so the formula can be rewritten as

f(xk) ≤ f(xk−1) + 〈∇f(xk−1),− 1

β
∇f(xk−1)〉+

β

2
‖ − 1

β
∇f(xk−1)‖2

which can be simplified to

f(xk) ≤ f(xk−1)− 1

β
‖∇f(xk−1)‖2 +

β

2
· 1

β2
‖∇f(xk−1)‖2

6

f(xk) ≤ f(xk−1)− 1

β
‖∇f(xk−1)‖2 +

1

2β
‖∇f(xk−1)‖2

f(xk) ≤ f(xk−1)− 1

2β
‖∇f(xk−1)‖2

Thus, we have
1

2β
‖∇f(xk−1)‖2 ≤ f(xk−1)− f(xk)

If we sum both sides up from k = 1 to k = n, all the middle terms on the right hand side cancel,
leaving us with

1

2β

n∑
k=1

‖∇f(xk−1)‖2 ≤
n∑
k=1

f(xk−1)− f(xk)

1

2β

n∑
k=1

‖∇f(xk−1)‖2 ≤ f(x0)− f(xn)

If we let f∗ be the optimal value of min
x
f(x), we can say that

1

2β

n∑
k=1

‖∇f(xk−1)‖2 ≤ f(x0)− f(xn) ≤ f(x0)− f∗

Dividing both sides by n gives us the average value of ‖∇f(xk−1)‖2 on left side, which is clearly
greater than or equal to the minimum value of ‖∇f(xk−1)‖2, so we have

1

2β
min
k
‖∇f(xk)‖2 ≤ 1

n · 2β

n∑
k=1

‖∇f(xk−1)‖2 ≤ 1

n
(f(x0)− f∗)

Rearranging the equation gives us

min
k
‖∇f(xk)‖2 ≤ 2β

n
(f(x0)− f∗)

Thus, the function is bounded above, as desired. �

We can also show that the function converges if we increment tk using the following rules – we
initialize tk to some t̂ > 0, then repeat tk := btk until

f(xk) < f(xk−1)− atk‖∇f(xk−1)‖2

with 0 < a ≤ 1
2 and 0 < b < 1. This is shown in the following theorem.

Theorem 3.3. Suppose f is β-smooth, and x is incremented by gradient descent such that

xk = xk−1 − tk∇f(xk−1)

with tk as described above. Let f∗ be the minimum value of f . Then

min
k=1...n

‖∇f(xk)‖2 ≤ 2β

n
(f(x0)− f∗)

Proof. By the definition of gradient descent, we have

xk = xk−1 − tk∇f(xk−1)

7

Because f is β smooth, by the definition of β smooth we have

∀y, f(y) ≤ f(x̄) + 〈∇f(x̄), y − x̄〉+
β

2
‖y − x̄‖2

We can let x̄ be xk−1, and since this is true for all y, we can let y = xk. Substituting these into the
formula gives

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
β

2
‖xk − xk−1‖2

Because xk = xk−1 − tk∇f(xk−1), xk − xk−1 = −tk∇f(xk−1), so the formula can be rewritten as

f(xk) ≤ f(xk−1) + 〈∇f(xk−1),−tk∇f(xk−1)〉+
β

2
‖ − tk∇f(xk−1)‖2

which can be simplified to

f(xk) ≤ f(xk−1)− tk‖∇f(xk−1)‖2 +
β

2
· t2k‖∇f(xk−1)‖2

f(xk) ≤ f(xk−1)− tk(1− β

2
· tk)‖∇f(xk−1)‖2

In order to place a bound on this function, we must find a lower bound tmin for tk. We have that if
tk <

1
β , then

f(xk) ≤ f(xk−1)−tk(1−β
2
·tk)‖∇f(xk−1)‖2 < f(xk−1)−tk(1−β

2
· 1
β

)‖∇f(xk−1)‖2 = f(xk−1)− tk
2
‖∇f(xk−1)‖2

so

f(xk) < f(xk−1)− tk
2
‖∇f(xk−1)‖2

We know by the Lipschitz condition that

f(xk) ≥ f(xk−1)− 1

β
‖∇f(xk−1)‖2

Since we have 0 < a ≤ 1
2 we know that since tk := btk until

f(xk) < f(xk−1)− atk‖∇f(xk−1)‖2

we have tk = bit̂ for some positive integer i, so since 0 < b < 1, tk is decreasing until the condition
is satisfied. Thus, we can show that ∀k, tk ≥ tmin = min{t̂, bβ }. Suppose t̂ ≤ b

β <
1
β . Then

f(xk) < f(xk−1)− t̂

2
‖∇f(xk−1)‖2 < f(xk−1)− atk‖∇f(xk−1)‖2

since a ≤ 1
2 , so tk = t̂ for all k, so we have tmin = t̂. Suppose t̂ > b

β . If t̂ satisfies the equation

f(xk) < f(xk−1)− t̂

2
‖∇f(xk−1)‖2

then the same argument as above holds. Suppose the equation does not hold. Then we must have
t̂ ≥ 1

β , so bt̂ ≥ b
β . If the equation still doesn’t hold, we have bt̂ ≥ 1

β , so b2t̂ ≥ b
β . Because b < 1

we can continue this argument until we get that the equation is satisfied for some bi, but bit̂ ≥ b
β ,

and bi+j = bi for all j. Thus, since t is decreasing we get tk ≥ b
β for all k. Therefore, we have

tk ≥ tmin = min{t̂, bβ }, so 0 < tmin ≤ b
β .

8

Because we know 0 < tmin ≤ b
β , we have that

f(xk) ≤ f(xk−1)− tmin
(

1− β

2
· 1

β

)
‖∇f(xk−1)‖2

Simplifying the coefficient outside the 2-norm,

f(xk) ≤ f(xk−1)− 1

2
tmin‖∇f(xk−1)‖2

Rearranging the equation, we have

tmin
2
‖∇f(xk−1)‖2 ≤ f(xk−1)− f(xk)

Summing both sides up from k = 1 to k = n causes all the middle terms on the right hand side
cancel. Thus, we are left with

tmin
2

n∑
k=1

‖∇f(xk−1)‖2 ≤
n∑
k=1

f(xk−1)− f(xk)

tmin
2

n∑
k=1

‖∇f(xk−1)‖2 ≤ f(x0)− f(xn)

If we let f∗ be the value given by finding min
x
f(x), we can say that

tmin
2

n∑
k=1

‖∇f(xk−1)‖2 ≤ f(x0)− f(xn) ≤ f(x0)− f∗

Dividing both sides by n gives us the average value of ‖∇f(xk−1)‖2 on left side, which is clearly
greater than or equal to the minimum value of ‖∇f(xk−1)‖2, so we have

tmin
2

min
k
‖∇f(xk)‖2 ≤ tmin

2n

n∑
k=1

‖∇f(xk−1)‖2 ≤ 1

n
(f(x0)− f∗)

Rearranging the equation gives us

min
k
‖∇f(xk)‖2 ≤ 2

tmin
· 1

n
(f(x0)− f∗)

Thus, since tmin is a non-zero constant, the function is bounded above, as desired. �

Since both of these values for the constant of gradient descent yield that min
k=1...n

‖∇f(xk)‖2 ≤ C
n

for some constant C, for any ε we can find a value of n such that C
n < ε, so we have that ‖∇f(xk)‖ < ε

has a finite upper bound, as we wanted.

3.3 BFGS Method

In addition to gradient descent, we sought to employ other algorithms in order to compare their
effectiveness in solving the minimization problem. One of the others we tried was the BFGS method.
This method approximates Newton’s method, which has quadratic convergence, for super-linear
convergence that is in practice faster than gradient descent, although this has not been proven. The

9

BFGS method requires updating a guess, similarly to gradient descent, but the guess is updating
according to the following equation:

xk = xk−1 − tkHk−1∇f(xk−1)

where tk is the same as in gradient descent and Hk is an approximation of the Hessian, which is
used in Newton’s method. Hk can be approximated by starting with some matrix of the proper
dimensions (the same height and width as the height of x) that is positive definite, say the identity
matrix, and updating it according to the formula

Hk = (I − ρk−1sk−1y
T
k−1)Hk−1(I − ρk−1yk−1s

T
k−1) + ρk−1sk−1s

T
k−1

with
sk−1 = xk − xk−1

yk−1 = ∇fk −∇fk−1

ρk−1 =
1

yTk−1sk−1

The gradient ∇f and the factor tk can be computed as in gradient descent.

3.4 Gauss-Newton Method

Another alternative optimization method we tried is the Gauss-Newton method, which is essentially
a modification of Newton’s line search. In this method, we used an upper bounding function and
minimized that, taking the minimizing value x to be our new guess. To get this upper bounding
function, because

1

2
‖Λ0 − Λ(γ)‖2

is a composition of two functions we utilized the following theorem.

Theorem 3.4. If h is L-Lipschitz and c is β-smooth, then

h(c(x)) ≤ h(c(x̄) +∇c(x̄)(x− x̄)) +
Lβ

2
‖x− x̄‖2

Proof. Because h is L-Lipschitz, by definition we have that

|h(c(x))− h(c(x̄) +∇c(x̄)(x− x̄))| ≤ L‖c(x)− c(x̄) +∇c(x̄)(x− x̄)‖

Since c is β-smooth, we have that

∀x, y ‖∇c(x)−∇c(y)‖ ≤ β‖x− y‖ for some β

which is equivilent to

c(x)− (c(y) +∇c(y)(x− y)) ≤ β

2
‖x− y‖

for all x and y. Thus, we have that

L‖c(x)− (c(x̄) +∇c(x̄)(x− x̄))‖ ≤ L‖β
2
‖x− x̄‖2‖

Because β
2 ‖x− x̄‖

2 is a real number, we have

L‖β
2
‖x− x̄‖2‖ = L

∣∣∣β
2
‖x− x̄‖2

∣∣∣ =
Lβ

2
‖x− x̄‖2

10

Therefore, since

h(c(x))− h(c(x̄) +∇c(x̄)(x− x̄)) ≤ |h(c(x))− h(c(x̄) +∇c(x̄)(x− x̄))|

we have that

h(c(x))− h(c(x̄) +∇c(x̄)(x− x̄)) ≤ Lβ

2
‖x− x̄‖2

so

h(c(x)) ≤ h(c(x̄) +∇c(x̄)(x− x̄)) +
Lβ

2
‖x− x̄‖2

as desired. �

The result of this theorem is useful in minimizing our function 1
2‖Λ0 − Λ(γ)‖2. If we take h(y) =

1
2‖y‖

2 and c(γ) = Λ0 − Λ(γ), we can find the minimum of the function h(c(x̄) +∇c(x̄)(x − x̄)) +
Lβ
2 ‖x− x̄‖

2 by taking the derivative.

3.4.1 Derivative of h(c(x̄) +∇c(x̄)(x− x̄)) + Lβ
2 ‖x− x̄‖

2

Let h be a function h : IRn×n → IR and c : IRm → IRn×n

We want to differentiate

h(c(x̄) +∇c(x)(x− x̄)) +
Lβ

2
‖x− x̄‖2

First, we will consider the term h(c(x̄) +∇c(x)(x− x̄)). By the chain rule, we have

∂h ◦ f
∂xk

=

n∑
i=1

n∑
j=1

∂h

∂yij
· ∂fij
∂xk

Where f = c(x̄)+∇c(x̄)(x− x̄). Next, we consider the term Lβ
2 ‖x− x̄‖

2. Using the chain rule again,

we set h = Lβ
2 ‖y‖

2 and f = x− x̄
Thus,

∂h

∂y
= Lβ · yij

and

∂f

∂xk
=


∂
∂xk

(x1 − x̄1)
...

∂
∂xk

(xn − x̄n)


So

∂h ◦ f
∂xk

=

n∑
i=1

βL(x− x̄)i ·
∂fi
∂xk

Since ∂f
∂xk

is a vector of all zeros except for 1 at index k, the sum over i is 0 except for when i = k.
So

∂h ◦ f
∂xk

= βL(x− x̄)k

Thus, the full derivative (general form) is

∂h ◦ f
∂xk

=

n∑
i=1

n∑
j=1

∂h

∂yij
· ∂fij
∂xk

+ βL(x− x̄)k

11

Because h(y) = 1
2‖y‖

2 and c(γ) = Λ0 − Λ(γ), we can simplify the derivative. As shown in the
computing the gradient section, we have that

∂h

∂yij
= yij

and since yij = f(x)ij , we can say that

∂fij
∂xk

=
∂

∂xk
(Λ0 − Λ(x̄) +∇(Λ0 − Λ(x̄))(x− x̄))ij = −

(∂

∂xk
Λ(x̄)

)
ij

and

yij = f(x)ij = (c(x̄)+∇c(x̄)(x−x̄))ij = (Λ0−Λ(x̄)+∇(Λ0−Λ(x̄))(x−x̄))ij = (Λ0−Λ(x̄))ij−(∇Λ(x̄)(x−x̄))ij

Because we have that

(∇Λ(x̄)(x− x̄))ij =

n∑
r=1

∂Λ

∂xr
(x̄)(xr − x̄r)

we can write the full derivative for our specific case as

∂h ◦ f
∂xk

=

n∑
i=1

n∑
j=1

(
(Λ(x̄)− Λ0)ij +

n∑
r=1

∂Λij
∂xr

(x̄)(xr − x̄r)ij
)
·
(∂Λij
∂xk

(x̄)
)

+ βL(xk − x̄k)

We can set this equal to zero to find the value of x− x̄ that minimizes the function. We have that

∂h ◦ f
∂xk

=

n∑
i=1

n∑
j=1

(
(Λ(x̄)− Λ0)ij +

n∑
r=1

∂Λij
∂xr

(x̄)(xr − x̄r)ij
)
·
(∂Λij
∂xk

(x̄)
)

+ βL(xk − x̄k) = 0

n∑
i=1

n∑
j=1

(Λ(x̄)−Λ0)ij ·
(∂Λij
∂xk

(x̄)
)

+

n∑
i=1

n∑
j=1

(n∑
r=1

∂Λij
∂xr

(x̄)(xr − x̄r)ij
)
·
(∂Λij
∂xk

(x̄)
)

+βL(xk − x̄k) = 0

n∑
i=1

n∑
j=1

(n∑
r=1

∂Λij
∂xr

(x̄)(xr − x̄r)ij
)
·
(∂Λij
∂xk

(x̄)
)

+ βL(xk − x̄k) = −
n∑
i=1

n∑
j=1

(Λ(x̄)− Λ0)ij ·
(∂Λij
∂xk

(x̄)
)

This puts the constant terms on the right side, which is exactly −∇(1
2‖Λ0 − Λ(x̄)‖2) and thus can

be computed as shown in the previous section. We can now put the equation in the form Az = b,
where z = x− x̄, b is the constant vector −∇(1

2‖Λ0−Λ(x̄)‖2), and A is the matrix of the coefficients

for z, with Aij being the coefficient for the jth variable in the kth equation. Thus, since
∂Λij

∂xk
(x̄) is

a scalar term, we can define A as follows:

Ast =


∑n
i=1

∑n
j=1

(
∂Λij

∂xs
(x̄)
)
·
(
∂Λij

∂xt
(x̄)
)

if s 6= t∑n
i=1

∑n
j=1

(
∂Λij

∂xs
(x̄)
)2

+ βL if s = t

Because of the βL factor added to the diagonal, A can always be made invertible, so we can solve
for z by finding

z = A−1b

with A and b as described above. Because z = x− x̄, we can pick our new guess x by taking

x = x̄+ z

We can continue to increment x in this way, with x̄ being the previous guess and x becoming the new
x̄ in the next iteration, until our original function 1

2‖Λ0 − Λ(x)‖2 is as close to zero as we require.

12

4 The Program

Recall that we sought to solve the inverse problem by finding

min
γ≥0

1

2
‖Λ0 − Λ(γ)‖2

through determining the set of conductances γ that produce the desired response matrix. In order
to do this, we take an initial guess and repeatedly improve the guess through iteration, gradient
calculation, and corresponding correction. To quickly attain this repetition, we developed a program
in MATLAB that intakes an experimental response matrix Λ, which may have some error, and
outputs a closest set of conductances (least squares solution) that maps to a valid Λ.

We used multiple different algorithms to attain this goal in the most effective way possible. Each
of the three algorithms we used, gradient descent, BFGS, and Gauss-Newton, has its own advantages
and disadvantages, so we were able to use each of them at different times or various combinations
of the algorithms in order to obtain the best result.

4.1 Implementation of Algorithms

We provide a brief outline of the way we implemented the three main algorithms used in our program.
The full MATLAB code can be found on page 21.

Gradient Descent Algorithm

Take experimental response matrix eLambda and initial guess, where the guess corresponds

to gamma, graph information representing the number of boundary and interior nodes,

and initial value of t

define guess

while (norm of gradient > precision value, some number close to 0) {

take gradient of eLambda - Lambda(x) norm squared

calculate step size t, with method described in gradient descent section, taking a = b

= 0.5

nextguess = guess - t * gradient

if (nextguess < 0) {

nextguess = 0

}

guess = nextguess;

}

return guess

The gradient descent algorithm normally converged the most slowly of the algorithms we tried.
However, its consistency and the convergence rates we were able to prove about it made it a good
choice when we needed a steady method that would be less likely to cause a matrix to initially go
singular or to move about wildly even when the guess was very inaccurate.

BFGS Algorithm

Take experimental response matrix eLambda and initial guess, where the guess corresponds

to gamma, graph information representing the number of boundary and interior nodes,

and initial value of t

define guess

while (norm of gradient > precision value, some number close to 0) {

take gradient of eLambda - Lambda(x) norm squared

13

calculate step size t, with method described in gradient descent section

calculate s, y, and p, and using those calculate Hk with the method described in the

BFGS section

nextguess = guess - t * Hk * gradient

if (nextguess < 0) {

nextguess = 0

}

guess = nextguess;

}

return guess

When we implemented the BFGS algorithm, as expected it tended to converge much more
quickly than gradient descent when it worked properly. However, the guesses tended to fluctuate a
bit wildly early in the process. This sometimes caused problems, particularly when the initial guess
is somewhat far from the solution, because it could cause the matrix to become singular to working
precision. We found an effective solution was to run gradient descent to improve the guess and then
to run BFGS for minimal convergence times.

Gauss-Newton Algorithm

Take experimental response matrix eLambda and initial guess, where the guess corresponds

to gamma, and graph information representing the number of boundary and interior nodes

define guess

while (eLambda - Lambda(x) norm squared > precision value, some number close to 0) {

create the matrix A that represents the series of equations of the form A(nextguess -

guess) = b given by setting the gradient of the upper bounding function described

in the Gauss-Newton section equal to zero

calculate the vector b, which is the negative of the gradient of eLambda -

Lambda(guess) norm squared

calculate difference = (nextguess - guess) by finding A^(-1)b

nextguess = guess + difference

if (nextguess < 0) {

nextguess = 0

}

guess = nextguess;

}

return guess

Note that the Gauss-Newton algorithm equation contains the Lipschitz and beta smoothness
constants, L and β respectively, and causes their product to be added onto the diagonal entries of
the matrix A. While for guaranteed convergence we should have determined their values through
a backtracking line search algorithm similar to the one used to find tk in the gradient descent
algorithm, we found that setting L and β both equal to 1 we tended to get faster convergence, and
thus we implemented our program in that way.

4.2 Example Network

Take the following graph, which contains 4 boundary vertices and 2 interior vertices. We call this
the “top hat graph.”

14

1

2 3

45 61 2 3

6

4 5

The Kirchhoff matrix corresponding to this graph is as follows:

K =


1 0 0 0 −1 0
0 10 −6 0 −4 0
0 −6 11 0 0 −5
0 0 0 3 0 −3
−1 −4 0 0 7 −2
0 0 −5 −3 −2 10


We then generate the response matrix Λ, which is equal to the Schur complement of K, and enter
it into a variable called eLambda in our MATLAB program. Note that in actual application, the
response matrix is found experimentally and may or may not contain experimental error. In this
case, eLambda is equal to the following response matrix:

Λ0 =


0.8485 −0.6061 −0.1515 −0.0909
−0.6061 7.5758 −6.6061 −0.3636
−0.1515 −6.6061 8.3485 −1.5909
−0.0909 −0.3636 −1.5909 2.0455


We also enter a initial guess x0 of the vector of conductances for the network. In general, we use a
vector of all ones as the first guess. The program then iterates through the optimization algorithm,
replacing the guess vector with a closer one until the norm of the gradient of

1

2
‖Λ0 − Λ(γ)‖2

is very close to zero; we usually use 10−8 as the cutoff. The program then outputs the final guess
vector that produces a gradient of approximately 0. In this case, the program returns the matrix

1.0000 5.0000 1.0000
5.0000 6.0000 2.0000
4.0000 6.0000 3.0000
2.0000 5.0000 4.0000
3.0000 6.0000 5.0000
2.0000 3.0000 6.0000


wherein the first two columns indicate the i and j vertices for each edge ij, and the third column
gives the corresponding conductance γij .

5 Comparing Methods

In order to determine which of our three methods were most reliable and/or efficient, we looked
at the norm of the gradient of our function at various intervals throughout the iterative process
for each method. We then graphed the data on scatter plots to see how each method approaches
zero and which methods are fastest. For the labeling of the axes for these scatter plots, let f(γ) =
1
2‖Λ0 − Λ(γ)‖2, and note that each of the methods were run until the condition ‖∇f(γ)‖ < 10−8

was met. The following plots were each generated using the same graph and initial guess from the
example in section 4.1.

15

5.1 Gradient Descent Method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−3

Number of Iterations

‖∇
f

(γ
)‖

This method took 22,870 iterations to converge to a solution. From the graph we see that the
norm approached zero smoothly and gradually without any unexpected spikes or plateaus, which is
consistent with the proofs of rate of convergence presented in the Gradient Descent section.

5.2 BFGS Method

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

1

2

3

4

5

6
·10−2

Number of Iterations

‖∇
f

(γ
)‖

This method took 285 iterations to complete, a dramatic reduction compared to gradient descent.
However, it follows a less smooth path; it makes a sharp initial descent, then plateaus, and then
drops off again and steadily approaches zero. We tested this method on other graphs as well and saw

16

this pattern emerge as a characteristic of the BFGS method. While BFGS converges in the fewest
iterations of the three methods, it is the least stable and can often fail to converge if the initial guess
is far away from the solution.

5.3 Gauss-Newton Method

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

1

2

3

4

5

6

·10−4

Number of Iterations

‖∇
f

(γ
)‖

Similar to gradient descent, the Gauss-Newton method follows a steady curve, but converges faster
than gradient descent with just 13,377 iterations.

5.4 Combining Methods

While the gradient descent method clearly takes many more iterations to converge to a solution than
the other methods, it produces a much smoother curve and reliably converges almost regardless of
how close the original guess is.The BFGS method is quickest and also converges reliably with a
close initial guess, so can be very useful in cases when a close guess is available. The Gauss-Newton
method is somewhat of an intermediate option between the first two. The methods might be most
useful when employed in succession; gradient descent or the Gauss-Newton Method could be used
first to get close to convergence, then the BFGS method could be used to reduce the number of
iterations toward the end. This can easily be implemented by setting the precision value of the first
method, say gradient descent, to some larger value. Then at the end of the method, call the second
method, say BFGS, using the final guess produced by the first method, and return the result given
by the second method.

6 n-to-1 Graphs

In some cases, a single graph can be written with multiple sets of valid conductances that map to
the exact same response matrix. We call these n-to-1 graphs, n being the number of different sets
corresponding to one Λ. We are interested in using our program to recover all solution sets of such
graphs, or at least establish a lower bound on n by finding some number of solutions.

17

Many of the currently known n-to-1 graphs resulted from careful construction in order to allow
the n solutions to be obtained by finding the solutions of a polynomial of degree n that also satisfy
positivity conditions, or in some other such specific manner. However, there is currently no good
way of determining whether a randomly chosen graph is n-to-1 or not.

6.1 Running the Program on n-to-1 Graphs

One of our original goals was to build a program that would be able to recover all solution sets
for n-to-1 graphs. In order to do this, we used the three optimization methods described earlier,
and tried multiple different first guesses with the expectation that the final guess would converge to
whichever of the n solution sets was closest to the original guess. However, coming up with graphs
to try this on proved more difficult than expected. Particularly when n > 2, constructing a valid
n-to-1 graph is an especially delicate process because there is a very small range of solutions that
will all map to valid Kirchhoff matrices. Because of this, we cannot just assign random γ values to
the graph and expect to retrieve other valid solution sets.

Instead, we often used pre-constructed n-to-1 graphs for which we already knew all n solution sets
to test our program. We found that in most cases the program will return only the solution that was
originally used to construct Λ0. In general, for higher n’s, the program would only return a different
solution set if the original guess was extremely close to it already. This is slightly problematic, since
our program should ideally be able to find all solution sets even if we have no prior knowledge of
them.

6.2 Examples

Not all network configurations can be n-to-1. These types of graphs are typically constructed using
star-K transformations and the quadrilateral rule to create a system of equations with multiple
solutions (5). Note that the following networks are examples of 2- and 3-to-1 graphs but are not the
only network shapes that can be 2- or 3-to-1.

6.2.1 2-to-1 Graph

1

2

3

4

5

6

7 8

9

18

This is an example of a 2-to-1 graph, as shown in (3). For this graph, we were able to arbitrarily
assign a set of conductances 1 through 12 and run the program to recover another set of conductances,
not already known, that correspond to the same response matrix. This was achieved by varying our
initial guess and re-running the program until we came up with a guess that converged to a new
solution.
For this graph, setting the original guess

x0 =



1 7 1
1 9 1
3 9 1
3 8 1
2 8 1
2 7 1
4 7 1
4 9 1
6 9 1
6 8 1
5 8 1
5 7 1



yields xfinal =



1.0000 7.0000 1.0000
1.0000 9.0000 2.0000
3.0000 9.0000 3.0000
3.0000 8.0000 4.0000
2.0000 8.0000 5.0000
2.0000 7.0000 6.0000
4.0000 7.0000 7.0000
4.0000 9.0000 8.0000
6.0000 9.0000 9.0000
6.0000 8.0000 10.0000
5.0000 8.0000 11.0000
5.0000 7.0000 12.0000


However, modifying our initial guess as follows,

x0 =



1 7 100
1 9 1
3 9 100
3 8 1
2 8 100
2 7 1
4 7 100
4 9 1
6 9 100
6 8 1
5 8 100
5 7 1



yields xfinal =



1.0000 7.0000 1.2544
1.0000 9.0000 1.7217
3.0000 9.0000 3.7219
3.0000 8.0000 3.2420
2.0000 8.0000 6.8232
2.0000 7.0000 4.1198
4.0000 7.0000 8.7810
4.0000 9.0000 6.8869
6.0000 9.0000 11.1657
6.0000 8.0000 8.1050
5.0000 8.0000 15.0110
5.0000 7.0000 8.2397


Note that both of the solutions outputted by the program give the same response matrix

Λ =


2.7797 −0.2308 −0.2727 −0.9965 −0.4615 −0.8182
−0.2308 8.7821 −0.6667 −1.6154 −4.6026 −1.6667
−0.2727 −0.6667 6.0576 −1.0909 −1.4667 −2.5606
−0.9965 −1.6154 −1.0909 10.2063 −3.2308 −3.2727
−0.4615 −4.6026 −1.4667 −3.2308 13.4282 −3.6667
−0.8182 −1.6667 −2.5606 −3.2727 −3.6667 11.9848


so we know that both solutions are valid.

19

The strategy for choosing x0 is not fully refined, but we have developed some intuition with
regards to what normally works. In order to find different solutions, we need to choose x0 such that
taking the path of steepest descent of the gradient would lead to a new solution. Thus, choosing
guesses that are very diverse and distinct in both magnitude and ratios between entries seems to
work best for recovering multiple solutions. For example, picking one x0 to have similar or same
values for all edges, such as the first example initial guess, and another x0 to have alternating large
and small values like the second initial guess tends to yield good results.

6.2.2 3-to-1 Graph

12 3

4

5 5 56 6 6

7

8

9

1011 12 13 14

15

16

17

18

19

20

21

22

This graph is called the “threehands” graph with one inversion and has three known solutions that
are listed in Grigoriev’s paper (4). We used the given numbers in our program and attempted to
recover all three of the solutions. In practice, the output usually converged to the first solution
unless the original guess was set to be extremely close to another known solution. It’s also worth
mentioning that on graphs of this size, the program takes a rather large amount of time (hours at
least) to run to completion, so testing various initial guesses can quickly become time-consuming.
However, we were at least able to get the program to converge to the known solutions by setting the
initial guess equal to the floor of the other known solution, though this did not significantly reduce
runtime.

7 Remaining

While we managed to accomplish many of our initial goals, much remains to be pursued by future
researchers. In particular, we were unable to make significant progress on using our program on
n-to-1 graphs. While we had some success with the 2-to-1 graph, we were unable to develop an
effective method for recovering all the solutions for n-to-1 graphs with n > 2. Additionally, our
current method relies on manually entering initial guesses and checking to see whether the solutions
are different enough to be considered distinct. Some sort of automatization and possibly algorithmic
approach to this process would be worthwhile. Even a smart way of picking an initial guess for 1-to-1
graphs that minimizes the possibility of a matrix going computationally singular could be helpful.

20

Also, further experimentation with the effectiveness of combining of different algorithms could
yield new insights. We scratched the surface through informal experimentation with combining
BFGS and gradient descent in order to avoid singularity while still taking advantage of the speed of
convergence of BFGS, but this area would benefit from more rigorous testing.

8 MATLAB Code

Main.m

% This program was written for the University of Washington 2016 Math REU by Melanie

Ferreri and Christine Wolf.

% This is the main method in which we enter our Lambda and first guess, then call on the

function to generate a least squares solution for the inverse problem.

% Here we enter the numbers of boundary (dVNum) and interior (intV) edges on the graph.

dVNum = 4;

intV = 2;

dimK = dVNum + intV;

% Example network: top hat graph

% actual values from which we generated eLambda

a = [1 5 1;

5 6 2;

4 6 3;

2 5 4;

3 6 5;

2 3 6];

% vector of all ones we input as the first guess

x0 = [1 5 1;

5 6 1;

4 6 1;

2 5 1;

3 6 1;

2 3 1];

% Generate Kirchhoff matrix from actual set of values a

m = makeKirchhoff(a, dimK);

% Generate Lambda from the Kirchhoff matrix

l = getLambda(m, dVNum, dimK);

% Note that you can also manually input a response matrix with error and the program will

still give you a closest valid set of gammas

format long;

% Run optimization method of your choice. Can also combine methods.

xFinal = getXk(x0, dimK, dVNum, l, 3);

% Print final guess

xFinal

getXkGradientDescent.m

21

% Takes an original x guess, dimK, dVNum, empirical lambda, and scaling factor t as

parameters and returns an x guess that produces a response matrix close enough to the

desired one by the desired precision using gradient descent.

function x = getXkGradientDescent(x0, dimK, dVNum, eLambda, t)

gradX = getGradient(x0, dimK, eLambda, dVNum);

x = x0;

prev = x;

total = norm(gradX);

min = false;

while total > 0.0000001 % can change precision value

gradX = getGradient(prev, dimK, eLambda, dVNum);

% increments t by 0.5 if it satisfies the backtracking line search conditions

if min == false

factor = incrementT(x, prev, dimK, dVNum, eLambda, t, gradX);

t = factor * t;

if factor == 1

min = true;

end

end

x = prev - t * gradX; % gradient descent

x = max(0, x);

prev = x;

total = norm(gradX);

% print current guess

x

end

end

getXkBFGS.m

% Takes an original x guess, dimK, dVNum, empirical lambda, and scaling factor t as

parameters and returns an x guess that produces a response matrix close enough to the

desired one by the desired precision using BFGS.

function x = getXkBFGS(x0, dimK, dVNum, eLambda, t)

gradX = getGradient(x0, dimK, eLambda, dVNum);

x = x0;

prev = x;

heightX = size(x, 1);

% positive definite matrix of proper dimensions

H = eye(heightX);

total = norm(gradX);

min = false;

while total > 0.0000001 % can change precision value

p = -1 * H * gradX;

% increments t by 0.5 if it satisfies the backtracking line search conditions

if min == false

factor = incrementT(x, prev, dimK, dVNum, eLambda, t, gradX);

t = factor * t;

if factor == 1 % incrementing t has finished

min = true;

end

end

x = prev + t * p;

x = max(0, x);

gradXNew = getGradient(x, dimK, eLambda, dVNum);

22

y = gradXNew - gradX;

gradX = gradXNew;

s = x - prev;

% removes vertex information from s and y

s = s(1:heightX, 3);

y = y(1:heightX, 3);

H = getHk(H, s, y);

prev = x;

total = norm(gradX);

% print current guess

x

end

end

getXkGaussNewton.m

% Takes an original x guess, dimK, dVNum, empirical lambda, and t (which is taken so that

the method can be easily interchanged with the other getXk methods without switching

parameters) as parameters and returns an x guess that produces a response matrix close

enough to the desired one by the desired precision using the Gauss-Newton method.

function x = getXkGaussNewton(x0, dimK, dVNum, eLambda, t)

x = x0;

prev = x;

xHeight = size(x, 1);

A = zeros(xHeight, xHeight); % dimension # of edges

% beta and Lipschitz constants

beta = 1;

L = 1;

K = makeKirchhoff(x0, dimK);

% get norm of function to minimize

total = norm(getGradient(prev, dimK, eLambda, dVNum));

% Uncomment following line to use backtracking line search to find L

% min = false;

while total > 0.0000001 % can change precision value

gradX = getGradient(x, dimK, eLambda, dVNum);

% Uncomment following lines to use backtracking line search to find L

% increments L by 0.5 if it satisfies the backtracking line search conditions

% if min == false

% factor = incrementT(x, prev, dimK, dVNum, eLambda, t, gradX);

% L = factor * L;

% if factor == 1 % incrementing L has finished

% min = true;

% end

% end

b = -1 * getGradient(prev, dimK, eLambda, dVNum); % constant vector

for i = 1:xHeight

for j = i:xHeight

% derivatives of lambda with respect to x_i and x_j

lam1 = getLambdaDerivative(prev(i, 1), prev(i, 2), K, dimK, dVNum);

lam2 = getLambdaDerivative(prev(j, 1), prev(j, 2), K, dimK, dVNum);

lam = (lam1.*lam2);

A(i, j) = sum(lam(:));

A(j, i) = A(i, j);

end

end

23

for k = 1:xHeight

% adds beta*L to the diagonal entries

A(k, k) = A(k, k) + beta * L;

end

% removes information about vertices

b = b(1:xHeight, 3);

% adds vertices information and has values (x - prev) + prev

x = [prev(1:xHeight, 1:2) (A \ b + prev(1:xHeight, 3))];

prev = x;

K = makeKirchhoff(prev, dimK);

total = norm(gradX);

% print current guess

x

end

end

getGradient.m

% Takes a 3xn matrix x, dimK, empirical lambda, and dVNum as parameters and returns the

gradient of the norm squared of the difference between the experimental lambda and the

response matrix corresponding to the given x.

function gradient = getGradient(x, dimK, eLambda, dVNum)

xHeight = size(x,1);

% eLambda is empirical lambda

K = makeKirchhoff(x, dimK);

LambdaX = getLambda(K, dVNum, dimK);

leftside = eLambda - LambdaX;

% rightside is actually just d of x_k

% now need to get d of x_k for each x (3rd entry) in x vector

gradient = zeros(xHeight, 3);

for i = 1:xHeight

d = getLambdaDerivative(x(i,1),x(i,2),K,dimK,dVNum);

% for every boundary-to-boundary edge, normalize vector

if (x(i,1) <= dVNum && x(i,2) <= dVNum)

d = d/norm(d);

end

A = (leftside.*d);

% -sum because we want the derivative of -lambda

gradient(i,3) = -sum(A(:));

end

end

getLambdaDerivative.m

% Takes the vertices on either end of the edge corresponding to the desired gamma, a

Kirchhoff matrix, and dimK and dVNum as parameters and returns the derivative of the

response matrix corresponding to the Kirchhoff matrix with respect to the desired

gamma.

function deriv = getLambdaDerivative(vertex1, vertex2, K, dimK, dVNum)

% number of interior vertices

B = K(1:dVNum, (dVNum + 1):dimK);

C = K((dVNum + 1):dimK, (dVNum + 1):dimK);

% dim D is supposed to be dVNum row by dimK col

I = eye(dVNum);

D2 = -C \ transpose(B);

24

D = [I ; D2];

% creates the matrix dK/dgamma

dKMaker = [vertex1 vertex2 1];

dKMatrix = makeKirchhoff(dKMaker, dimK);

deriv = transpose(D) * dKMatrix * D;

end

getHk.m

% Takes the previous H matrix and vectors s and y, and returns the value for Hk.

function H = getHk(prevH, s, y)

r = 1/((y.’) * s + 0.0001);

I = eye(size(prevH, 1));

H = (I - r * s * (y.’)) * prevH * (I - r * y * (s.’)) + r * s * (s.’);

end

incrementT.m

% Takes vectors x and prev, ints for dimK and dVNum, the experimental lambda,t, and the

gradient of x as parameters. Returns 0.5 if the condition for backtracking line search

is satisfied, and 1 otherwise.

function beta = incrementT(x, prev, dimK, dVNum, eLambda, t, gradX)

% Difference for L(x_new)

new = getNormDifference(x, dimK, dVNum, eLambda);

% Difference for L(x_prev)

orig = getNormDifference(prev, dimK, dVNum, eLambda);

% checks backtracking line search condition

if(orig <= (new - 0.5*t*(norm(gradX))^2))

beta = 0.5;

else

beta = 1;

end

end

getNormDifference.m

% Takes a vector x containing conductance values, numbers for dimK and dVNum, and

empirical lambda as parameters, returning the square of the norm of the difference

between the experimental lambda and the response matrix generated from x.

function difNorm = getNormDifference(x, dimK, dVNum, eLambda)

K = makeKirchhoff(x, dimK);

LambdaX = getLambda(K, dVNum, dimK);

leftside = eLambda - LambdaX;

difNorm = (norm(leftside))^2;

end

getLambda.m

% Takes a Kirchhoff matrix, dVNum, and dimK as parameters and returns the corresponding

response matrix.

function L = getLambda(K, dVNum, dimK)

A = K(1:dVNum, 1:dVNum);

B = K(1:dVNum, (dVNum + 1):dimK);

25

C = K((dVNum + 1):dimK, (dVNum + 1):dimK);

L = A - B*(C\(B.’)); % Schur Complement

end

makeKirchhoff.m

% Takes a matrix containing the nodes an edge connects in its first and second columns and

the conductance value in the third and dimK as parameters and returns the

corresponding Kirchhoff matrix

function m = makeKirchhoff(x, dimK)

% argument should be 3xn (x vector with ij specified in first 2 col)

m = zeros(dimK);

% data for diagonal values

d = zeros(dimK, 1);

% sets values and makes symmetrical and row sum zero

for i = 1:size(x,1)

a = x(i,1); % i coordinate in matrix

b = x(i,2); % j coordinate in matrix

m(a,b) = - x(i,3);

m(b,a) = - x(i,3);

d(a) = d(a) + x(i,3); % updates diagonal values

d(b) = d(b) + x(i,3);

end

% loop to get row sums and add them to the diagonal

for i = 1:(dimK)

m(i,i) = d(i);

end

end

Acknowledgement

This paper was written during the University of Washington Mathematics REU under the supervision
of Jim Morrow. We would like to thank everyone involved in putting this program together and
allowing us to perform this research. Special thanks to Courtney Kempton and Jim Morrow for many
hours of explanations and guidance, from giving insights on proofs to helping us derive important
formulas.

26

References

[1] Edward B. Curtis and James A. Morrow. Inverse Problems for Electrical Network. World Scien-
tific. 2000.

[2] Dmitriy Drusvyatskiy and Courtney Kempton. An accelerated algorithm for minimizing convex
compositions. University of Washington Department of Mathematics. 2016.

[3] Jennifer French and Shen Pan. 2n to 1 Graphs. University of Washington Math REU. 2004.

[4] Ilya Grigoriev. Three 3-to-1 Graphs with Positive Conductivities. University of Washington Math
REU. 2006.

[5] Courtney Kempton. n-1 graphs. University of Washington Math REU. 2011.

[6] James A. Morrow. Derivative of Λ. University of Washington Math REU. 2013.

[7] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, Second Edition. Springer. 2006.

27

