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1 Introduction

The discrete inverse problems asks to recover the interior of a graph from its boundary. More
precisely, one has a response map LG∶ (R+)G → (R+)∂G (Section 3). When LG is injective, the
graph G is called recoverable.

Most graphs are not recoverable; instead, they exhibit degeneracy. The dimensions of the fibers
of LG provide a coarse invariant of degeneracy. In this paper, we study a finer invariant applicable
when LG has relative dimension 0. This is the arity of a graph, defined by

κ(G) = sup{∣L−1
G (∂Γ)∣∶∂Γ ∈ (R+)∂G} .

We compute κ(G) for the family of quad-graphs (Theorem 5.4). This produces a novel proof that
there exist graphs of every finite arity. In addition, it yields a family of exotic recoverable graphs.
Lastly, we conjecture a tight arity inequality which would imply our construction is extremal.

2 Quad-Graphs

The graphs under consideration are built in two stages: first, strips are built out of modified
quadrilaterals. Then the strips are glued together along their endpoints. We call the resulting
family of graphs quad-graphs.

Figure 1: Gluing strips along their endpoints to obtain a quad-graph (strip lengths may differ)

2.1 Strips

For the remainder of this paper, we exclusively study graphs with boundary; the definition follows.

Definition 2.1 (Decorated Graphs).

(a) A graph with boundary is a tuple (IntV, ∂V,E) such that (IntV ⊔∂V,E) is loopless, simple,
and undirected. Elements of ∂V (resp. IntV ) are the boundary (resp. interior) vertices.
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(b) Let i and j denote boundary vertices of G. A path through the interior of G consists of a
path from i to j such that all internal nodes belong to IntV .

(c) Each graph with boundary G has the boundary induced graph ∂G = (∅, ∂V, ∂E) where

∂E = {(i, j)∶ i /= j and there is a path through the interior from i to j}.

(d) An edge (i, j) ∈ ∂E is recoverable if there is a unique path through the interior from i to j.

(e) A graph with flow is a tuple (G, source, sink) where G is a graph with boundary and source
(resp. sink) are edges of ∂G.

We use the symbol ‘●’ to denote boundary vertices, and ‘○’ to denote interior vertices. A graph
with flow is depicted by drawing a red arrow from source to sink.

Definition 2.2. The quad and switch are the following graphs with flow:

●

●●

○

●Quad ●

●●

○

●Switch

We refer to them collectively as subunits.

Definition 2.3 (Chaining). Let {(Gi, sourcei, sinki)}ni=1 be a sequence of graphs with flow. We
identify the vertices of successive sources and sinks to obtain the graph

G = ⊔
i

Gi/{sinki ∼ sourcei+1}

The chaining of the sequence {(Gi, sourcei, sinki)}ni=1 is the graph with flow (G,source1, sinkn).

●

●●

○

●●

●●

○

●

Figure 2: Chaining a quad to a switch

Given a chain of subunits, the initial (resp. terminal) subunit contains the source (resp.
sink) edge of the chain. An internal subunit is any subunit that is neither initial nor terminal.

Definition 2.4. A strip is a graph with flow obtained by

(a) chaining 3 or more subunits,

(b) such that all internal subunits are quads.
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Figure 3: This is not a strip: condition (a) holds but not condition (b)

2.2 Constructing the Quad-Graph

Definition 2.5. A quad-graph built out of a collection of strips {Si}ni=1 is the graph obtained by:

(a) Gluing the strips Si as prescribed below.

(b) Adding auxiliary edges as prescribed below.

In the following diagrams, dotted edges belong to ∂Si and not to the quad-graph.

Gluing the strips. Perform the following edges identifications to every strip:

>>
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>

>>
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●●
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●●

●●
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● ●

●●

○

●
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●

●●

○

●
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●●

○

●●

●●

○

● ●

●●

○
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●

●●

○

●
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●

●●

○

●●

●●

○

● ●

●●

○

● >>>●

●●

○

●
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●

●●

○

●●

●●
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● ●

●●
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● >>>●

●●

○

●

4



Adding auxiliary edges. First color the vertices of the initial subunits as follows:

>

>>>
>>

●

●●

○

●
> >>

>>>●

●●

○

●

Next, introduce auxiliary edges connecting each pair of vertices that

(a) belong to the initial subunit of some strip,

(b) have the same color,

(c) are not already connected by a solid or dotted edge.

Definition 2.6. The central edge of the quad-graph is the edge labelled >>> above.

Remark 2.7. Each strip is a graph with flow, but the quad-graph itself is not.

2.3 Labelling a Quad-Graph

Let G be a quad-graph. We label G using the matrix W (G) ∈M2(N) with entries

W (G)jk = # of strips with initial subunit j and terminal subunit k,

where ‘subunit 1’ encodes ‘quad’ and ‘subunit 2’ encodes ‘switch’.

3 Fibers of the Response Map

An electrical network on G consists of an assignment of positive conductances to the edges of G.
Henceforth we will assume that G contains no pair of adjacent interior nodes (see the Note below).
The set of networks on G is denoted by (R+)G. Given a network Γ ∈ (R+)G, let ∂(Γ) ∈ (R+)∂G
denote the network such that the conductance on the edge (v,w) is the current which exits Γ at
w when vertex v is held at unit voltage relative to the rest of the boundary (this definition is
intentionally left informal).

Note: Using the notation of [2], a formal definition of ∂(Γ) is the following: Consider the Schur
complement of the Kirchhoff matrix of the network Γ. This matrix is itself the Schur complement
of an electrical network, namely ∂(Γ).

Provided the graph G contains no pair of adjacent interior nodes, the boundary graph ∂G
in Definition 2.1(c) is the underlying graph of ∂(Γ). (If G contains adjacent interior nodes, the
graph-theoretic description of ∂(Γ) is more complicated.) For this reason, in the remainder of the
paper we work exclusively with graphs lacking adjacent interior nodes.

Definition 3.1. The response map LG∶ (R+)G → (R+)∂G is the map Γ↦ ∂(Γ).
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Definition 3.2. The arity of G is the quantity

κ(G) = sup{∣L−1
G (∂Γ)∣∶∂Γ ∈ (R+)∂G} .

The graph G is said to be recoverable if κ(G) = 1. Observe that when G lacks interior vertices,
the response map LG is the identity and G is recoverable. The simplest non-trivial response map
occurs when G is a star. This graph is recoverable and LG is in fact a diffeomorphism ([1], p.129).

3.1 The Star-K Transform

The graph K1,n with a single central interior vertex is called an n-star. The response map of a
star is known as the Star-K transform [3].

○

a1

●

a2

●

a3●

a4

●

a5

●

a6 ●

●●

●

● ●

●

j

aiaj
a1+ ⋯ + a6

i
many edges

Figure 4: The Star-K transform from a 6-star to a K6.

Consider a star network with conductance ai between the interior node and boundary vertex
i. We will always take Σ = ∑i ai to be the sum of the conductances incident to an interior vertex.
When vertex i is held at unit potential relative to the rest of the boundary, the potential of the
interior node is ai

Σ . Thus a current of
aiaj

Σ exits the network at j. This is the conductance of the
edge (i, j) in the boundary network Kn, and provides a formula for the Star-K transform.

Claim 3.3 (Quadrilateral rule). Consider the Star-K transform from a 4-star to a K4. Then the
product of any pair of opposite edges of K4 is independent of the choice of pair.

Proof. Said product is a1a2a3a4
Σ2 .

The following definitions describe the method of network population used in Subsection 3.4.

Definition 3.4. The source (resp. sink) conductance of a network Γ on a graph with flow G
is the conductance of the source (resp. sink) edge of ∂Γ on ∂G.

Definition 3.5. Given a subunit, a coefficient c, and a source conductance x, the standard
method of population comprises the assignment of conductances depicted in Figure 5.

6



●

x

1

●●

x

○

c

● ●

x

1

●●

x

○

cx

●

Figure 5: Populating a subunit. Edge weights will be scaled by Σ
x .

After assigning conductances as depicted in Figure 5, all conductances are scaled by a factor of
Σ
x where Σ is the sum of all conductances incident to the interior vertex of the subunit. Therefore
Σ = 2x + c + 1 for a quad and Σ = (2 + c)x + 1 for a switch.

Lemma 3.6. The standard method of population yields a source conductance of x. The sink
conductance is c

x for a quad and cx for a switch.

Proof. Before applying the scaling of Σ
x to the edges in Figure 5, the source conductance is x2

Σ , the

sink conductance of a quad is c
Σ , and the sink conductance of a switch is cx2

Σ . Observe that LG is
homogeneous of degree 1. Hence scaling everything by Σ

x yields the result.

We will apply the standard method of population to subunits of a quad-graph G. The assigned
conductances are then entries of a network Γ ∈ (R+)G. It must be checked that our assignment is
consistent with the edge identifications performed in Subsection 2.2. Indeed, the only edges of G
which are identified are > and >> (see Subsection 2.2). These edges are each assigned a conductance
of x ⋅ Σ

x in Γ, regardless of the initial subunit used in a strip. Note that after identifications, the
initial subunits form a (2n+2)-star and Σ contains 2n+2 summands (instead of just 4, as a cursory
glance at Figure 5 might suggest), provided there are n strips present in G.

Recall Definition 2.1 (d) regarding recoverable edges. In the construction of the quad-graph,
the only non-recoverable edges of ∂G arise due to

(a) chaining of subunits (where source and sink edges are identified),

(b) auxiliary edges introduced in Subsection 2.2, and

(c) the boundary-boundary edge of any switch.

Lemma 3.7. Consider a network Γ on the quad-graph G. Each recoverable edge of ∂G is assigned
a conductance involving only the coefficient c in the standard population scheme.

The effect of this Lemma is that information about the source conductance x of any subunit is not
‘leaked out’ to the boundary network. We have tailored both our standard method of population
and our choice of auxiliary edges to ensure this Lemma holds.

Proof. First we consider non-initial subunits:
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• For a quad, there are four recoverable edges with conductances c,1, c,1 respectively.

• For a switch, there are three recoverable edges with conductances 1,1, c respectively.

Next consider the initial subunits, which form a (2n+2)-star after identifications. Our choice of
scaling in Definition 3.5 implies that the boundary edges are assigned conductances

aiaj
x . As the ai

for the black vertices in Subsection 2.2 are degree 1 monomials in x and green vertices aj are degree
0 monomials, it follows that all black-green edges are independent of x. As every monochromatic
edge is masked (by either an auxiliary edge or subunit chaining), the result follows.

3.2 Strip Functions and Strip Words

Let S denote any graph with flow, equipped with network Γ ∈ (R+)S. We are primarily concerned
with the following scenario:

(a) The graph S is the induced subgraph of a strip of G.

(b) It is equipped with a network Γ∣S induced from Γ on G.

(c) No edge identifications from the construction of G have been applied to S (Subsection 2.2).

Note that S is a graph with flow by Definition 2.4.

Applying the response map LS produces the boundary network Σ = LS(Γ) ∈ (R+)∂S. Let s
(resp. t) in ∂S denote the source (resp. sink) edge. Denote by x(Σ) the conductance of Σ at s.

x

●

●●

○

●

Initial quad

●

●●

○

● ●

●●

○

●

≥ 1 quads

f ∣U(x)

●

●●

●

○

Terminal quad

Figure 6: Strip S with function class w(S) = [(ba)n−1b] (see Definition 3.11)

By Definition 3.4, the conductance x(Σ) is the source conductance of Γ. Consider the projection
map π∶ (R+)∂S → (R+)∂S∖{s,t} which ‘forgets’ the value of the boundary network at its source and
sink edges. Each fiber of π is parametrized by the value of the source conductance.

Definition 3.8. Given Σ○ ∈ (R+)∂S∖{s,t}, the partial function f ∣U ∶U → R+ consists of

(a) the set U = {x(Σ)∶Σ ∈ (R+)∂S, π(Σ) = Σ○}, and

(b) the function f ∣U(x) is the sink conductance of Γ when the source conductance is x.

In other words, the function f ∣U records the flow from source to sink of S. The set U is non-
trivial because certain values of x may propagate to negative values during the chaining of S, hence
corresponding to a boundary network Σ /∈ (R+)∂S. We emphasize this interpretation by referring
to U as the domain of positivity of f ∣U .
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Definition 3.9 (Composition of partial functions). Given partial functions f ∣U and g∣V , we set

(f ∣U) ○ (g∣V ) = (f ○ g)∣V ∩g−1(U).

Observe that composition of partial functions is associative.

Claim 3.10. Suppose that S and T are graphs with flow with partial functions f ∣U and g∣V . Then
the chaining of T followed by S has partial function f ∣U ○ (c − x)∣(0,c) ○ g∣V for some c ∈ R+.

Proof. We take c to be the conductance of the identified source and sink edges in the chained
boundary network. It is clear that the function values are correct. To verify the domain of
positivity, it suffices to observe that a source conductance x of the chained network induces a
positive chained boundary network if and only if it induces a positive boundary network on T such
that g(x) < c and c − g(x) induces a positive boundary network on S.

Building on the ideas of Subsection 3.1, the quad and switch subunits have partial functions

c

x
∣
R+

and cx∣R+ respectively.

Here c is a coefficient determined by the values of (R+)∂S∖{s,t}. For quads, it is the product of the
diagonals. For switches it is the ratio of the unmasked sides. Inducting on Claim 3.10, it follows
that every partial function f ∣U obtained from a strip S is a composition of the partial functions

(c − x)∣(0,c),
c

x
∣
R+
, cx∣R+ .

Definition 3.11 (Function classes). Let w, v ∈ {a, b}∗ be words with characters a and b. We
construct the function class [w] as follows:

(a) Set [wv] = {f ∣U ○ g∣V ∶ g∣V ∈ [w], f ∣U ∈ [v] and V ∩ g−1(U) /= ∅}.

(b) Set [a] = {(c − x)∣(0,c)∶ c ∈ R+}.

(c) Set [b] = { c
x
∣R+ ∶ c ∈ R

+}.

(d) Set [∅] = {id ∣R+}.

This is well-defined due to associativity of partial function composition. An immediate conse-
quence of our definition is that [b2] = {cx∣R+ ∶ c ∈ R+}.

Given a strip S, form a word w(S) by writing b for each quad, b2 for each switch, and a for
each chaining operation (traversed from source to sink).

Proposition 3.12. A strip word is a word of the form w(S). The set of strip words is:

(ba)nb b(ba)nb
(ba)nb2 b(ba)nb2, n ≥ 2.

Proof. This is a restatement of Definition 2.4.

Proposition 3.13. Let S be a strip. The set of partial functions f ∣U with U /= ∅ induced by some
Σ○ ∈ (R+)∂S∖{s,t} is [w(S)].

Proof. Observe that quads and switches attain all partial functions in their respective function
classes. Moreover, the coefficients associated to distinct subunits are independent of one another.
Hence the result follows by Claim 3.10.

9



x
●

●●

○

●●

●●

○

● ●

●●

○

●

f ∣U(x)

●

●●

●

○

Figure 7: Strip S with w(S) = [b2a ⋯ ab]

x

●

●●

○

●●

●●

○

● ●

●●

○

● f ∣U(x)●

●●

●

○

Figure 8: Strip S with w(S) = [ba ⋯ ab2]

x
●

●●

○

●●

●●

○

● ●

●●

○

● f ∣U(x)●

●●

●

○

Figure 9: Strip S with w(s) = [b2a ⋯ ab2]
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3.3 Characterization of Function Classes

This is a technical section which may be skipped on first reading (use Theorem 3.16 as a black box).

Consider a Möbius function f ∶R→ R.

Definition 3.14. The function f is factorizable if f(0), f(∞), f−1(0), f−1(∞) ∈ R+.

Claim 3.15 (Three points suffice). Suppose that f is a Möbius function for which

∣{f(0), f(∞), f−1(0), f−1(∞)} ∩R+∣ ≥ 3.

Then f is factorizable.

Proof. This follows by the Intermediate Value Theorem (draw a picture on the torus R×R).

Theorem 3.16. Let wi be a strip word. The partial function fi∣Ui belongs to [wi] if and only if fi
is factorizable and

Ui =
⎧⎪⎪⎨⎪⎪⎩

(0, f−1
i (∞)) if wi = (ba)nb, (f−1

i (0),∞) if wi = b(ba)nb,
(0, f−1

i (0)) if wi = (ba)nb2, (f−1
i (∞),∞) if wi = b(ba)nb2.

(1)

Proof. The effect of pre- (resp. post-) composing a function class by an element of b is to invert
the range (resp. domain) of f . This transforms the domain Ui in a manner consistent with (1).
Algebraically, this amounts to the identity

c

x
∣
R+
○ c
x
∣
R+

= idR+ ,

which allows us to ‘cancel out’ any elements of b which appear at initial or terminal locations of
the word. Hence it suffices to verify the theorem in the case wi = (ba)nb, as the remaining cases
are obtained by pre- and post- composition with b.

We prove the result for wi = (ba)nb by induction on n, with base case n = 2 in which case
wi = babab. In light of the previous paragraph, it suffices to characterize the function class [aba].
We claim that

[aba] = {partial Möbius functions fU ∶ f is factorizable, U = (f−1(∞),∞), U /= ∅}.

For the forward problem, suppose that f ∣U ∈ [aba]. Then

f ∣U = (c1 − x)∣(0,c1) ○
c2

x
∣
R+
○ (c3 − x)∣(0,c3) = c1 −

c2

c3 − x
∣
(c3,∞)

.

Factorizability is verified by substituting values into f(x), and the interval U is seen to be
(f−1(∞),∞) by direct computation.

For the inverse problem, consider an arbitrary partial Möbius function f ∣U with U = (f−1(∞),∞)
and f factorizable. We have the identity

f ∣U = (f(∞) − x)∣(0,f(∞)) ○
f−1(∞) ⋅ [f(∞) − f(0)]

x
∣
R+
○ (f−1(∞) − x)∣(0,f−1(∞)).

Indeed, the functions agree at the three distinct points 0,∞, f−1(∞) (they are distinct because
f(∞) /=∞). Thus the Möbius functions agree everywhere.
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To verify the equality of the domain on both sides, begin by observing that that the domains
have the same endpoints. Since the function on each side is orientation-reversing, it follows that
the same circular arc of R appears on each sides. Thus the domains agree and our classification of
[aba] is complete. Consequently by pre- and post- composition with b, the classification of [(ba)2b]
follows.

For the inductive step, we start with the characterization of [(ba)nb] and obtain a charac-
terization of [a(ba)n+1]. Fix c1, c2 ∈ R+ and for any Möbius function f , let f̃ = c1 − f(c2 − x).
Then f is decreasing if and only if f̃ is decreasing. Moreover, the partial function f ∣U has domain
U = (0, f−1(∞)) if and only if the corresponding partial function f̃ ∣Ũ has domain Ũ = (f−1(∞),∞).
Provided that f is decreasing, we see that f is factorizable if and only if f̃ is factorizable. Lastly
U is empty if and only if Ũ is empty. These are all the ingredients we need.

Applying the inductive hypothesis, it follows that [a(ba)n+1] is characterized by U = (f−1(∞),∞).
Pre- and post- composition with elements of b yields that U = (0, f−1(∞)) for the function class
[(ba)n+1b]. This completes the induction.

3.4 The Concatenation Map

For any boundary network ∂Γ ∈ (R+)∂G, the fiber lying over ∂Γ is the set L−1
G (∂Γ). It consists of

all the networks Γ̃ ∈ (R+)G which satisfy ∂(Γ̃) = ∂Γ. Consequently, the fibers of LG are parametrized
by specifying a network ∂Γ ∈ (R+)∂G.

When G is a quad-graph, all the pertinent information needed to describe a fiber is contained
in the behavior of the strips and how the strips are glued together. More precisely, we will focus on
the partial functions associated to each of the strips of G as well as the conductance of the central
edge of G, denoted by c in Definition 3.17.

Formally, we set B = R+ × ∏n
i=1[wi], where wi are the words associated to the strips of G.

Any element F ∈ B contains sufficient information to study an associated fiber. We formalize this
statement using the following definition.

Definition 3.17. The concatenation map Ξ∶ (R+)∂G → B is defined by setting

Ξ(∂Γ) = (c, f1∣U1 , . . . , fn∣Un)

where fi∣Ui is the partial function associated to strip i and c is the conductance of the boundary
network ∂Γ across the central edge of G (Definition 2.6).

For notational convenience, we also set f0∣U0 = id ∣R+ . Since each Ui is non-empty open and each
partial function fi∣Ui is rational, we may analytically extend fi∣Ui to a rational function fi∶R→ R.

Note: The fibers of LG are parametrized by boundary networks ∂Γ. Applying the concate-
nation map produces the element F = Ξ(∂Γ) ∈ B. The tuple representing F contains sufficient
information to study the fiber L−1

G (∂Γ). For convenience, we will henceforth refer to F simply
as a fiber. All future usage of the word ‘fiber’ will refer to elements of B.

Definition 3.18. The following quantities are associated to any fiber F ∈ B:

(a) The function g(x) ∶= ∑n
i=0 fi(x) − c (mapping R→ R).

(b) The root set R ∶= g−1(0), the domain U ∶= ∩ni=1Ui, and the cardinality ∣F ∣ ∶= ∣R ∩U ∣.
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(c) The poles ei ∶= f−1
i (∞) and signs σi ∶= sgn Res fi(x)∣x=ei , for 0 ≤ i ≤ n.

Since fi(Ui) ⊂ R+, one has ei /∈ Ui.

Claim 3.19. We have the inequality ∣L−1
G (∂Γ)∣ ≤ ∣F ∣, where F = Ξ(∂Γ).

Proof. Consider any network Γ ∈ L−1
G (∂Γ). Let x denote the source conductance of Γ. By con-

struction of the concatenation map, it follows that x ∈ R ∩U . To show that the mapping Γ↦ x is
injective, it suffices to show that Γ can be recovered given ∂Γ and x.

Restrict attention to the identified initial subunit of G. Clearly the unmasked edges may be
recovered. All that remain are the monochromatic edges (see Subsection 2.2 as well as Lemma
3.7). The central edge of conductance x has been vacuously recovered. The only remaining black
monochromatic edges are the sink edges of initial switches. To recover these edges, apply the
quadrilateral rule (Claim 3.3) to the four non-diagonal edges of the switch. To recover a green
monochromatic edge, consider the quadrilateral containing said edge along with the central edge.
All edges besides the green edge are known, allowing recoverability of the green edge. Consequently
all edges of the initial subunit have been recovered.

Next, restrict attention to each of the strips in turn. Since we have recovered the initial subunit,
all the internal and terminal quads may be recovered sequentially. Finally, a terminal switch may
be recovered by observing that the conductance of the masked diagonal edge may be recovered
from the unmasked diagonal. Hence all edges of G have been recovered.

Claim 3.20. For any F ∈ B, there is a ∂Γ ∈ Ξ−1(F ) for which ∣L−1
G (∂Γ)∣ ≥ ∣F ∣.

Proof. Fix any x ∈ R∩U . We apply the standard method of population (Definition 3.5) to produce
a network Γ ∈ (R+)G. Assign x to the source conductance of each of the strips of G. For each of
the functions fi∣Ui associated to the fiber F , use the fact that fi∣Ui ∈ [wi] to obtain a factorization
with coefficients ci,j. Populate subunit j of strip i using the coefficient ci,j. Since x ∈ R ∩ U , we
observe that Ξ(∂Γ) = F . By Lemma 3.7, the network ∂Γ is independent of x. Since the map x↦ Γ
is clearly injective, it follows that ∣F ∣ ≤ ∣L−1

G (∂Γ)∣.

Theorem 3.21. We have the equality κ(G) = sup{∣F ∣∶F ∈ B}.

Proof. By Claim 3.19, we have κ(G) ≤ supF ∣F ∣. Claim 3.20 furnishes the reverse inequality.

4 Deformation of Fibers

In this section, we show how to remove fiber pathologies by performing deformations. The following
claim rests on the fact that we are using strip words, as opposed to general words.

Claim 4.1. Let F be a fiber with U /= ∅. Then g is non-constant.

Proof. Since U /= ∅, each Ui /= ∅. Thus by Theorem 3.16, the poles ei = f−1
i (∞) are finite for i /= 0.

Hence only the term f0 in the summation yielding g has a pole at ∞. Therefore no cancellation
occurs, whence g has a pole at ∞.
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4.1 Deformation I: Distinct Poles

Theorem 4.2. For each F , there is a fiber G with distinct poles such that ∣F ∣ ≤ ∣G∣.

Proof. We start by showing how to perturb the fiber F to produce a new fiber Fδ in which the
pole of f1 at e1 shifts to e1 + δ.

Recall that f1(x) is a Möbius function. Therefore the auxiliary function h∶R→ R given by

h(x) = x − f−1
1 (c −∑

i/=1

fi(x))

is well-defined. Moreover

h(x) = 0 ⇐⇒ c −∑
i/=1

fi(x) = f1(x) ⇐⇒ g(x) = 0.

Thus for any root rj ∈ R ∩U , one has h(rj) = 0.

Claim 4.3. There are neighborhoods rj ∈ Nj ⊂ Nj ⊂ U and 0 ∈ Ij such that

∣h−1
Nj

(δ)∣ + ∣h−1
Nj

(−δ)∣ = 2, for all δ ∈ Ij.

Proof. If R ∩ U = ∅, the claim holds vacuously. Henceforth suppose R ∩ U /= ∅. In particular, h
vanishes at rj ∈ R∩U . We deduce that h is non-constant as follows: If h were constant, then h ≡ 0
so g ≡ 0. By Claim 4.1, it follows that U = ∅, contradicting our assumption that R ∩U /= ∅.

Consequently h is non-constant, differentiable, and finite near rj. Dependent on whether h′(rj)
vanishes, h attains either a local extremum at rj or else is injective near rj. Thus for some open
Nj ∋ rj and Ij ∋ 0, we have

∣h−1
Nj

(δ)∣ + ∣h−1
Nj

(−δ)∣ =
⎧⎪⎪⎨⎪⎪⎩

1 + 1, (injective or δ = 0)

2 + 0, (extremum, δ /= 0)
for all δ ∈ Ij.

Shrink the neighborhoods Nj to ensure they are pairwise disjoint for 1 ≤ j ≤ ∣R ∩ U ∣ = ∣F ∣. Set
N = ⋃jNj and I = ⋂j Ij. Note that N = ⋃jNj ⊂ U .

Define the perturbation f1,δ(x) = f1(x−δ) for δ ∈ I (δ may be negative). Since f−1
1,δ(x) = f−1

1 (x)+δ
and f1 is factorizable, so is f1,δ (after shrinking I). Define

U1,δ =
⎧⎪⎪⎨⎪⎪⎩

(0, f−1
1,δ(∞)) (f−1

1,δ(0),∞)
(0, f−1

1,δ(0)) (f−1
1,δ(∞),∞)

chosen according to U1 in (1, Subsection 3.3)

Since the endpoints of U1,δ vary linearly in δ, it follows that for small δ we have U1,δ ⊂ R+. Thus
f1,δ ∣U1,δ

∈ [w1]. Replacing f1∣U1 with f1,δ ∣U1,δ
in the fiber F produces a new fiber Fδ ∈ B. Let gδ, Uδ,

and Rδ denote the function, domain, and root set of the fiber Fδ. Since

Uδ = U1,δ ∩
n

⋂
i=2

Ui,
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it follows that the endpoints of Uδ also vary linearly in δ. Therefore the condition N ⊂ U yields
that N ⊂ Uδ for δ ∈ I (after shrinking I). Thus Rδ ∩N ⊂ Rδ ∩ Uδ. In addition, we remark that
Rδ = g−1

δ (0) = h−1(δ). Therefore

∣Fδ ∣ = ∣Rδ ∩Uδ ∣ ≥ ∣Rδ ∩N ∣ =
∣F ∣

∑
j=1

∣Rδ ∩Nj ∣ =
∣F ∣

∑
j=1

∣h−1
Nj

(δ)∣. (2)

Shrink I such that it is symmetric about 0. Then for all δ ∈ I,

∣Fδ ∣ + ∣F−δ ∣
(2)
≥
∣F ∣

∑
j=1

∣h−1
Nj

(δ)∣ + ∣h−1
Nj

(−δ)∣

(Claim 4.3) = 2∣F ∣.

In particular, it follows that ∣F ∣ ≤ ∣Fδ ∣ for some δ ∈ I ∖ {0}.

Iterating this procedure, we may perturb the poles of F one at a time. This yields a fiber G
with distinct poles for which ∣F ∣ ≤ ∣G∣.

4.2 Deformation II: Distinguished Fibers

Definition 4.4. Suppose all poles of the fiber F are distinct, and U /= ∅.

(a) We order the poles in increasing order:

supU ≤ e−n− < e−n−+1 < ⋯ < e−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−

< e0®
∞

< e1 < ⋯ < en+−1 < en+
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+

≤ inf U.

Note that n− + n+ = n. We index modulo n + 1.

(b) The tuple of signs σ ∈ {±1}n+1 is defined to be σ = (σ−n− ,⋯, σ0®
1

,⋯, σn+).

(c) A trapped interval is an open interval (ei, ei+1) with σi = σi+1. Observe that each trapped
interval contains a root of g, by the Intermediate Value Theorem.

(d) The fiber is called distinguished if g has a unique root in each trapped interval, all remaining
roots in U , and n+1 global roots. (It turns out that in this case g is an (n+1)-sheeted covering
of R, however we will not need this fact.)

We write F̃ for a distinguished fiber (along with g̃, R̃, and Ũ for its function, root set, and domain).

Lemma 4.5. If F has at least as many trapped intervals as F̃ , then ∣F ∣ ≤ ∣F̃ ∣.

The reason why ‘typical’ fibers have fewer roots in U than distinguished fibers is that they
have more roots outside of U . We prove this by partitioning U c according to the poles {ei}, and
observing the behavior of g between the poles.
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Proof. Suppose for contradiction that ∣F ∣ > ∣F̃ ∣. Since each trapped interval contains a root of g,
we have ∣R ∖U ∣ ≥ #{trapped intervals of F}. Applying the hypothesis yields

∣R∣ = ∣F ∣ + ∣R ∖U ∣
> ∣F̃ ∣ +#{trapped intervals of F̃}
= n + 1,

since F̃ is distinguished. Hence g has more roots than its degree, so it is constant. Applying Claim
4.1, we conclude U = ∅. Thus ∣F ∣ = 0, contradicting our assumption that ∣F ∣ > ∣F̃ ∣.
Theorem 4.6. For each F , there is a distinguished fiber F̃ with ∣F ∣ ≤ ∣F̃ ∣.

Proof. Suppose that U /= ∅. By Theorem 4.2, we may suppose that all poles ei of F are distinct.
Construct a set R̃ with n + 1 elements as follows. Append an element of each trapped interval to
R̃. As there are at most n trapped intervals, we may select the remaining elements from U .

We are ready to perform the main construction. For 1 ≤ i ≤ n, let

g̃(x) = ∏r∈R̃(x − r)
∏n
i=1(x − ei)

, f̃i(x) =
Res g̃(x)∣x=ei

x − ei
+ di (3)

with di left unspecified for the moment.

Claim 4.7. The function f̃i is factorizable for di sufficiently large.

Proof. Observe that f̃−1
i (∞) = f−1

i (∞) ∈ R+. Choosing di sufficiently large ensures that f̃i(0), f̃i(∞) ∈
R+. As factorizability need only be checked at 3 points, the claim follows.

Claim 4.8 (Sign Coherence). We have the identity sgn Res g̃(x)∣x=ei = σi.

Proof. Using the indexing of Definition 4.4, we consider indices i ∈ [−n−, n+]. We compute that

Res g̃(x)∣x=∞ = lim
x→∞

g̃(x)
x

= lim
x→∞

∏r∈R̃ (1 − r
x
)

∏i/=0 (1 − ei
x
)

= 1.

Consequently the claim holds for i = 0.

For convenience, let σ̃i = sgn Res g̃(x)∣x=ei . We consider the ratio

Res g̃(x)∣x=ei
Res g̃(x)∣x=ei+1

= ∏r∈R̃(ei − r)
∏j/=i,0(ei − ej)

/ ∏r∈R̃(ei+1 − r)
∏j/=i+1,0(ei+1 − ej)

Ô⇒ σ̃i
σ̃i+1

= −∏
r∈R̃

sgn( ei − r
ei+1 − r

)

= (−1)∣R̃∩(ei,ei+1)∣+1.

By construction of R̃, we have

∣R̃ ∩ (ei, ei+1)∣ =
⎧⎪⎪⎨⎪⎪⎩

1, (ei, ei+1) is trapped

0, otherwise.

Consequently σ̃i
σ̃i+1

= σi
σi+1

. Thus the claim follows by induction on ∣i∣.
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By Claims 4.7 and 4.8, it follows that f̃i∣Ũi ∈ [wi] for some Ũi. In fact, we have

Ũi =
⎧⎪⎪⎨⎪⎪⎩

(0, f̃−1
i (∞)) (f̃−1

i (0),∞)
(0, f̃−1

i (0)) (f̃−1
i (∞),∞)

chosen according to Ui in (1, Subsection 3.3)

Set Ũ = ⋂i Ũi.

Claim 4.9. For all sufficiently large di in (3), we have U ⊂ Ũ .

Proof. It suffices to show that Ui ⊂ Ũi for di sufficiently large.

First observe that if f̃−1
i (∞) is used as an endpoint of Ũi, the claim is immediate. Indeed,

ei = f̃−1
i (∞) = f−1

i (∞)

so in this case Ui = Ũi.
Next, suppose f̃−1

i (0) is used an endpoint; say Ũi = (0, f̃−1
i (0)) for specificity. For such a

function class, fi and f̃i must be increasing functions on Ui and Ũi respectively. Consequently
f−1
i (0) < ei. On the other hand,

f̃−1
i (0) = ei −

Res g̃(x)∣x=ei
di

.

As Res g̃(x)∣x=ei < 0 (since f̃i is increasing), it follows that f̃−1
i (0)di > f−1

i (0) for all sufficiently large

di. Thus Ũi ⊃ Ui. The remaining case Ũi = (f̃−1
i (0),∞) follows a symmetrical argument.

Choose c̃ = ∑n
i=1(di − ei) +∑r∈R̃ r, and ensure that c̃ > 0 by increasing di if necessary. Thus we

have produced the data of a fiber F̃ = (c̃, f̃1∣Ũ1
, . . . , f̃n∣Ũn) ∈ B.

Claim 4.10. The function associated to F̃ is g̃.

Proof. We have rigged our construction to produce the identity

g̃(x) =
n

∑
i=0

f̃i(x) − c̃ (4)

a posteriori. Both sides have simple poles at ei for 0 ≤ i ≤ n, so we may establish equality by
comparing first the residues then the constant terms. Note that the residue at e0 = ∞ is defined
to be the coefficient of x.

We claim that for any 0 ≤ i, j ≤ n,

Res f̃j(x)∣x=ei =
⎧⎪⎪⎨⎪⎪⎩

0, i /= j
Res g̃(x)∣x=ei , i = j.

The i /= j case follows since the poles are distinct. If i = j = 0 the claim is immediate. Lastly if
i = j ≥ 1, apply (3) to conclude. Therefore

Res g̃(x)∣x=ei = Res(
n

∑
i=0

f̃i(x) − c)∣
x=ei

, 0 ≤ i ≤ n.
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It remains to show that the two sides have the same constant term. To this end, we compute

g̃(x) = ∏r∈R̃(x − r)
∏n
i=1(x − ei)

= x +
n

∑
i=1

ei −∑
r∈R̃

r + o(1).

Since f̃i(x) = di + o(1) for i ≥ 1 and c̃ = ∑n
i=1(di − ei) +∑r∈R̃ r, we have

n

∑
i=0

f̃i(x) = x +
n

∑
i=1

di + o(1)

= g̃(x) + c̃ + o(1).

Thus the two sides of (4) have the same constant term and residues, so the functions agree.

Since g̃ has been constructed with root set R̃, Claim 4.10 implies R̃ is the root set of F̃ .
Moreover, it is immediate from our construction of Ũ that it is the domain of F̃ . Lastly, the fibers
F and F̃ have the same poles and signs (provided the poles of F are distinct; see the first line of
this proof). Thus we have located all relevant quantities associated to F̃ .

By construction of R̃, it follows that F̃ has n + 1 global roots, a unique root in every trapped
interval, and all remaining roots in U . Since U ⊂ Ũ (Claim 4.9), it follows that F̃ is a distinguished
fiber. As the fibers F and F̃ have the same trapped intervals (Claim 4.8 and Equation 3), we may
apply Lemma 4.5 to conclude that ∣F ∣ ≤ ∣F̃ ∣.

In the remaining case U = ∅, we have ∣F ∣ = 0. Choose any fiber F from the image of the
response map; that is, take F ∈ Ξ(Im(LG)). Note this set is non-empty, since it is the image of a
non-empty set. It follows that F has non-empty domain U , whereupon we apply the first part of
the proof to obtain a distinguished fiber F̃ . Since ∣F ∣ ≤ ∣F̃ ∣ holds vacuously, we are done.

Corollary 4.11. We have the equality

sup{∣F ∣∶F ∈ B} = sup{∣F̃ ∣∶ F̃ ∈ B such that F̃ is distinguished}

Proof. By containment, sup ∣F̃ ∣ ≤ sup ∣F ∣. The reverse follows directly from Theorem 4.6.

5 Counting the Arity

The size of a distinguished fiber F̃ turns out to depend only on its tuple of signs.

Definition 5.1. The discrepancy d(σ) of a tuple σ is ∣{i∶σi /= σi+1}∣.

Lemma 5.2. We have ∣F̃ ∣ = d(σ) + 1, where σ is the tuple of signs associated to F̃ .

Proof. If d(σ) = 0, then each of the intervals (ei, ei+1) for −n− ≤ i < i + 1 ≤ n+ are trapped.
Consequently g̃ has n roots in trapped intervals, leaving a single root of g̃ in Ũ . In the general
case, there are only n − d(σ) trapped intervals, yielding d(σ) + 1 roots in Ũ .
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Let Ω ⊂ {±1}n+1 denote the set of tuples σ = (s,1, t), where s ∈ {±1}n− and t ∈ {±1}n+ satisfy

W (G) = (#−1(t) #1(t)
#1(s) #−1(s)

) (5)

For the remainder of this section, we write W =W (G) (the definition is in Subsection 2.3).

Lemma 5.3. The map from {distinguished fibers}→ {±1}n+1 given by F̃ ↦ σF̃ has image Ω.

Proof. Index the strips of G using i as in Definition 4.4. Suppose strip i has initial subunit j and
terminal subunit k. Then the function class [wi] contains functions of sign (−1)j+k+1. Moreover,
sgn i = (−1)j. Consequently

Wjk = #{strips with σi = (−1)j+k+1 and sgn i = (−1)j}.

This translates to the conditions of (5); hence σF̃ ∈ Ω.

Conversely, take σ ∈ Ω. Build a fiber F with arbitrary distinct poles ei and signs σi, using the
indexing of Definition 4.4. Then Theorem 4.6 produces a fiber F̃ for which σF̃ = σF = σ.

Theorem 5.4. κ(G) = min{2W11,2W12 + 1} +min{2W21 + 1,2W22} + 1

Proof. By Theorem 3.21,

κ(G) = sup
F

∣F ∣

(Corollary 4.11) = sup
F̃

∣F̃ ∣

(Lemma 5.2) = sup
F̃

d(σF̃ ) + 1

(Lemma 5.3) = sup
Ω
d(σ) + 1.

When σ = (s,1, t), we have d(σ) = d((s,1)) + d((1, t)). Therefore

κ(G) = sup{d((1, t)) ∣ #−1(t) =W11,#1(t) =W12}
+ sup{d((s,1)) ∣ #1(s) =W21,#−1(s) =W22} + 1

= min{2W11,2W12 + 1} +min{2W21 + 1,2W22} + 1.

We elaborate on the last line. Configurations of σ which maximize discrepancy are of the form

supU ⋯ +
e−2

−
e−1

+
e0

−
e1

+
e2 ⋯ inf U.

The formula for supd((1, t)) may be derived as follows. The maximum discrepancy coincides with
the length of the longest alternating sign chain beginning at e0 with the specified quantity of ±1
terms in t. For W12 sufficiently large, the chain has length 2W11: indeed, each of the W11 negative
components of t belong to the chain, and there are an equal number of 1 and -1 terms appearing
in the chain. When W11 is sufficiently large, the chain has length 2W12 + 1 as there are W12 + 1
appearances of 1 in the chain and W12 appearances of -1.

19



6 Applications

Corollary 6.1. Quad-graphs attain every finite arity.

Proof. Choose any quad-graph G with

W (G) = (⌊
n−1

2
⌋ ⌈n−1

2
⌉

0 0
) .

Applying the formula from Theorem 5.4, it follows that κ(G) = n.

We say that a graph G is recoverable if κ(G) = 1.

Corollary 6.2. A quad-graph is recoverable if and only if

W (G) = (0 ⋆
⋆ 0

) .

In other words, each strip must have exactly one switch.

Corollary 6.3 (Duality). Arity is preserved under row interchange (but not column interchange)
of W (G).

6.1 Extremal Inequalities

We conjecture the following bound on κ.

Conjecture 6.4. Suppose G = (IntV, ∂V,E) satisfies 1 < κ(G) <∞. Then

2κ(G) − 1 ≤ min{∣ IntV ∣, ∣∂V ∣
2

}

This conjecture implies that our construction produces the minimal graphs of given arity.

An auxiliary edge of a graph with boundary G consists of a boundary-boundary edge. Let
Gtop denote the graph G with auxiliary edges removed.

Conjecture 6.5. Suppose equality holds in Conjecture 6.4 for some graph H. Then there is a
quad-graph G with

W (G) = (⌊
κ−1

2
⌋ ⌈κ−1

2
⌉

0 0
) or ( 0 0

⌊κ−1
2

⌋ ⌈κ−1
2

⌉)

such that each strip of G contains precisely 3 subunits, for which Htop = Gtop after possible twisting
of the orientations of the central edge identifications.

6.2 Surfaces

Given any quad-graph G, define a surface with boundary ΣG by building a CW-complex out of
Gtop as follows. Take the 0-cells to be the vertices of Gtop, and the 1-cells to be the edges of Gtop.
For each interior vertex of Gtop, attach a 2-cell to the boundary of the quadrilateral surrounding
the vertex.

Conjecture 6.6. There is an embedding of Gtop onto ΣG and the genus of Gtop is equal to the
genus of ΣG. Moreover, there is a simple relationship between the arity of G and the genus of ΣG.
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