
ar
X

iv
:1

51
0.

05
99

5v
1 

 [
m

at
h.

PR
] 

 2
0 

O
ct

 2
01

5

FROG MODEL WAKEUP TIME ON THE COMPLETE GRAPH

NIKKI CARTERN, BRITTANY DYGERT, MATTHEW JUNGE, STEPHEN LACINA,
COLLIN LITTERELL, AUSTIN STROMME, AND ANDREW YOU

Abstract. The frog model is a system of random walks where active particles set sleep-
ing particles in motion. On the complete graph with n vertices it is equivalent to a well-
understood rumor spreading model. We given an alternate and elementary proof that the
wake-up time, i.e. the expected time for every particle to be activated, is Θ(logn). Ad-
ditionally, we give an explicit distributional equation for the wakeup time as a weighted
sum of geometric random variables. This project was part of the University of Washing-
ton Research Experience for Undergraduates program.

1. Introduction

The frog model starts with an awake frog at the root of a graph and one sleeping frog at
each other vertex. In discrete time, awake frogs perform nearest neighbor simple random
walks and wake any sleeping frogs they encounter. When first introduced by K. Ravishankar
about twenty years ago, the model was known as the egg-model (see [TW99]); R. Durrett
is credited with the zoomorphism of viewing particles as frogs. This likely comes from the
chaotic way particles wake up. We study the model on the complete graph with n vertices,
Kn. In particular we deduce that the wakeup time Tn, the time for all frogs to wake up, has
expected value on the order of log n.

It was brought to our attention in the final stages of this project that the wakeup time for
the frog model on Kn is equivalent to a rumor spreading model introduced in [FG85]. This
model starts with a town of n people where one knows a rumor. At each time step those
who know the rumor call a uniformly random resident and inform them. The frog model
can be naturally coupled with the spread of the rumor so that the number of awake frogs is
the same as the number of informed residents. Hence the wakeup time is equivalent to all n
residents knowing the rumor. We remark that the locations of the frogs are an extra bit of
randomness not accounted for in the rumor spreading model. For this reason, the coupling
only works on Kn.

In [FG85] they show that Tn/ log2 n
P→ 1 + logn+O(1) which implies our theorem. The

idea of the proof in [FG85] is to break up the spread of the rumor into five stages (see the
appendix for a list of the stages). For example, phase one is the time to wake upN frogs with
N some large fixed constant. A finer analysis in [Pit87] shows that Tn = log2 n+log n+O(1)
in probability. They show that waking is closely approximated by a deterministic equation
(see the appendix). A tight analysis forETn is in [DK], where they use three phases and some
sophisticated estimates to show that ETn = c logn+ b+o(1) with c = 1+(1/ log(2)) ≈ 2.44
and b = 2.765. Our result is less precise, but the proof is more elementary. We use two
phases and only rely on couplings and Markov’s inequality.

Although it is equivalent to the spread of a rumor on Kn, the wakeup time for the
frog model has otherwise not been studied. The recent article [HJJ15, Open Question 5]
introduces the problem on finite d-ary trees. A survey article [Pop03] asks a similar question
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for a variant of the frog model where frogs perish after taking t steps. They propose a study
of the minimal t that guarantees at least half the frogs on a given graph will be activated
with probability greater than 1/2. It is claimed (without proof) that this value on the
complete graph is O(log n). Though not equivalent, this is closely related to our result for
the frog model cover time.

On finite graphs the frog model is a model for epidemics, or the spread of a rumor.
The article [CF09] describes many related variants. It also appears in physics literature
as a model for combustion [RS04] known as A + B 7→ 2A, where we replace awake and
sleeping frogs with flames and fuel, respectively. The combustion process is studied on Z

d.
Noteworthy theorems include the fact that the origin is visited infinitely often for all d ≥ 1
[TW99] and a shape theorem that says, when properly scaled, the set of activated vertices
converges to a convex region in the unit simplex ([AMP02, AMPR01]).

A model that is in a loose sense the reverse of the frog model is coalescing random walk.
Introduced in [EN74], this is the process that starts with a particle at each site and when
particles collide they coalesce into one. Like the frog model, this is typically studied in Z

d.
For instance, coalescing random walk is recurrent for all d ≥ 1. This was first shown in
[BG80], and refined further in [Gri78, vdBK00, Arr83, Arr81]. Computer science literature
studies coalescing random walk on finite graphs. Of particular interest is the coalescance
time; the expected time for all particles to coalesce into a single particle. In [Cox89] they
study this on the torus. The recent paper [CEOR12] gives bounds on rather general graphs.

Our result should be compared with the cover time for multiple random walks on a graph
([ES11] and [AAK+07])). The basic question is how the cover time is reduced by using
the combined ranges of k random walks. This is studied on a variety of different graphs,
and the speedup depends on the graph structure. For the complete graph, [AAK+07] cites
the folklore (we give a proof in Lemma 2 (IV)) that the speedup is linear, meaning the
cover time for a single random walk is k times the cover time for k random walkers. All of
the results for speedup of multiple walk take the worst-case scenario across every starting
configuration for the k walkers. The frog model is different in that we have only one possible
starting configuration, and just one active particle. However, the placement of sleeping frogs
is optimal in the sense that activated particles are more likely to be near unexplored sites.
We ask a question regarding this in Further Questions (i).

1.1. Main theorem and overview. Before stating the theorem we review asymptotic
notation. We say that f(n) = O(g(n)) if there exists c > 0 such that for all sufficiently
large n it holds that f(n) ≤ cg(n). We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)). The wakeup time, Tn, is formally defined in the next section.

Theorem 1. ETn = Θ(log(n)).

Additionally, in Section 4 we give an explicit recursive formula for the distribution of Tn.
This is in Proposition 5. The formula involves some sophisticated combinatorial objects and,
combined with the formula in [DK] for ETn, yields a bound on their growth that could be
of independent interest.

Most of our work is done on K◦
n, the complete graph with a self loop at each vertex.

In Lemma 2 (IV) we show the frog model on K◦
n has a stochastically larger wakeup time.

We then prove Theorem 1 in two phases. First, we show that it takes logarithmic time to
wake the first n/2 frogs. This is done by embedding a process that grows slower than the
frog model, but still (on average) grows exponentially. The idea is to, when say k frogs are
awake, only allow more frogs to wake up if at least αk asleep frogs are visited. This occurs
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with some probability qk,n. We show in Proposition 3 that

inf
n≥3

(

min
k<n/2

qk,n

)

≥ p∗ > 0.

This lower bound is obtained by having the k awake frogs jump one at a time, and thinking
of the number of single jumps to wake the (i + 1)st frog as a Geometric with mean n−k−i

n
waiting time. An application of Markov’s inequality gives a uniform bound in terms of α
for all k < n/2 and n ≥ 3.

Next, thinking of each time an α proportion wakes up as a Bernoulli(qk,n) trial, the
number of successes after t steps is stochastically larger than a Bin(t, p∗) random variable.
Thus, the number of frogs awake at time t is stochastically larger than

(1 + α)Bin(t,p∗).

Moreover, the time for this quantity to exceed n/2 is a sum of O(log n) geometric random
variables with mean p∗. This is made formal in Lemma 2 (V). We can conclude that the
expected time it takes to wake the first n/2 frogs is O(log n).

Once half the frogs are awake, we ignore the contribution of any new frogs added and
show that n/2 frogs cover the remaining vertices in O(log n) steps. This is made precise in
Lemma 2 (IV) by reducing to the coupon collector problem.

1.2. Further Questions. The wakeup time for the frog model is a largely unexplored topic.
There are many further questions one could ask. We remark that [Pop03] and [HJJ15] discuss
a few other problems on finite graphs.

(i) It is interesting to compare the wakeup time for the frog model on G, a graph with
n vertices, to the cover time for n independent random walks on G started in the
least optimal starting configuration. Perhaps the frogs being evenly spread might
overcome the disadvantage of starting with only one awake particle. Are there graphs
for which the frog model wakeup time is faster than the cover time for n-multiple
random walks? The full binary tree of height n is a good candidate. The expected
cover time with 2n particles started at the same leaf is O(n2(2/

√
2)n) (see [Sau10]),

whereas the wakeup time is conjectured to be polynomial in n (see [HJJ15]).
(ii) LetG(n, p) denote an Erdős-Rényi graph (i.e. the random graph obtained by keeping

each edge in Kn with probability p). What is the wakeup time for the frog model on
G(n, p)? For fixed p > 0, this should still with high probability be O(log n), but for
pn decaying with n the graph is sparser and the wakeup time is possibly larger.

(iii) What is the wakeup time for other graphs? For instance, the path, cycle, and grid.

2. Formal model and couplings

Here we give a formal definition of the frog model. Then we describe in Lemma 2 the
five couplings we depend on in proving our main theorem.

2.1. Formal definition of the frog model. We borrow much of our notation from
[AMP02]. Let V be the vertex set of Kn. Consider the collection, {Fv(t) : v ∈ V }, of
independent random walks on Kn each satisfying Fv(0) = v. These random walks corre-
spond to the the trajectory of each frog. We now introduce stopping times to account for
the waking up that occurs. Define

t(v, u) = min
t
{Fv(t) = u},
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the time that the frog originally at vertex v takes to reach vertex u. Also define

T (v, u) = inf

{

k
∑

i=1

t(vi−1, vi) : v0 = v, . . . , vk = u for some k

}

,

the first passage time from v to u in the frog model. Then T (v0, u) gives the time it takes
for u to be woken. For each u ∈ V , the position of the frog originally at u at time t is
defined to be

Pu(t) =

{

u, t ≤ T (v0, u)

Fu(t− T (v0, u)), t > T (v0, u)
.

With this we can define Λ(t) = {u ∈ V : T (v0, u) ≤ t}, the set of sites that have been visited
by time t or the set of awake frogs at time t. Define the number of frogs awake at time t to
be Nt = |Λ(t)|. Thus, the time to wake all of the frogs is Tn = inf{t : Nt = n}.

2.2. Couplings and stochastic dominance. The frog model only depends on the under-
lying random walk trajectories. It has the nice feature that restricting the range of frogs,
or ignoring woken frogs yields models with monotonically slower waking behavior. This is
made formal using couplings and stochastic dominance.

Let X and Y be two random variables. If for each a > 0 we have P[Y ≥ a] ≥ P[X ≥ a]
then we say that Y stochastically dominates X , written X � Y . A thorough reference
on stochastic domination is [SS07]. Note that if A � B, then EA ≥ EB. An equivalent
condition to stochastic dominance is that X � Y if and only if there exists a coupling (X,Y )
with X ≤ Y a.s. Formally, a coupling is a probability space with (possibly dependent)
random variables X ′ and Y ′ that have the same distribution as X and Y , respectively.
Couplings can often be described intuitively and rigorously in words. In the following
lemma we describe all of the couplings used in this paper.

Lemma 2. The following stochastic dominance relations hold:

(I) Let {qi}ti=1 be a sequence in [0, 1] with qi > p for all i = 1, 2, . . . , , t. It holds that

t
∑

i=1

Ber(qi) � Bin(t, p).

Here Ber(p) denotes a Bernoulli-p random variable and Bin(t, p) is a binomial ran-
dom variable with t trials.

(II) Let K◦
n be the complete graph with a self-loop added to each vertex. If T ◦

n is the
wakeup time for the frog model on K◦

n, then

Tn � T ◦
n .

(III) Let τn/2 and Cn/2 be as defined in the proof of Theorem 1. It holds that

Tn � τn/2 + Cn/2.

(IV) Let K◦
n be the complete graph with a self-loop added to each vertex. Define C◦

k to be
the time for k random walks to collectively visit every vertex of K◦

n, and define Ck

analogously for Kn. It holds that

Ck � C◦
k

d
=

C◦
1

k

d
=

1

k

n
∑

i=1

Geo

(

n− i

n

)

. (1)

Where Geo(p) is the number of Bernoulli-p trials until a success occurs.
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(V) Consider a modified frog model on K◦
n where, when k frogs are active, more frogs

wake up only if at least αk sleeping frogs are visited at the next step (for some fixed
α > 0). When this occurs we select an arbitrary subset of ⌈αk⌉ of these frogs and
allow them to wake up. The others remain asleep. Thus, on this event there are at
least (1 + α)k frogs awake. Proposition 3 shows that waking at least αk frogs occurs
with probability at least p∗ > 0 for any k and and sufficiently large n. We then have

(1 + α)Bin(t,p∗) � Nt,

and for τn/2 := inf{t : Nt ≥ n/2} and n∗ :=
⌊

log(n/2)
log(1+α)

⌋

we have

τn/2 � inf{t : (1 + α)Bin(t,p∗) ≥ n/2} d
=

n∗
∑

1

Geo(p∗).

Proof. All of the proofs establish stochastic dominance via couplings.

(I) Define X =
∑t

i=1 Ber(qi) and Y =
∑t

i=1 Ber(p) = Bin(t, p). Let {Ui}ti=1 be uniform
[0, 1] random variables, so that

X
d
=

t
∑

i=1

1{Ui ≤ qi},

Y
d
=

t
∑

i=1

1{Ui ≤ p}.

Our hypothesis qi > p guarantees that X ≥ Y for all realizations of the Ui.
(II) Pair the frogs on Kn and K◦

n in the natural way. Whenever a frog on K◦
n moves to

a new vertex, have the corresponding frog on Kn follow it. In this way, the frogs
on each graph perform random walks, but those on K◦

n possibly spend extra steps
traveling self-loops. This coupling ensures that Tn ≤ T ◦

n in every realization of the
model.

(III) Run the frog model up to time τn/2. Of the Nτn/2
frogs awake choose a batch of

n/2 of them. Now think of this batch as paired to another frog model in the same
configuration as ours at time τn/2. Our n/2-batch frogs follow their counterparts.
The time, Cn/2, it takes for the batch to visit all n vertices of Kn is at least as large
as the Tn − τn/2 steps taken by the frog model they are coupled with. In this way,
the model restricted to a batch spends τn/2 + Cn/2 steps, which is at least the Tn

steps taken by the frog model.
(IV) A similar coupling as in (II) gives Ck � C◦

k . Observe that on K◦
n every site is

accessible in one step. Thus, the set of sites visited by k random walks has the same

law as the range of a single random walk in k steps. It follows that kC◦
k

d
= C◦

1 . The
last equality

C◦
1

d
=

n
∑

i=1

Geo

(

n− i

n

)

follows from the observation that the waiting time for a single random walk on K◦
n

to increase its range from i to i+1 is the waiting time to have a success in a sequence
of Bernoulli((n− i)/n) trials. This is distributed as a Geo((n− i)/n). As increases
in the range are independent and skip-free, the claimed formula follows.

(V) By (II) we preserve the dominance relation by working on K◦
n. Since each successful

increase in the number of frogs is a Bernoulli trial with probability at least p∗ it
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follows from (I) that this further dominates the random quantity (1 + α)Bin(t,p∗).
The fact that Nt dominates this quantity is a straightforward consequence of the
fact that we are only ignoring frogs. And, the fact that τn/2 is less than the time

for (1+α)Bin(t,p∗) to exceed n/2 follows immediately from the relationship between
(1 + α)Bin(t,p∗) and Nt.

Taking the log of each side, we have the stopping time inf{t : (1 + α)Bin(t,p∗) ≥
n/2} is equivalent to the time for a Bin(t, p∗) random variable to exceed log(n/2)/ log(1+
α). The claimed distributional equality is just the fact that Bin(t, p∗) is a skip-free
process which increases independently at each increment after Geo(p∗) steps.

�

3. Proving Theorem 1

We start by elaborating a bit on Lemma 2 (V). Let α < 1 be a yet to be chosen parameter.
Define the probabilities qk,n = qk,n(α) that the frog model on K◦

n with k frogs awake wakes
at least αk frogs in one time step. Let p∗ = p∗(α) = infn≥3

(

mink<n/2 qk,n
)

. Our first goal
is to establish that p∗ is bounded away from 0.

Proposition 3. For α = 1/10 it holds that p∗ ≥ 1/37.

Proof. It is useful to decompose one time step in the frog model with k frogs awake on
K◦

n into k steps by a single random walk. Notice that the number of steps by the single
random walk to visit the first sleeping frog is the waiting time for a success in a sequence of
Ber(n−k

n ) trials (i.e. a Geo(n−k
n ) random variable). Similarly, once i of the n− k frogs have

been woken the waiting time is Geo(n−k−i
n ). Let X = X(k, n, α) =

∑⌈αk⌉
i=0 Geo

(

n−k−i
n

)

.
This represents the number of the k awake frogs that jump in order to wake ⌈αk⌉ more. It
follows that qk,n = 1−P[X > k]. And, by Markov’s inequality

qk,n ≥ 1− EX

k
. (2)

We can use linearity and the fact that the mean of a Geo(p) random variable is 1/p to
estimate EX :

EX =

⌈αk⌉
∑

i=0

n

n− k − i
= n

n
∑

i=n−⌈αk⌉

1

i
≤ n

n− (n− ⌈αk⌉)
n− ⌈αk⌉ =

n⌈αk⌉
n− ⌈αk⌉ .

Since ⌈αk⌉ ≤ αk + 1 we can bound EX/k by

EX

k
≤ αk + 1

k

n

n− αk − 1

=
αn

n− αk − 1
+

1

k

n

n− αk − 1
.

Note that q1,n = 1− 1
n ≥ 2

3 since we assume n ≥ 3. Thus, we can work with k ≥ 2. Also by
assumption k is no larger than n/2. We then preserve the above bound by setting k = n/2
in the negative terms and k = 2 in the 1

k term. This results in

qk,n ≥ 1− αn

n− αn/2− 1
− n

2(n− αn/2− 1)
= 1− α+ 1

2

1− α
2 − 1/n

.

As n ≥ 3 we arrive at p∗ ≥ 1 − α+ 1
2

2
3 − α

2

. If we evaluate at α = 1/10, then p∗ ≥ 1/37, which

completes the proof. �



FROG MODEL WAKEUP TIME ON THE COMPLETE GRAPH 7

3.1. Proof of Theorem 1. With Lemma 2 and Proposition 3 we can prove our main
theorem.

Proof of Theorem 1. Since the number of frogs can at most double at each step we have
Tn ≥ log2(n). The lower bound immediately follows. As for the asymptotic upper bound,
let τn/2 = inf{t : Nt ≥ n/2} be the time to wake at least n/2 frogs, and let Cn/2 be the time
for n/2 walkers to visit every vertex of Kn (taken to be the maximum such time over all
possible starting configurations of walkers). Lemma 2 (III) describes a coupling where we
ignore the benefit of waking more frogs after time τn/2 to conclude

Tn � τn/2 + Cn/2. (3)

Here ‘�’ denotes stochastic domination, see Section 2.2 for the definition. The couplings in
Lemma 2 (IV) and (V) along with Proposition 3 imply that there exists α, p∗ > 0 such that

τn/2 �
⌊ log(n/2)

log(1+α)⌋
∑

i=1

Geo(p∗) and Cn/2 � 2

n

n
∑

i=1

Geo

(

n− i

n

)

.

Using the fact that the expectation of a Geometric(p), random variable is 1/p we can take
the expectation of both sides of (3) to obtain

ETn ≤ (1/p∗)

⌊

log(n/2)

log(1 + α)

⌋

+
2

n

n−1
∑

i=1

n

n− i
= O(log n).

Note the first summand above is O(log n) because p∗ and α are positive. The second
summand is O(log n) by canceling the factors of 1/n and n then comparing to the harmonic
numbers

∑n
i=1

1
i ≈ logn. �

4. Exact distribution of Tn

Let σk = σk(n) be the time to wake up all n frogs on the complete graph given that there
are k frogs currently awake. So, σ1 = Tn.

Proposition 4. Let

pj,k = P[k awake frogs visit j sleeping frogs on the next step].

It holds that

pj,k =
1

(n− 1)k

k
∑

ℓ=j

(

k

ℓ

)(

n− k

j

)

Sℓ
j,k(k − 1)k−ℓ,

where Sℓ
j,k the number of ways to distribute ℓ balls into k boxes so that no box is empty.

This is given by the formula

Sℓ
j,k = j! · S(k, l) =

j
∑

k=1

(

j

j − k

)

(−1)j−kkℓ,

where S(k, ℓ) is Stirling’s number of the second kind.

Proof. Observe that to wake up j more frogs, we can use between j and all k frogs, and
distribute them onto j unvisited vertices. So let ℓ range between j and k. There are

(

k
ℓ

)

ways to choose ℓ of the already awoken frogs to visit the j new vertices. We can choose j
new vertices in

(

n−k
j

)

ways. Once we have chosen the ℓ frogs and j new vertices, we can



8 N. CARTERN, B. DYGERT, M. JUNGE, S. LACINA, C. LITTERELL, A. STROMME, AND A. YOU

distribute them in (by definition) Sℓ
j,k ways. Finally the remaining k− ℓ frogs can go to any

of the k − 1 already visited vertices they are adjacent to, so they can move in (k − 1)k−ℓ

ways. Also, since there are k frogs and we are thinking of them as distinguishable, each one
of these events happens with probability 1/(n− 1)k. Thus we get, by summing over all ℓ,
that

pj,k =
1

(n− 1)k

k
∑

ℓ=j

(

k

ℓ

)(

n− k

j

)

Sℓ
j,k(k − 1)k−ℓ.

We claim that for fixed ℓ:

Sℓ
j,k =

j
∑

k=1

(

j

j − k

)

(−1)j−kkℓ

To see this we proceed by inclusion exclusion principle. Observe jℓ counts the number of
ways to distribute ℓ distinguishable balls to j distinguishable boxes with some boxes left
empty possibly. So to count the number of ways with no boxes left empty, we should
subtract the number with at least one empty, which is

(

j
j−1

)

(j − 1)ℓ since we have j − 1

boxes that we will possibly place balls in, and have j − 1 choices for each of the balls. But
now all the ways with exactly two boxes left empty have been added once and subtracted
twice (since we counted them

(

2
1

)

times in the subtraction), so we should add
(

j
j−2

)

(j − 2)ℓ

to count the number of ways with at least two left empty. Keep going in this fashion to get

Sℓ
j,k =

j
∑

k=1

(

j

k

)

(−1)j−k(j − k)ℓ =

j
∑

k=1

(

j

j − k

)

(−1)j−k(j − k)ℓ.

�

An explicit formula for time to wake all n frogs on the complete graph with n vertices is
defined recursively as follows:

Proposition 5. Let pj,k be as in Proposition 4 and let p′j,k =
1−p0,k

p0,k
. The random variables

σk satisfy the following recursive distributional relationship

σ1
d
= 1 + σ2,

σk
d
=















Geo(1− p0,k) +
2k
∑

j=k+1

p′j,kσk+j , 2 ≤ k ≤ n
2

Geo(1− p0,k) +
n
∑

j=k+1

p′j,kσk+j ,
n
2 < k ≤ n− 1

.

Recall that Tn = σ1.

Proof. The expression for σ1 is the observation that after one step there will always be two
frogs awake. When k ≥ 2 frogs are awake the time to wake more frogs is a geometric random
variable with mean 1 − p0,k. Conditioned that the k frogs wake another frog, we obtain j
more awake frogs with probability p′j,k. In this situation we now must wait σk+j steps. �

5. Appendix

Phases for argument in [FG85].

i. The time inform N residents for some fixed constant N (not growing with n).
ii. The time to go from N to ζn informed residents with 0 < ζ < 1 a fixed constant.
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iii. The time to go from ζn to (1 − ǫ)n with ǫ > 0 a small fixed constant.
iv. The time to go from (1 − ǫ)n to n − R informed residents where R is a large fixed

constant.
v. The time to go from n−R to n informed residents.

Deterministic equation in [Pit87]. Letting N(t) be the number of informed residents at
time t:

N(t+ 1) = n− (n−N(t)) exp(−N(t)/n).

Phases for argument in [DK].

i. The time inform
√
n residents.

ii. The time to go from
√
n to n/2 informed residents.

iii. The time to go from n/2 to n informed residents.
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