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Abstract

Percolate the faces of a hexagonal lattice with probability p. Let
E(m,n, p) denote the expected number of pieces. Let λ(m,n, p) = E(m,n,p)

mn
.

This paper shows that the sequence {λ(m,n, p)} is decreasing and uses

this fact to show that λ(p) = limm,n→∞
E(m,n,p)

mn
exists. Further, this pa-

per gives a uniform bound on the convergence of {λ(m,n, p)} and proves
the relationship λ(p)− λ(1− p) = (1− p)3p− p3(1− p).

1 Introduction

Given a graph, select every vertex with probability p. Visually, the procedure
can be thought of coloring the selected vertices black and the rest white. This
process is called percolation. This paper will be concerned with the expected
number of connected components resulting from percolating a hexagonal lattice.
As a preliminary example, I will look at trees.
Example The expected number of connected black components in every per-
colated tree with n vertices is p+ (n− 1)p(1− p)

Proof. This is a proof by induction. In a one vertex tree, the expected number
of pieces after percolating is p.

As the induction hypothesis, assume that the expected number of pieces in
a percolated n − 1 vertex tree is p + (n − 2)p(1 − p). As the induction step,
add another node to a tree with n− 1 vertices. This new node will add a piece
to the tree only if it is colored black and its neighbor is colored white. The
probability of both events is p(1-p). Thus using the induction hypothesis, the
expected number of pieces in a n vertex tree is p+ (n− 1)p(1− p)

2 Hexagonal Grids

2.1 Terminology and Notation

Consider an m×n hexagonal board. The board is rhombus shaped. I will view
the hexagons as appearing in rows and columns:
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Let E(m,n, p) denote the expected number of pieces in a m × n hexagonal

grid percolated with probability p. I will denote E(m,n,p)
mn = λ(m,n, p) and

limm,n→∞ λ(m,n, p) = λ(p). In the next section, I will show that this limit
exists. Let E(m,n) be a function of p with E(m,n)(p) = E(m,n, p). Define
λ(m,n) and λ analogously. This notation is handy because a lot of the following
arguments actually don’t depend on p.

2.2 Existence of λ(p)

Jacob Richey [1] showed the existence of λ( 1
2 ) using the subadditive ergodic

theorem. This proof is a lot longer but it gives more information about the
convergence of the sequence λ(m,n), namely, that it is decreasing.
Consider an m × i grid. Let Xi be a random variable denoting the difference
between the number of pieces in the full grid and the number of pieces in the
m × (i − 1) subgrid starting at the second column and extending to the end.
Thus E(Xi) = E(m, i)− E(m, i− 1).

I will show that {E(Xi)} is a increasing sequence.
Note that E(m, 1) = p+(m−1)p(1−p). Thus, E(Xi) is the expected number

of piece consolidations subtracted from E(m, 1).For example, in the following
image there are three consolidations:
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In this image there are 2:

Let Zi denote the number of consolidations in the ith row.
The sequence {Zi} is a decreasing.
For the proof, consider a n − 1 × m grid. Zn−1 represents the number of

consolidations in the n− 1th column. Zn is the number of consolidations in the
nth column after adding another column before the first column.

For each coloring of the n− 1×m grid, there are 2m colorings of the n×m
grid, corresponding to the 2m different colorings of the added column. Note that
adding the additional column at the other end of the grid cannot increase the
number of consolidations. However, it is possible that this additional column
will decrease the number of consolidations. In this picture, the leftmost column
causes 3 consolidations:
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In this figure, the only the leftmost column has been changed and there are 2
consolidations:

Hence, for each of these 2m colorings, the number of consolidations for the
n − 1 ×m grid is larger than or equal to the number of consolidations for the
n×m grid. Thus E(Zn) ≤ E(Zn−1)

Lemma 1. {E(Xn)} is an increasing sequence, and the limit L(m) = limn→∞E(Xn)
exists.

Proof. As mentioned before, E(Xn) = E(m, 1) − E(Zn). Because E(Zn) ≤
E(Zn−1), E(Xn) = E(m, 1) − E(Zn) ≥ E(m, 1) − E(Zn−1) = E(Xn−1). This
argument proves that {E(Xn)} is increasing.
Because there arem vertices in the nth column, E(n,m)−E(n−1,m) ≤ m for all
n. The sequence {E(Xn)} is increasing and bounded above, so limn→∞E(Xn)
exists by the monotone sequence theorem.

Lemma 2. E(m,n)
n ≥  L(m)

Proof. This proof will involve a lot of epsilons.
First choose ε > 0, and then N so that 0 ≤ L(m)−E(Xn) < ε, which is possible
by lemma 1. The expected number of additional pieces from adding n columns
to a m × N grid is

∑N+n
i=N+1E(Xi). This quantity can also be calculated by
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adjoining a m × n grid to a m × N grid. The expected number of additional
pieces is E(m,n) minus the expected number of piece consolidations that happen

on the border of the 2 grids. Thus, E(m,n) ≥
∑N+n
i=N+1E(Xi), soE(m,n)

n ≥∑N+n
i=N+1 E(Xi)

n . Summing n copies of the inequality L(m) − E(Xi) < ε with

i ranging from N + 1 to N + n, results in
∑N+n
i=N+1 L(m) − E(Xi) ≤ nε, so

1
n

∑n
i=N+1E(Xi) ≥ L(m)− ε

Combining these two inequalities results in E(m,n)
n ≥ L(m) − ε for all ε > 0.

Thus E(m,n)
n ≥ L(m).

Theorem 1. The sequence {E(m,n)
mn } is decreasing in both m and n.

Proof. By lemmas 1 and 2, E(m,n)
n ≥ L(m) ≥ E(Xn) = E(m,n)−E(m,n− 1).

Ignoring the middle terms of the inequality and simplifying results in nE(m,n−
1) ≥ (n − 1)E(m,n). Dividing by mn(n − 1) results in E(n−1,m)

(n−1)m ≥ E(n,m)
nm .

λ(n,m) will denote E(m,n)
mn . Thus λ(m,n) is decreasing in n. It is also decreasing

in m because λ(m,n) is symmetric in m and n.

Because {λ(m,n)} is decreasing in n and bounded below by zero, the limit
l(m) = limn→∞ λ(m,n) exists.
For a similar reason, the sequence {λ(m,n)} is decreasing implies {l(m)} is
decreasing. Showing the contrapositive, if l(m) > l(m − 1), then for suffi-
ciently large n, λ(m,n) > λ(m−1, n). This statement implies that the sequence
{λ(m,n)} is not decreasing in m.

The relationship between L(m) and l(m) is L(m)
m = l(m), which will not be

proved here.

Theorem 2. The limit λ = limm,n→∞
E(m,n)
mn exists.

Proof. First choose ε. Then choose M and N so that n > N and m > M imply
0 ≤ l(m)−λ < ε

2 and 0 < λ(m,n)− l(m) < ε
2Using the adding and subtracting

trick,
0 ≤ λ(m,n)− λ = (λ(m,n)− l(m)) + (l(m)− λ) ≤

ε

2
+
ε

2
= ε

2.3 Uniform Bound on Convergence

Lemma 3. n ≥ 2E(m,n, p)− E(2m,n, p) ≥ 0

Proof. Look at two copies of an m × n hexagonal grid pasted together along
one of the sides length n. This results in a 2m× n grid. The number of pieces
in the 2m × n grid is less than the sum of the pieces in both grids because
some pieces on the merged boundary consolidate. Taking the expectation over
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all possible colorings proves the right side of the inequality. Further, for any
possible coloring, the difference between the number of pieces in both m×n grids
and the number of pieces in the 2m × n grid is the number of consolidations.
The number of consolidations is at most n because there are n hexagons on the
boundary. Taking the expectation over all possible colorings results in the left
hand side of the inequality.

Here is a picture:

Lemma 4. 1
2 ( 1
n + 1

m ) ≥ λ(m,n, p)− λ(2m, 2n, p) ≥ 0

Proof. By lemma 3 and that E(m,n,p) is symmetric,

2m ≥ 2E(2m,n, p)− E(2m, 2n, p) ≥ 0

Further, by lemma 3

2n ≥ 4E(m,n, p)− 2E(2m,n, p) ≥ 0

Summing these two inequalities results in 2n+2m ≥ 4E(m,n, p)−E(2m, 2n, p) ≥
0. Dividing this inequality by 4mn results in

1

2
(

1

n
+

1

m
) ≥ λ(m,n, p)− λ(2m, 2n, p) ≥ 0

Theorem 3. 1
n + 1

m ≥ λ(m,n, p)− λ(p) ≥ 0
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Proof. I will look at λ(m,n, p) − λ(2jm, 2jn, p). Adding to this expression
λ(2im, 2in, p) − λ(2im, 2in, p) for i between 1 and j − 1 we get a telescoping
sum

j−1∑
i=0

λ(2im, 2in, p)− λ(2i+1m, 2i+1n, p)

Now applying lemma 4

(
1

n
+

1

m
)

j−1∑
i=0

1

2i
≥

j−1∑
i=0

λ(2im, 2in, p)− λ(2i+1m, 2i+1n, p) ≥ 0

Thus

(
1

n
+

1

m
)(1− 1

2j
) ≥ λ(m,n, p)− λ(2jm, 2jn, p) ≥ 0

Taking the limit j →∞ results in the desired inequality.

Note that this also implies that λ(p) is continuous.

2.4 Relationship Between λ(p) and λ(1− p)
Theorem 4.

λ(p) = (1− p)3p− p3(1− p) + λ(1− p)

Proof. In a hexagonal grid, every plane animal is surrounded by a loop of the
opposite color. Here are two different ways to count finite plane animals.

1. Increase the count of plane animals every time a new plane animal is
started

2. Increase the count of plane animals every time a plane animal becomes
fully enclosed in a loop of the opposite color.

Let E1(m,n, p) denote the expected number of pieces counting in way 1 and
E2(m,n, p) the expected number of pieces counting in way 2. Note that number
2 doesn’t count plane animals that border the edges of the grid. There are
O(m+n) of these since there are 2m+2n-4 hexagons on the border and in a
specific coloring of the grid, there can’t be more pieces touching the border than
there are hexagons on the border. Thus E1(m,n, p) = E2(m,n, p) +O(m+ n),
so

λ(p) = lim
m,n→∞

E1(m,n, p)

mn
= lim
m,n→∞

E2(m,n, p) +O(m+ n)

mn

= lim
m,n→∞

E2(m,n, p)

mn

Thus we can use either E1 or E2 when calculating λ(p).
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Now I will build this grid inductively one hexagon at time. First I will put
down the hexagon at (1,1), then at (1,2), then (1,3) up until (1,m). Then I will
move on to row 2 and continue as before. Let (l, k)+ denote the hexagon that
comes after (l, k) in this sequence. Formally,

(l, k)+ =

{
(l, k + 1) k < m

(l + 1, 1) k = m

Let e(l, k) denote the expected number of plane animals after the (l,k)th hexagon
has been put down. I will calculate how many additional plane animals we
expect to get in the grid with one additional hexagon added. Z(l,k) will be the
random variable representing the additional number of plane animals. Thus

E(m,n) =
∑

(l,k):1≤l,k≤n

Z(l,k)

I will refer to the following diagram:

Note that this diagram only makes sense if A is not on the top or leftmost
border. In other words, l 6= 1 and k 6= 1 A is the last hexagon added, and
B,C,D are its neighbors. There are 24 different ways to color the hexagons
A,B,C,D. Let X be a random variable that denotes the colorings of A,B,C,D. I
plan to use the conditional expectation formula on these 16 scenarios. xi will
denote specific scenarios.

If a certain coloring of A,B,C, and D increases the number of pieces, A must
be black because adding a white hexagon will not change the number of pieces.
If B,C, or D is black,the number of pieces did not increase because the new
hexagon became part of another piece. Thus, Coloring B,C,D white and A
black will add a piece to the board. I will call this configuration x1. This argu-
ment shows that if the number of pieces on the board increased by coloring A,

8



then configuration x1 occurs. Clearly, the opposite is also true, if configuration
x1 occurs, then coloring A increased the number of pieces in the board. Here is
a picture:

It is also possible that coloring A will subtract pieces. In this case A must
still be black because a white hexagon does not change the number of pieces.
Further, B and C must belong to distinct black pieces so B and C must be black
and D must be white. We will refer to this configuration by x2. This argument
shows that if coloring A decreased the number of components, configuration x2
must occur. The opposite is not true. Here is a picture:
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Thus, all other colorings will not change the number of pieces, so these are
the only two cases we need to analyze.

I will use the conditional expectation formula on these two scenarios. Let
x1 be the first scenario described and x2 the second.x3 through x16 will be the
values representing the other 12 colorings.

The configuration x2 (coloring D white and A,B,C black) will subtract a
piece only if they are not in the same component. If they are in the same piece,
then hexagon A just closed a black loop and enclosed a white plane animal.

Thus for l, k 6= 1, by conditioning over xi we get

E1(Z(l,k)) =

16∑
i=1

E(additional peices|X = xi)× P (X = xi)

Using E(additional peices|X = xi) = 0 for i > 2,

=

2∑
i=1

e(additional peices|X = xi)× P (X = xi)

= p(1− p)3 ∗ 1− p3(1− p) ∗ P (no path from B to C excluding A|x2)

The probability of configuration x1 is p(1 − p)3 and 1 piece is always added.
The probability of configuration x2 is p3(1− p), and a piece is subtracted only
if there is no black path connecting B and C.

Further, p3(1 − p)P (no path from B to C excluding A|x2) = p3(1 − p)(1 −
P (path from B to C excluding A|x2)) If there is a black path from B to C not
involving A and D is white, then A is the last piece in a black loop enclosing
a white plane animal. Thus p3(1 − p)P (path from B to C excluding A|x2) =
P (A encloses a white plane animal). However, this probability depends on (l, k).
Let Y(l,k) be the event that the (l,k)th hexagon enclosed a white plane animal
Thus

E(Z(l,k)) = (1− p)3 − p3(1− p) + 1 ∗ P (Y(l,k))

Which implies

E1(m,n, p) =
∑

l=1ork=1

E(Zl,k) +

n∑
l=2

m∑
k=2

E(Zl,k)

Note that
∑
l=1 or k=1 Zl,k is the number of pieces on the boundary. As men-

tioned before, this quantity is O(m+n). Thus

E1(m,n, p) = O(m+ n) +

n∑
l=2

m∑
k=2

p(1− p)3 − p3(1− p) + P (Y(l,k))

= O(n+m) + (m− 1)(n− 1)(p(1− p)3 − (1− p)p3) +

n∑
l=2

m∑
k=2

P (Y(l,k))
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However,

E2(m,n) =

m∑
l=1

n∑
k=1

P (hexagon(l,k) closes a loop =

n∑
l=2

m∑
k=2

P (Y(l,k))

because any hexagon on the left or top edge does not close a loop. Thus,

E1(m,n, p) = O(n+m) + (m−1)(n−1)((1−p)3p−p3(1−p)) +E2(m,n, 1−p)

Dividing by mn and taking limits,

λ(p) = lim
m,n→∞

E1(m,n, p)

mn

= lim
m,n→∞

O(n+m) + (m− 1)(n− 1)((1− p)3p− p3(1− p)) + E2(m,n, 1− p)
mn

= (1− p)3p− p3(1− p) + λ(1− p) = p(1− p)(1− 2p) + λ(1− p)

2.5 Simulations

I wrote a simulation to help visualize the function λ(p). In the simulation a 2000
x 2000 hexagonal grid is percolated and the number of black components are
counted. This is done 250 times and all the trials are averaged. By the central
limit theorem this random variable approaches a normal random variable with
mean λ(2000, 2000, p). Here is a graph of the simulation’s output:
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Note that by section 2.3, the actual value of λ(2000, 2000, p) is at most 0.001
larger than the value of λ(p)

To verify the result relating λ(p) and λ(1 − p) I graphed p(1 − p)(1 − 2p)
subtracted from the experimental value of λ(p)− λ(1− p).

3 Extending these Results to the Square Lattice

I will focus on extending the previous result relating λ(p) and λ(1−p). However,
it is important to first make sure that the relevant limits exist.

I will associate two different infinite graphs to the infinite square lattice.

1. there is one vertex for each face. Two vertices are connected if the corre-
sponding faces touch along an edge. This graph will be called S

2. there is one vertex for each face. Two vertices are connected if the corre-
sponding faces touch along an edge or share a corner. This graph will be
called S′

Let E(m,n, p,G) denote the expected number of connected components in

an m × n section of G. Similarly, let λ(m,n, p,G) = E(m,n,p,G)
mn . The proof

in section 2.2 does not use the fact that the lattice is hexagonal so the same
proof can be used to establish the existence of these limits. Let λ(p,G) =
limm,n→∞ λ(m,n, p,G).

These two infinite graphs are duals in a certain sense. The squares bordering
a plane animal in S form cycles in S′ and the squares bordering a connected
component in S′ form cycles in S.
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With this observation, using reasoning analogous to section 2.4, we get the
equation λ(p, S)− λ(1− p, S′) = p(1− p)(1− p− p2).

Note that using this technique, a similar equation can be found for a lot of
different infinite lattice-like graphs. Further, note the uniform bound in section
2.3 also holds for both S and S′, the proof did not use that the lattice was a
hexagonal lattice.
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