
A SPIN ON STOCHASTIC MUSIC (WIP)

CARLOS CORONADO

ABSTRACT. A spinner in its usual sense uses a stochastic process to pick an element of
itself. Using elementary music structures, we are able to create works of stochastic music
that can give light to the process from which they were made. The use of Python in SAGE
is required to produce these, and SuperCollider is then used to hear those songs.

CONTENTS

1. Useful Music Theory 2

2. Spinners 4

2.1. Spinners of Equal Probabilities 4

2.2. Spinners of Unequal Probabilities 7

Appendix A. Codes 9

A.1. A 9

A.2. B 11

Appendix B. Examples 14

B.1. A 14

B.2. B 15

1

2 CARLOS CORONADO

1. USEFUL MUSIC THEORY

When discussing mathematical papers, often a musical background is not entirely
necessary. For this specific one, we will introduce some elementary music theory useful
to understand.

There are two main characteristics of music: notes being played and their duration.
Duration of notes is sometimes referred to as rhythmic dictation, and for the majority of
the paper, will be unused.

Musical notes are often written on a staff,

and are given name assignations through the help of a clef. Examples of clefs include
the treble clef and bass clef. The treble clef is often used for instruments of higher pitch
(frequency), while the bass clef is recommended for instruments of lower pitch.

To visualize where the pitch of a note is on a staff, the whole note symbol, 	 is used.
All notes on that line will correspond to that same note unless otherwise specified by
other clefs.

G 	
A

Musical notes are written on both the lines and the spaces between those lines,
where higher pitches correspond to notes above lower pitches in the staff. The musi-
cal note A is of lower pitch than B, and so B is notated on the space directly above A.
Then C is higher than B, and so on. Additionally, since notes are cyclical, G is below A.
Thus,

G
	

D
	

E

	

F

	

G

	

A

	

B

	

C

	

D

	

E

	

F

	

G

Ledger lines are used for notes above or below the staff:

G
	

A

−− 	

B

− 	

C

−

	

A

− 	

B

−

The notes we’ve looked at so far correspond to the white keys on a keyboard:

A SPIN ON STOCHASTIC MUSIC (WIP) 3

C D E F G A B C D E F G A B

The black keys on the piano are notated with sharps] and flats [. As an example,
the black key in between the notes C and D is called either C] or its enharmonic D[.

Steps are measured as distances between two consecutive notes on a piano. A half
step is the distance between any note and its previous or the next key. For example, C to
C] are a half step away from each other. A whole step is the distance between any key
and two half steps in the same direction. For example, C to D.

An interval measures the space between two notes. The following graph can pro-
vide a better idea:

Base C C C C C C C C
Next Note C D E F G A B C
Interval First Second Third Fourth Fifth Sixth Seventh Octave

There are twelve notes in between the octave in the usual equal temperament sys-
tem. A scale is a set of these notes arranged in a strictly increasing sequence, where the
infimum is the note of lowest pitch and the supremum is the highest pitch.

The following scales will be widely used in the process of creating stochastic mu-
sic: major, natural minor, harmonic minor, descending melodic minor, major pentatonic,
minor pentatonic, whole tone, blues, triads, and chromatic.

Chords are notes played simultaneously from a scale. The use of triads and power
chords will be extensively used in this paper.

An arpeggio is a increasing three note sequence from a chord. We will loosen this
definition to be any increasing sequence of notes.

A highly used theoretical concept in classical music, especially in that of the Baroque
period, is the use of chord progressions. These can be thought of as the easiest way to
part-write music for soprano, alto, tenor, and bass voices.

4 CARLOS CORONADO

2. SPINNERS

Intuitively, a spinner is comprised of two parts: a set of elements arranged in a circle
and an arrow that chooses one of these elements.

Definition 2.1. Let C be a finite strict weak ordered set. Also let X = {X0, X1, ..., Xn} be a set
of independently and identically distributed (i.i.d.) random variables. A spinner is a function
S : X → C, that we can define recursively or by partial sums, both of which are received after a
modulo.

The reader can think of C as their favorite strict weak ordered set. However, for the
purposes of this paper, we will consider subsets of Z12 bijective to musical notes inside an
octave. We will also consider strict weak ordered subsets of Z12 as those can be thought
of as scales. One of the most basic subsets of Z12 used in creating our music has been
{0, 2, 4, 5, 7, 9, 11}, better known as the major scale. Other scales used can be found in
codes in the appendix.

2.1. Spinners of Equal Probabilities.

Definition 2.2. Let S : X → Zc be a spinner where X = {X0, X1, ..., Xn} ∼ U (0, c− 1).
A spinner of equal probability can be defined recursively as

S(Xk) =

{
S(X0) = X0 k = 0

S(Xk) ≡ (S(Xk−1) + Xk) mod c 0 < k ≤ n,

in which all S(Xk) are the smallest nonnegative residue, modulo c.

Or defined as partial sums in the following manner:

S(Xk) ≡
(

k

∑
j=0

Xk

)
mod c

in which all S(Xk) are the smallest nonnegative residue, modulo c.

Although quite unrealistic, the reason for bounding all Xk’s between 0 and c− 1 can
be seen much easier on the physical model. It can be thought so that one must spin the
wheel less than a complete revolution. However, it is empirical to have this bound when
we talk about "rotations" of a spinner.

A SPIN ON STOCHASTIC MUSIC (WIP) 5

2.1.1. Coding. At its simplest, we would only like to code some spinner whose image has
elements from one octave. The initiated variables can be found in the appendix.

def majortune(octv,dur): ## Builds you some sweet tunes

s = rand.randint(0,len(C)-1) # pick a random starting note

T.append(C[s]) # put note in tune

for i in range(0,dur-1): # offset by one because we already

appended one before the for loop

r = rand.randint(0,len(C)) # spin the wheel

r = (s + r)%(len(C)) # new position of spinner

first = C[r] # gives you the note you landed on

third = C[(r+2)%len(C)] # gives you the note two indices over (

also known as its third (but modulated))

fifth = C[(r+4)%len(C)] # gives you the note four indices over (

also known as its fifth (but modulated))

ranote = C[(p)%len(C)] # chooses another random note, sometimes

it’s quite good

T.append(first) # for single notes

return T # returns your sweet tune

To include more octaves, we use the majoroct(octv) where the argument it takes
is a number that produces the amount of octaves the reader wants greater than 0.

To make chords, we are able to use T.append([’insert your chord here’]).
For example, to make a triad, we would code
T.append([first,third,fifth]) instead of T.append(first).

At first one might notice the sound of increasing notes of the spinner. In this case,
we can change the range at which the spinner is able to pick indices.

It is important to remember that the method in which we are picking indices is of
a discrete uniform distribution, but we can adapt this to be any distribution. For the
purposes of the program in the appendix, we only used a discrete uniform distribution to
"spin the wheel." However, we can calculate probabilities of different distributions.

At the bottom of the code, the output provided is used to copy-and-paste into a
SuperCollider notebook. The use of Pbind with arguments \note, \dur, and \legato
take values given by sequences of numbers in an array, to which SuperCollider calls Pseq.

We would like to remind the reader, that this paper is by no means a SuperCollider
tutorial. We use Python to program our code and receive an output, while SuperCollider
to give sound to said output.

6 CARLOS CORONADO

2.1.2. Some Analysis. Some motivation of the following analysis came from manipulating
the code for this spinner. It was observed that when changing the parameters of the
discrete uniform distribution, the notes that played were sometimes heard in increasing
order.

Definition 2.3. Let S : Zn → C be a spinner of equal probability. We say S(Xk) is a rotation
exactly when S(Xk−1) > S(Xk).

Definition 2.4. Let R = {ρ1, ρ2, ..., ρr} be the set of all rotations of some spinner. Then the
arpeggio set arp, is notated as arp = {αa : ρa − ρa−1, 0 < a ≤ r}, where ρ0 is implied to be
exactly zero, but not included in the set.

These two definitions are not quite intuitive. To give some motivation to what we
are trying to prove, one can think of arpeggios in music theory. Rotations are the elements
of S that are the bottom note of an arpeggio. The arpeggio set tells us how many notes
are in the arpeggio, that is, how many elements are between each rotation.

Problem 2.1. Let S : X → Z9 be a spinner of equal probability. The following sequence
was produced from S: {1, 2, 4, 6, 8, 1, 3, 5, 7, 2, 4, 3, 0, 8, 7}. What is the arpeggio set?

Solution 2.1. First, let’s take a look at how many rotation there are in this example. We
note that S(5), S(9), S(11), S(12), S(14) are all rotations. Because there cannot be any ro-
tations previous to the start of the spinner, α1 = 5− 0 = 5. The rest follow suit:

α1 = 5− 0 = 5

α2 = 9− (5) = 4

α3 = 11− (9) = 2

α4 = 12− (11) = 1

α5 = 14− (12) = 2.

Thus, the arpeggio set for this spinner, arp = {5, 4, 2, 1, 2}

From this example, we are able to see that the elements of the arpeggio set precisely
describe the number of elements between two rotations:

{1, 2, 4, 6, 8,︸ ︷︷ ︸
5 elements

| 1, 3, 5, 7,︸ ︷︷ ︸
4

| 2, 4,︸︷︷︸
2

| 3,︸︷︷︸
1

| 0, 8,︸︷︷︸
2

|7}.

Also note that there is no good way to classify the last element of the set, as we can’t
know exactly what the next element could have been, and thus we can only say it is a
rotation.

Theorem 2.1 (Weak Boundedness). Let S : X → Zc be a spinner of equal probability
where X = {X0, X1, ..., Xn} ∼ U (0, n− 1). If the arpeggio set, arp = {α : α is an arpeggio of S},
then ? < E[α] <?.

A SPIN ON STOCHASTIC MUSIC (WIP) 7

Before starting the proof, we would like to formulate the "Candy Store" problem.

Suppose a customer is in a candy store for the first time in the their life. The candy
store has a odd, but strictly enforced rule where all of their customers have to buy candy
while blindfolded, but the distribution of this candy is based upon a discrete uniform
distribution in volume of candy from 0 to n − 1 where n is the size of any bag in the
candy store.

Once a customer e exactly fills their bag, they must pay for their candy and leave
the candy store. Additionally, if a customer overflows their bag by one piece of candy (for
example, if a bag holds 10 kilograms, the customer already has 7 kilograms in their bag,
and the customer picks a 5 kilogram piece of candy) they must pay for their candy and
leave the store).

The catch happens when customers return to the candy store. The next time the cus-
tomer goes into the store, the owners remember the overflow (if any) from their previous
visit and will consider that value in their current visit. In our previous example, the bag
will have an overflow of 2 kilograms, and therefore on their next visit, the customer will
start with 2 kilograms and pick the remaining candy taking that amount into account.

The question now becomes: on average, how many pieces of candy will a customer
get on a trip to the candy store?

It is obvious that the "Candy Store" problem would have an equivalent answer to
the E[α]. In fact, it might be easier to study these in a different probabilistic distribution.
We suggest a better start would be the use of the Geometric Distribution where X ∼
GEO(1

|C|).

Proof 2.1. ?

2.2. Spinners of Unequal Probabilities. A great, but nonetheless obvious, question we
can ask after spinners of equal probabilities are spinners of unequal probabilities. Though
they have the same underlying structure of spinners, spinners of unequal probabilities are
not much different than those of equal probabilities.

Definition 2.5. We say a ≡ b mod 1 if a = b− bbc. That is, we would only like for a to be
the smallest non-negative decimal residue, i.e. a ∈ [0, 1).

Definition 2.6. Let P = {P0, P1, ..., Pm} be a set of ordered probabilities. with a respective CDF.
Also let X = {X0, X1, ..., Xn} ∼ U(0, 1) i.i.d. continuous uniform. For functions S : X → [0, 1)
where

S(k) ≡
(

k

∑
i=0

Xi

)
mod 1 k ∈ [0, n]

and T : [0, 1)→ P such that

T(a) =

{
P0 if a ≤ P0

Pa if CDF(Pa−1) < a ≤ CDF(Pa),

then a spinner or unequal probability is the composition, T ◦ S.

8 CARLOS CORONADO

We do not include the value of 1 in the CDF because of the modulus 1. Nonetheless,
P[X = 0] = P[X = 1] = 0. Additionally, we tend to truncate the values of the X′is to a few
decimals, as they are much easier to handle for precision.

2.2.1. Coding. Coding for spinners of unequal probabilities was not as similar as those of
equal probability. It relied heavily on the CDF of the original spinner, and thus a modulus
approach was naive and ill-fetched. The code can be found in Appendix A.1.

2.2.2. Analysis. We begin by first taking a look at an example of a spinner of unequal
probability.

Example 2.1. Let S : Z100 → Z5 be a spinner with the minor pentatonic scale, {0, 3, 5, 7, 10}
as its image. The probabilities for each note are given by the following table:

P[Z5 = 0] = 0.07168

P[Z5 = 3] = 0.27432

P[Z5 = 5] = 0.37143

P[Z5 = 7] = 0.04052

P[Z5 = 10] = 0.24205

After running the program, the output values of S were given to be:
[3, 0, 10, 10, 3, 10, 3, 10, 5, 3, 5, 3, 5, 10, 5, 3, 10, 10, 10, 5, 10, 3, 3, 3, 3, 10, 10, 10, 5, 5, 5, 5, 5,
5, 3, 5, 5, 0, 7, 0, 7, 3, 0, 3, 5, 3, 10, 5, 5, 10, 10, 5, 5, 5, 10, 0, 10, 5, 0, 3, 10, 10, 3, 10, 5, 7, 3, 3,
5, 5, 10, 3, 5, 3, 5, 5, 5, 10, 3, 5, 3, 10, 5, 5, 3, 3, 5, 3, 3, 5, 5, 5, 5, 10, 5, 5, 5, 0, 3, 3].

Let’s count them and see how they match to their true probabilities.

Note Occurrence Actual Value Expected Value Relative Error
0 7 0.07 0.07168 0.023438
3 28 0.28 0.27431 0.020743
5 38 0.38 0.37143 0.023073
7 3 0.03 0.04052 0.025962
10 24 0.24 0.24205 0.008469

After calculating the relative error, we can see that even at 100 steps into the pro-
gram, the actual probabilities are close to 2% off from their true probabilities. It is highly
likely that if we took a larger data set, the values of the relative error would tend closer to
zero.

We can ask the same questions about rotations and arpeggios about spinners of
unequal probabilities.

A SPIN ON STOCHASTIC MUSIC (WIP) 9

APPENDIX A. CODES

A.1. A. Spinners of Equal Probabilities

Equal Probabilities for all notes!

import numpy

import math

import random as rand

from random import randrange

from random import choice

import os

#C = [0,2,4,5,7,9,11] ## Major Scale

#C = [0,2,3,5,7,8,10] ## Minor Scale

#C = [0,2,3,5,7,8,11] ## Harmonic Minor Scale

#C = [0,2,3,5,7,8,10] ## Descending Melodic Minor Scale

#C = [0,2,4,7,9] ## Major Pentatonic Scale

C = [0,3,5,7,10] ## Minor Pentatonic Scale

#C = [0,2,4,6,8,10] ## Whole Tone Scale

#C = [0,3,5,6,7,10] ## Blues Scale

#C = [0,4,7] ## Triads

CC = [1,2,3,4,5,6,7,8,9,10,11,12] ## Chromatic Scale

T = [] ## Tune

TT = []## Tune

R = [] ## Some extra stuff

CR = []## Some extra stuff

P = [] ## Some extra stuff

LE = [] ## Length of the chord

Builds octaves in a major scale

def majoroct(octv):

if octv > 1:

for i in range(1,octv):

for j in range(0,len(C)):

c = C[j]+12

C.append(c)

NC = C

return NC

Builds octaves in a chromatic scale

def chromoct(octv):

for i in range(1,octv):

10 CARLOS CORONADO

for j in range(0,len(C)):

cc = CC[j]+12

CC.append(cc)

NCC = CC

return NCC

def majortune(octv,dur): ## Builds you some sweet tunes

majoroct(octv)

s = rand.randint(0,len(C)) # pick a random starting note

for i in range(0,dur): # offset by one because we already

appended one before the for loop

r = rand.randint(1,len(C)-1) # spin the wheel ## You can

change this to whatever you want!

s = ((s + r)%(len(C))) # new position of spinner

first = C[s] # gives you the note you landed on

third = C[(s+2)%len(C)] # gives you the note two indices over

(also known as its third (but modulated))

fifth = C[(s+4)%len(C)] # gives you the note four indices

over (also known as its fifth (but modulated))

p = rand.randint(0,len(C)-1) # picks a random note

ranote = C[p] # chord with a random note, sometimes

it’s quite good

T.append([first,fifth,ranote]) ## for excruciating pain

T.append([first,third,fifth]) ## for tri-chords

T.append([first,fifth]) ## for Power Chords

T.append([first,third]) ## for 1 and 3

T.append([first,ranote]) ## for mild pain

T.append(first) ## for single notes

return T # returns your sweet tunes

def chromtune(octv,dur): ## Builds you some sweet tunes

chromoct(octv)

s = rand.randint(0,len(CC)) # pick a random starting note

for i in range(0,dur): # offset by one because we already

appended one before the for loop

r = rand.randint(1,8) # spin the wheel ## You can change

this to whatever you want!

s = ((s + r)%(len(CC))) # new position of spinner

first = CC[s] # gives you the note you landed on

third = CC[(s+4)%len(CC)] # gives you the note two indices over

(also known as its third (but modulated))

fifth = CC[(s+7)%len(CC)] # gives you the note four indices

over (also known as its fifth (but modulated))

p = rand.randint(0,len(CC)) # picks a random note

ranote = CC[(p)%len(CC)] # chord with a random note, sometimes

it’s quite good

A SPIN ON STOCHASTIC MUSIC (WIP) 11

T.append([first,fifth,ranote]) ## for excruciating pain

T.append([first,third,fifth]) ## for tri-chords

T.append([first,fifth]) ## for Power Chords

T.append([first,ranote]) ## for mild pain

T.append(first) ## for single notes

return T # returns your sweet tunes

def length():

n = numpy.rand.geometric()

return LE

Durations of some form that isn’t too complicated

def length2(octv,dur):

for i in range(0,dur):

if i%2 == 0:

a = .33

LE.append(a)

else:

a = 0.11

LE.append(a)

return LE

Durations from a set of data:

def length3(octv,dur):

B = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 2]

for i in range(0,dur-1):

b = rand.choice(B)

B.append(b)

B.append(2)

return B

def durationer(a,b):

r = rand.uniform(a,b)

r = round(r,2)

return r

def offset(a,b):

r = rand.randint(a,b)

return r

print "(\nPbind(\n\\note, Pseq(\n \n\t", majortune(3,100), "+", offset(-3,3)

print "\n\n\t,0.75),\n\\dur, Pseq(\n\n", length(3,100),

print "\n\n\t,1),\n\\legato,",durationer(1.5,2.75),",\n).play;\n)"

A.2. B. Spinners of Unequal Probabilities

Random Probabilities for Different Notes

12 CARLOS CORONADO

import math

import numpy

import random as rand

#C = [0,2,4,5,7,9,11] ## Major Scale

#C = [0,2,3,5,7,8,10] ## Minor Scale

#C = [0,2,3,5,7,8,11] ## Harmonic Minor Scale

#C = [0,2,3,5,7,8,10] ## Descending Melodic Minor Scale

C = [0,2,4,7,9] ## Major Pentatonic Scale

#C = [0,3,5,7,10] ## Minor Pentatonic Scale

#C = [0,2,4,6,8,10] ## Whole Tone Scale

#C = [0,3,5,6,7,10] ## Blues Scale

#C = [0,4,7] ## Triads

P = [0] # Takes the probabilities of the colors

PP = []

CDF = [] # the cummulative distribution function

CDFCDF = []

T = [] # the tune

TT = []

LE = []

t_third = []

t_fifth = []

t_random = []

def prob(octv, a,b, dur): # Arguments: beta distribution(alpha, beta),

duration of song

if octv > 1:

for i in range(1,octv):

for j in range(0,len(C)):

c = C[j]+12

C.append(c)

for i in range(0, len(C)):

p = rand.betavariate(a,b) # Picks random numbers based on the beta

distribution

P.append(p) # Puts the value into the probanility array

summ = sum(P) # Adds up all of the values in the probability array

for i in range(0, len(C)+1):

P[i] = round(1.0*P[i]/summ,5) # Divides all of the original random

numbers by the sum to get probabilities

summm = sum(P) # adjusts the new cdf which should equal 1

cdf = 0

for i in range(0, len(C)+1):

cdf = round(cdf + P[i],5)

CDF.append(cdf) #gives you the CDF array

P.remove(0) # takes out zero as a probability

A SPIN ON STOCHASTIC MUSIC (WIP) 13

r = round(rand.random(),6) # This is the starting random note

for j in range(0, dur):

for i in range(0, len(C)):

if CDF[i] < r and r < CDF[i+1]: # looks if the random number is

between two CDF array elements

t = C[i] # returns a note

t_third = C[(i+2)%len(C)]

t_fifth = C[(i+4)%len(C)]

T.append(t) # Single Note

T.append([t,t_third]) #First and Third

T.append([t,t_fifth]) # Power Chord

T.append([t,t_third,t_fifth]) # Triad

s = round(rand.random(),6) # This is the spinner part

r = (r+s) - (r+s)//1 # The circle modulates

return T, CDF, P

Arguments: beta distribution(alpha, beta), duration of song

def length(dur):

for i in range(0, dur):

leng = rand.randint(1, 1792)

leng = leng%100

if leng == 0:

leng + 1

leng = round(1- leng/100.0,2)

LE.append(leng)

return LE

def legato(a,b):

r = rand.uniform(a,b)

r = round(r,2)

return r

def offset(a,b):

r = rand.randint(a,b)

return r

def spinner(octv,a,b,dur):

prob(octv,a,b,dur)

TT = T

PP = P

print PP

return TT

spin = spinner(1,3,6,100)

print "(\nPbind(\n\\note, Pseq(\n \n\t", spin, "+", offset(-3,3)

print "\n\n\t,1),\n\\dur, Pseq(\n\n", length(100),

print "\n\n\t,1),\n\\legato,",legato(1.5,2.75),",\n).play;\n)"

14 CARLOS CORONADO

APPENDIX B. EXAMPLES

B.1. A. Spinners of Equal Probabilities

/*
Triadness

Natural Major Scale, Four Octaves, Seven Offset

Chords built as triad based on bottom note

Duration of chord based on length of scale

Legato>2

*/

(

Pbind(

\note, Pseq(

[[5, 13, 20], [41, 1, 8], [5, 13, 20], [20, 29, 13], [8, 17, 13], [32, 41,

1], [17, 25, 32], [32, 17, 25], [29, 37, 44], [5, 13, 20], [25, 32,

29], [13, 20, 29], [32, 41, 1], [1, 8, 17], [1, 8, 17], [41, 1, 8],

[25, 32, 29], [17, 13, 20], [1, 8, 17], [25, 32, 41], [25, 32, 17], [1,

8, 17], [32, 41, 1], [13, 20, 29], [32, 41, 1], [32, 17, 25], [32, 41,

1], [17, 25, 32], [1, 8, 17], [20, 29, 25], [25, 32, 29], [8, 17, 13],

[13, 20, 29], [17, 25, 32], [8, 17, 13], [1, 8, 17], [29, 13, 20],

[13, 20, 29], [20, 17, 25], [41, 1, 8], [13, 20, 29], [29, 13, 20],

[37, 44, 5], [1, 8, 17], [17, 13, 20], [25, 32, 29], [44, 5, 13], [29,

13, 20], [32, 41, 1], [13, 20, 17], [13, 20, 29], [13, 20, 17], [13,

20, 29], [20, 29, 25], [17, 25, 32], [13, 20, 29], [20, 29, 25], [20,

29, 13], [25, 32, 17], [13, 20, 29], [32, 29, 37], [25, 32, 41], [1, 8,

17], [20, 29, 25], [17, 25, 32], [20, 17, 25], [32, 17, 25], [8, 17,

13], [32, 41, 1], [8, 17, 13], [41, 1, 8], [20, 29, 13], [8, 17, 13],

[25, 32, 17], [20, 29, 25], [32, 41, 1], [13, 20, 29], [32, 17, 25],

[13, 20, 29], [17, 25, 32], [17, 13, 20], [20, 17, 25], [20, 29, 13],

[25, 32, 17], [13, 20, 29], [13, 20, 29], [17, 13, 20], [8, 17, 13],

[29, 37, 44], [1, 8, 17], [13, 20, 17], [29, 13, 20], [32, 29, 37],

[20, 29, 25], [13, 20, 29], [13, 20, 29], [13, 20, 29], [41, 1, 8],

[44, 5, 13], [1, 5, 8]] + -7

,1),

\dur, Pseq(

[0.74, 0.43, 0.69, 0.2, 0.67, 0.31, 0.68, 0.17, 0.14, 0.07, 0.23, 0.7,

0.66, 0.94, 0.12, 0.86, 0.42, 0.89, 0.13, 0.81, 0.36, 0.57, 0.7, 0.47,

0.72, 0.83, 0.83, 0.89, 0.46, 0.07, 0.17, 0.53, 0.04, 0.77, 0.56, 0.58,

0.64, 0.49, 0.76, 0.5, 0.23, 0.62, 0.08, 0.11, 0.33, 0.89, 0.21, 0.76,

0.8, 0.42, 0.67, 0.76, 0.99, 0.55, 0.93, 0.27, 0.36, 0.28, 0.42, 0.07,

0.99, 0.61, 0.19, 0.44, 0.04, 0.83, 0.44, 0.35, 0.34, 0.82, 0.5, 0.08,

0.29, 0.7, 0.16, 0.3, 0.2, 0.75, 0.41, 0.99, 0.47, 0.65, 0.19, 0.8,

0.73, 0.66, 0.49, 0.51, 0.56, 0.78, 0.52, 0.54, 0.96, 0.6, 0.29, 0.65,

0.44, 0.17, 0.32, 0.95]

,1),

A SPIN ON STOCHASTIC MUSIC (WIP) 15

\legato, 2.34 ,

).play;

)

/*
Sadder song, minor

Natural Minor Scale, One Octave, No offset

One note at a time

Predetermined Duration Sizes

Legato>1

*/

(

Pbind(

\note, Pseq(

[3, 11, 8, 9, 1, 3, 4, 6, 9, 11, 3, 4, 1, 1, 6, 1, 1, 9, 6, 11, 9, 11,

3, 11, 4, 9, 1, 3, 3, 6, 9, 3, 4, 6, 6, 6, 3, 6, 6, 4, 3, 1, 9,

4, 3, 9, 3, 1, 1, 3, 8, 1, 9, 8, 8, 1, 6, 6, 6, 9, 11, 4, 6, 11,

1, 8, 8, 4, 4, 1, 11, 11, 6, 4, 4, 8, 3, 3, 4, 9, 4, 1, 9, 8, 4,

4, 9, 9, 3, 1, 1, 4, 11, 11, 11, 3, 4, 3, 4, 9, 4, 1]-1

,5),

\dur, Pseq(

[2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5,

0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1,

0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5,

2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1,

0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5,

2, 1, 0.5, 0.5, 2, 1, 0.5, 0.5, 2, 1]

,5),

\legato,2,

).play;

)

B.2. B. Spinners of Unequal Probabilities

/*
Probabilistic Simple Tune

Uses the 1, 5, 6, 8, 13 of a chromatic scale, One Octave, Seven Offset

PDF : [1 : 0.30563, 5 : 0.2129, 6 : 0.21674, 8 : 0.17189, 13 : 0.09284]

Random durations

Legato > 2

*/

16 CARLOS CORONADO

(

Pbind(

\note, Pseq(

[5, 8, 1, 5, 1, 8, 5, 1, 1, 6, 1, 6, 6, 13, 8, 1, 6, 6, 6, 5, 5, 5, 6,

5, 6, 1, 1, 8, 13, 1, 1, 5, 5, 5, 1, 6, 6, 8, 8, 5, 1, 6, 8, 8,

1, 1, 1, 5, 8, 1] + -7

,1),

\dur, Pseq(

[0.89, 0.91, 0.91, 0.91, 0.86, 0.93, 0.92, 0.84, 0.87, 0.94, 0.93, 0.86, 0.95,

0.87, 0.97, 0.94, 0.92, 0.85, 0.83, 0.94, 0.97, 0.89, 0.83, 0.9, 0.82,

0.9, 0.96, 0.87, 0.88, 0.89, 0.98, 0.92, 0.92, 0.93, 0.87, 0.91, 0.85,

0.93, 0.87, 0.93, 0.93, 0.83, 0.9, 0.88, 0.88, 0.91, 0.84, 0.94, 0.9,

1.3]*0.3

,1),

\legato, 2.27 ,

).play;

)

/*
Probabilistic Triad Tune

Uses the major scale, One Octave, Three Offset

PDF : [1 : 0.16643, 3 : 0.21488, 5 : 0.08487, 6 : 0.14073, 8 : 0.26036, 10 :

0.06221, 12 : 0.07051]

Random durations

Legato > 1

*/

(

Pbind(

\note, Pseq(

A SPIN ON STOCHASTIC MUSIC (WIP) 17

[[1, 5, 8], [8, 12, 3], [1, 5, 8], [8, 12, 3], [1, 5, 8], [3, 6, 10],

[12, 3, 6], [6, 10, 1], [1, 5, 8], [1, 5, 8], [3, 6, 10], [3, 6,

10], [8, 12, 3], [1, 5, 8], [3, 6, 10], [6, 10, 1], [1, 5, 8], [8,

12, 3], [6, 10, 1], [1, 5, 8], [1, 5, 8], [3, 6, 10], [6, 10, 1],

[5, 8, 12], [3, 6, 10], [8, 12, 3], [3, 6, 10], [12, 3, 6], [8,

12, 3], [8, 12, 3], [3, 6, 10], [3, 6, 10], [8, 12, 3], [3, 6,

10], [8, 12, 3], [3, 6, 10], [6, 10, 1], [8, 12, 3], [3, 6, 10],

[6, 10, 1], [3, 6, 10], [5, 8, 12], [8, 12, 3], [6, 10, 1], [3, 6,

10], [3, 6, 10], [5, 8, 12], [1, 5, 8], [1, 5, 8], [10, 1, 5],

[1, 5, 8], [6, 10, 1], [3, 6, 10], [6, 10, 1], [5, 8, 12], [1, 5,

8], [1, 5, 8], [3, 6, 10], [6, 10, 1], [10, 1, 5], [8, 12, 3], [8,

12, 3], [8, 12, 3], [8, 12, 3], [6, 10, 1], [1, 5, 8], [8, 12,

3], [3, 6, 10], [12, 3, 6], [3, 6, 10], [1, 5, 8], [8, 12, 3],

[12, 3, 6], [3, 6, 10], [3, 6, 10], [1, 5, 8], [8, 12, 3], [8, 12,

3], [6, 10, 1], [8, 12, 3], [8, 12, 3], [6, 10, 1], [1, 5, 8],

[6, 10, 1], [8, 12, 3], [8, 12, 3], [1, 5, 8], [1, 5, 8], [6, 10,

1], [6, 10, 1], [8, 12, 3], [3, 6, 10], [3, 6, 10], [5, 8, 12],

[1, 5, 8], [3, 6, 10], [1, 5, 8], [1, 5, 8], [3, 6, 10], [6, 10,

1]] + -3

,1),

\dur, Pseq(

[0.46, 0.77, 0.41, 0.48, 0.58, 0.96, 0.65, 0.29, 0.02, 0.02, 0.85, 0.32, 0.34,

0.77, 0.3, 0.63, 0.73, 0.78, 0.57, 0.37, 0.64, 0.78, 0.11, 0.67, 0.08,

0.58, 0.22, 0.08, 0.21, 0.55, 0.96, 0.73, 0.8, 0.27, 0.56, 0.8, 0.25,

0.34, 0.04, 0.47, 0.34, 0.91, 0.94, 0.22, 0.06, 0.73, 0.46, 0.82, 0.78,

0.64, 0.48, 0.15, 0.69, 0.23, 0.06, 0.58, 0.47, 0.85, 0.94, 0.64, 0.94,

0.31, 0.9, 0.55, 0.62, 0.6, 0.86, 0.17, 0.54, 0.66, 0.1, 0.42, 0.02, 0.41,

0.67, 0.77, 0.52, 0.5, 0.17, 0.2, 0.58, 0.26, 0.09, 0.28, 0.12, 0.56,

0.71, 0.8, 0.08, 0.93, 0.59, 0.4, 0.5, 0.46, 0.46, 0.58, 0.16, 0.04, 0.3,

0.56]

,1),

\legato, 1.2 ,

).play;

)

