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1 Graphs and Harmonic Functions

1.1 Graphs with Boundary

A graphG consists of a vertex set V , an edge set E, and a one-to-one assignment
of endpoints (an unordered pair of distinct vertices) to each edge. This definition
rules out loops from a vertex to itself and multiple edges between two vertices;
additionally, we assume in this paper that all graphs are finite. We use the
notation v1 ∼ e ∼ v2 if v1 and v2 are the endpoints of e, and say v1 and v2 are
incident to the edge e. We also write v1 ∼ v2 if there is an edge between v1

and v2, and we may denote this edge as v1v2. The valence of a vertex is the
number of vertices that it is incident to.

In this paper, we consider by default only connected graphs: those such
that, for any vertices v and w, there is a sequence v, v1, . . . , vn, w in which each
pair of consecutive vertices is joined by an edge.

A morphism of graphs f : (V,E)→ (V ′, E′) is a pair of functions fV : V →
V ′ and fE : E → E′ such that if the endpoints of e are v1 and v2, the endpoints
of fE(e) are fV (v1) and fV (v2).

A graph with boundary, boundary graph, or bgraph is a graph G =
(V,E) together with a partition V = ∂V ∪ intV into boundary vertices ∂V
and interior vertices intV , with ∂V nonempty. A morphism of boundary
graphs is a graph morphism f with two additional properties [2][p. 4]:

• f sends interior vertices to interior vertices.

• For an interior vertex v, if the map is restricted to a map on the neighbors
of v, the preimage of every neighbor of f(v) has the same size n, n ≥ 1.
(In particular, this implies that the map must be surjective onto the image
of the neighbors of the interior vertex.)

A sub-boundary-graph or sub-bgraph of a boundary graph is an ordi-
nary subgraph such that the inclusion into the supergraph is a bgraph morphism.
In particular, since the inclusion map must be one-to-one, it must be a bijec-
tion when restricted to the neighbors of an interior vertex, by the second point
above.

Let G = (∂V ∪ intV,E) be a graph with boundary and let R be a com-
mutative ring with 1. (This theory can be extended with little difficulty to
non-commutative rings, but we do not consider any in this paper.) Then G
can be given the structure of a network with a function γ : E → R − {0}
that assigns a conductance to each edge. In many algebraic contexts, we take
the conductances to be units, and that is assumed here unless stated otherwise.
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Figure 1: There is no bgraph morphism from the 5-star to the 3-star, since
it would have to be n-to-1 from 5 neighbors of the first interior vertex to 3
neighbors of the other. However, there is a bgraph morphism from the 6-star
to the 3-star, which is 2-to-1 in the neighborhood of the interior vertex.

We refer to the network Γ = (∂V ∪ intV,E, γ). If no conductance function is
specified on a network, it is assumed by default that all the conductances are
1. A network morphism is then a morphism of the underlying networks that
preserves conductances.

There are certain ways of reducing bgraphs to sub-bgraphs that we will
want to consider [2, p.25]. A boundary edge is an edge between two bound-
ary vertices. A boundary spike is an edge which has an interior vertex as
one endpoint and a boundary vertex of valence 1 as the other. An isolated
boundary vertex is a boundary vertex that is adjacent to no other vertices.
A boundary cutpoint is a boundary vertex which, if removed, disconnects the
graph. Often we will want to remove these types of edges/vertices from graphs.

Deleting a boundary edge or an isolated boundary vertex means creating
a new bgraph by removing that edge or vertex. Deleting (or contracting) a
boundary spike means creating a new bgraph by removing the edge and bound-
ary vertex associated with the spike and changing the interior vertex into a
boundary vertex.

Splitting a boundary cutpoint is a slightly more complicated procedure.
First, removing the vertex (and its incident edges) creates a disconnected sub-
graph. To each connected component, reattach a distinct copy of the deleted
boundary vertex with the edges that originally connected it to that component.

A graph is layerable if it can be reduced to the empty graph (the graph
with no vertices) by a series of deletions of boundary edges, boundary spikes,
and isolated boundary vertices. It is quasi-layerable if it can be reduced to the
empty graph using these operations along with splitting of boundary cutpoints.1

If one of the connected components obtained by deleting a boundary cutpoint
is a single interior vertex, the interior vertex must have originally had degree 1.
We refer to this special case as an interior spike. Interior spikes are irrelevant

1The algebraic considerations in this paper suggest that quasi-layerability may be a more
natural definition, but for now, we reserve “layerability” to refer to Jekel’s original definition.
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Figure 2: Reducing a quasi-layerable graph by splitting a boundary cut-
point, contracting boundary spikes, deleting boundary edges, contracting fur-
ther spikes, deleting further edges, and then deleting the isolated vertices. From
the second step on, the graphs are also layerable.
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to the electrical properties of the network, so for most of this paper we will
assume graphs do not have them.

1.2 Harmonic Functions

When the ring R = R and the conductances are restricted to positive values,
this structure resembles an electrical network. With this in mind, for some
general left R-module M , we can define a potential function on the network
Γ to be any function u : V → M . Then for a specific potential, the current
along an edge e from vertex v1 to v2 is given by γ(e)(u(v1)−u(v2)). (This linear
relationship is derived from Ohm’s law, where our conductance is the reciprocal
of resistance.)

In investigating electrical networks, we consider assignments of potentials
that satisfy Kirchhoff’s Current Law: the net current leaving an interior vertex
along all edges is 0. Stated using our notation,∑

e,w:v∼e∼w
γ(e)(u(v)− u(w)) = 0 ∀v ∈ .

A function u that satisfies this property is called γ-harmonic, or just har-
monic. We denote the set of harmonic functions on the network Γ with values
in M by UΓ,M .

Note that UΓ,M ⊆ MV has the structure of an R-module. The operator∑
e,w:v∼e∼w γ(e)(u(v) − u(w)) which takes a function u to the resulting net

current at a vertex v is a homomorphism of R-modules, and so its kernel UΓ,M

is a submodule. (In the case where R is not commutative, it can only be viewed
as a Z-module, but the theory is mostly the same.)

1.3 The Dirichlet Problem and The Kirchhoff Matrix

The (discrete) Dirichlet problem asks: given arbitrary potential values at the
boundary vertices, is there a harmonic function which takes those values, and is
it unique? The question can be simplified significantly with the use of matrices.

As mentioned above, the relationship between the potential at a vertex and
the net current there is linear, and it can be expressed simply as a matrix
obtained from the values of γ.

Given a network Γ = (∂V ∪intV,E, γ), label the vertices V = {v1, v2, . . . , vn}
and define the n× n Kirchhoff matrix K = {kij} by

kij =


∑
vi∼e γ(e) i = j

−γ(eij) vi is adjacent to vj through the edge eij

0 otherwise

This definition is such that, given a potential function u and the vector
~u = (u(v1), u(v2), . . . , u(vn)), the resulting entry (K~u)i gives the net current at
vertex vi.
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It is standard to number the vertices in such a way that all of the boundary
vertices come first. Additionally, K is symmetric, since its definition does not
depend on the order of i and j. This allows K to be partitioned into a block
matrix

K =

(
A B
BT C

)
where:

• A is a symmetric |∂V | × |∂V | matrix representing the conductances of
edges between boundary vertices;

• B is a |∂V |×| intV |matrix representing the conductances of edges between
boundary vertices and interior vertices;

• C is a symmetric | intV | × | intV | matrix representing the conductances
of edges between interior vertices.

Then, partitioning ~u into (~u∂V , ~uintV ) in the same way, the condition of
harmonicity can be restated using K:

u is harmonic iff

(
A B
BT C

)(
~u∂V
~uintV

)
=

(
∗
0

)
,

where ∗ can be any value. This is the same as requiring that
(
BT C

)
~u = 0,

so we get a helpfully succinct description of the harmonic functions:

Proposition 1.1. UΓ,M = ker(BT , C)M , where the matrix is interpreted as an
R-module homomorphism MV →M intV .

Returning to the Dirichlet problem, if we are given potential values ~u∂V on
the boundary, then for the remaining interior values ~uintV to give a harmonic
function requires that

BT~u∂V + C~uintV = 0

C~uintV = −BT~u∂V
The Dirichlet problem reduces to considering whether this equation can be

solved for ~uintV . This naturally depends on the module M , but in the specific
case that the ring R is a field, the problem has a unique solution for any bound-
ary values exactly when detC 6= 0. In general, if detC = 0, Γ is said to be
Dirichlet singular.

1.4 U as a Functor

As was mentioned above, for an R-module M , UΓ,M can also be interpreted as an
R-module. Additionally, given some u ∈ UΓ,M and an R-module homomorphism
φ : M → N , we can consider the function φ∗u = φ ◦ u : V → N ; then since∑

e,w:v∼e∼w
γ(e)(φ(u(v))− φ(u(w)) = φ

( ∑
e,w:v∼e∼w

γ(e)(u(v)− u(w))

)
,
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this new function is harmonic. We then have a homomorphism φ∗ : UΓ,M →
UΓ,N . Additionally, for module homomorphisms φ : L → M and ψ : M → N ,
we have (ψ ◦ φ)∗u = ψ ◦ φ ◦ u = ψ∗φ∗u. As a result, for any fixed network Γ,
UΓ,− is a (covariant) functor R-Mod→ R-Mod.

However, we can also ask what happens when we fix the module and vary
the network.

Proposition 1.2. For a fixed R-module M , U−,M is a contravariant functor
Network → R-Mod, where for a network morphism f : Γ → Γ′ the image
under the functor is the pullback f∗(u) = u ◦ f .

Proof. First, we must show that, for u ∈ UΓ′,M , u◦f is harmonic on Γ. Consider
an arbitrary interior vertex v of Γ; then consider the sum∑

e,w:v∼e∼w
γ(e)(u(f(v))− u(f(w)))

Since v is an interior vertex of Γ, f(v) must be an interior vertex of Γ′. Addi-
tionally, f is n-to-1, for some fixed n, on the neighbors of v (thus also the edges
incident to v). Combining this with the fact that f preserves conductances,∑
e,w:v∼e∼w

γ(e)(u(f(v))− u(f(w))) =
∑

e′,w′:f(v)∼e′∼w′
nγ(e′)(u(f(v))− u(w′))

= n
∑

e′,w′:f(v)∼e′∼w′
γ(e′)(u(f(v))− u(w′))

= 0.

Having shown this, it follows straightforwardly that U−,M is a contravariant
functor, since for network morphisms f : Γ→ Γ′ and g : Γ′ → Γ′′, (g ◦ f)∗(u) =
u ◦ g ◦ f = g∗u ◦ f = f∗(g∗(u)).

In this paper, we are primarily interested in how U acts as a functor on
R-modules, with Γ fixed.

Proposition 1.3. UΓ,− is left exact.

Proof. Let 0 → L → M → N → 0 be a short exact sequence of R-modules.
Then since the submatrix

(
BT C

)
of the Kirchhoff matrix is a linear map,

this diagram commutes (where the horizontal maps are simply coordinatewise
applications of those in the original sequence):

0 LV MV NV 0

0 LintV M intV N intV 0

(BT C)L (BT C)M (BT C)N

The rows are still exact and the kernels of the vertical maps are UΓ,L, UΓ,M ,
and UΓ,N , hence by the Snake Lemma, 0→ UΓ,L → UΓ,M → UΓ,N is exact.
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However, U is not right exact, because it may not preserve the surjectiv-
ity of a map. Consider the Z-modules Q and Q/Z with π : Q � Q/Z the
natural projection homomorphism and let Γ be the following network (with all
conductances 1):

0

0

1/20

Displayed on the graph is a potential function taking values in Q/Z. This
function is harmonic, since the net current at the left interior vertex is 0+0 = 0
and the net current at the right interior vertex is 1/2 + 1/2 = 0.

However, any Q-valued harmonic function that projected to this one would
have to be of the form

m1

m2

m4 + 1/2m3

for integers m1,m2,m3,m4, and for it to be harmonic would require (in Q)

m3 −m1 +m3 −m2 = 0

m4 + 1/2−m1 +m4 + 1/2−m2 = 0

or, rearranging into the kind of form that we will use for the rest of the
paper,

2m3 = m1 +m2

2m4 + 1 = m1 +m2

This would imply that an even and odd integer are equal, which is a contra-
diction. So this particular Q/Z-valued harmonic function is not the image of a
Q-valued one under the map induced by Q → Q/Z. We say that this function
does not lift. In the remainder of this paper, we will explore the implications
of this.
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2 The Harmonic Cohomology Module

2.1 Derived Functors

Given a left exact functor between categories of modules, we can construct
derived functors through a process described in the Appendix, which describe
the failure of the functor to be exact. In this section, we will take a first look
at the derived functors of the functor UΓ,−.

In most of this paper, we will be considering for our ring a principal ideal
domain R and using R for our module (over itself). In this case, Proposition
A.2 gives that we have a simple injective resolution and thus an easy description
of the derived functors.

Proposition 2.1. For R a PID, F its field of fractions, and π : F → F/R
the projection onto the quotient module, consider the induced map π∗ : UΓ,F →
UΓ,F/R. Then the first derived functor of UΓ,− at R is given by

U1
Γ,R
∼=
UΓ,F/R

imπ∗

Additionally, U jΓ,R ∼= 0 for j ≥ 2.

Proof. By Proposition A.2, an injective resolution of R is given by 0 → R →
F → F/R → 0 → 0 → . . . To obtain the derived functors, we apply the
functor to the terms of the sequence, omitting 0, to get the cochain complex
0→ UΓ,F

π∗−→ UΓ,F/R → 0→ 0→ . . .
The first derived functor is then defined to be the quotient of the kernel

of the third arrow (all of UΓ,F/R) by the image of the second arrow (that is,
im(π∗)). This gives U1

Γ,R. The higher derived functors are then given by the
cohomology at terms which are 0, which is trivially 0.

With this statement, we can now see that the harmonic function shown at
the end of the previous section, a Q/Z-valued function on the network Γ which
is not in the image of the map π∗, represents a non-identity element of U1

Γ,Z.

For a fixed network Γ with conductances in the ring R, the module U1
Γ,R is of

most interest to us, and we refer to it as the discrete harmonic cohomology
module, or just the harmonic cohomology. (Similarly, U jΓ,R can be referred
to as the jth harmonic cohomology.) In the next section, we will show an
example of computing harmonic cohomology from the definition.

2.2 U1
Km,n,Z

As a practice calculation we will compute the first cohomology module for the
complete bipartite bgraph Km,n. We say a bgraph is bipartite if there
are no interior to interior or boundary to boundary edges. Thus the complete
bipartite bgraph Km,n is the bipartite bgraph with m boundary vertices and
n interior vertices, and every possible interior to boundary edge. To make the
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calculation easier, we will prove the following Lemma first. The basic idea is
that since C is invertible, given any Q/Z harmonic function we can find a Q
harmonic function with the same boundary values; so up to the image of a Q
harmonic function, each Q/Z harmonic function is 0 on the boundary.

We will use the slightly informal notation Ucondition
Γ,M to denote the collection

of all M harmonic functions on Γ that satisfy “condition.”

Lemma 2.2. Let R be a PID, F its field of fractions, and π : FV → (F/R)V

the natural R-module homomorphism. Suppose Γ is a Dirichlet non-singular
network with unit conductances in R. Then

U1
Γ,R
∼=

U0 on bdry
Γ,F/R

π
(
UR on bdry

Γ,F

)
Proof. Consider the following commutative diagram:

0 UR on bdry
Γ,F

UΓ,F (F/R)∂V 0

0 U0 on bdry
Γ,F/R

UΓ,F/R (F/R)∂V 0

π π id

The maps are the natural ones. We claim the rows are exact. Exactness
is easy to see everywhere except at the rightmost points of both rows. To
check exactness there, we first note the map UΓ,F → F ∂V is surjective since the
Dirichlet problem has a solution, and the projection map F ∂V → (F/R)∂V is
surjective, hence the composition UΓ,F → (F/R)∂V is surjective. Hence exact-
ness of the top row. Now this map UΓ,F → (F/R)∂V is the composition of two
maps UΓ,F → UΓ,F/R → (F/R)∂V , and the whole thing being surjective implies
the second map is surjective, which gives surjectivity of the bottom row.

Thus we may apply the Snake Lemma, and since the furthest right vertical
map has trival kernel and cokernel, we get that

0→
U0 on bdry

Γ,F/R

π
(
UR on bdry

Γ,F

) → U1
Γ,R → 0

is exact. This gives the result.

Theorem 2.3. Denote by Km,n the network with m boundary vertices, n inte-
rior vertices, and every possible interior to boundary edge, all with conductances
1 ∈ Z. Then we have that

U1
Km,n,Z

∼= (Z/m)n−1.
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Proof. Since the bgraph is bipartite, C is invertible over Q, and thus by Lemma
2.2 we can assume all Q/Z harmonic functions are 0 on the boundary. So for
each such function, it must be that for all v ∈ intV

mu(v) =
∑
w∼v

u(w) = 0 in Q/Z.

The above equation has solutions u(v) = 0, 1/m, . . . , (m− 1)/m in Q/Z. Since
this equation holds for all v ∈ intV and each is independent of the others, it
follows that

U0 on bdry
Γ,F/R

∼= (Z/m)n.

Now suppose u is a Q harmonic function that has values in R on the boundary,
then we again get that it is necessary and sufficient for it to satisfy, for each
v ∈ intV ,

mu(v) =
∑
w∼v

u(w) =
∑
w∈∂V

u(w) in Q.

But since this is in Q, it follows that u is constant on the interior. Applying
the same reasoning as before when we project from F to F/R, we then get that
u(v) = 0, 1/m, . . . , (m− 1)/m for all v ∈ intV . Thus

π
(
UR on bdry

Γ,F

)
∼= Z/m.

Thus by Lemma 2.2 we get the result.

2.3 The Cokernel Interpretation

As we saw in the previous section, computing harmonic cohomology from the
definition is somewhat unwieldy, and that particular demonstration was depen-
dent on the specific family of graphs. Using the snake lemma, we can describe
the cohomology in terms of the cokernel of a matrix, allowing us to consider it
using the tools of linear algebra and modules.

Theorem 2.4. Suppose R is a PID, and F is its field of fractions. Consider
some network Γ such that

(
BT C

)
is surjective as a map FV → F intV (in

particular, this holds for any Dirichlet nonsingular network.) Then

U1
Γ,R
∼= coker

(
BT C

)
R

where the matrix (BT C)R is interpreted as a map RV → RI .

Proof. We have the following commutative diagram, where f, g, h are the natural
projections:

0 UΓ,F FV F intV 0

0 UΓ,F/R (F/R)V (F/R)intV 0

(BT C)

(BT C)

f g h
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Certainly the inclusion maps UΓ,F → FV and UΓ,F/R → (F/R)V are injec-
tive. The exactness of the upper row at FV follows from the definition of UΓ,F

as a kernel, and similarly for the lower row at (F/R)V . To finish showing exact-
ness of the rows, it then suffices to show that the two maps given by

(
BT C

)
are surjective. Since det(C) is nonzero, it is a unit in F and hence C is invert-
ible as a matrix over F . Then for any u ∈ F intV , there is a vector C−1u such

that
(
BT C

) (
0 C−1u

)T
= u, so the upper map is surjective. Now, for any

u ∈ (F/R)intV , since h is surjective we can pull u back to an element in F intV ,
which we can pull back to an element in FV and then map to some element
v ∈ (F/R)V by g. By commutativity, v is mapped by (BT C) to u. Hence, the
lower map is also surjective. Thus, the Snake Lemma yields the following exact
sequence

0→ ker f → ker g → kerh→ coker f → coker g → cokerh→ 0

But now observe that both h and g are onto and thus coker g ∼= cokerh ∼= 0. It
is also easy to see that ker g ∼= RV and kerh ∼= RintV . Also, coker f = U1

Γ,R.
Thus we get the following arrows

RV RintV U1
Γ,R

(BT C)R

So from the first isomorphism theorem and exactness we get that

U1
Γ,R
∼= RintV / ker(RintV → U1

Γ,R) ∼= RintV / im (BT C)R.

which is the required cokernel.

While this formulation does not apply if
(
BT C

)
is not surjective over F ,

it still covers a wide swath of cases. As a concluding example, we will repeat
the calculation of U1

Km,n,Z using its matrix.
First, for Γ = Km,n with conductances 1, the matrix is given by

−1 −1 . . . −1 m 0 . . . 0
−1 −1 . . . −1 0 m . . . 0
...

...
...

...
...

...
...

...
−1 −1 . . . −1 0 0 . . . m


As long as we remain in Z, performing column reduction operations on the

matrix does not change its column space, and thus does not change the cokernel.
We can thus subtract the first column from all of the others in the left block to
make them 0: 

−1 0 . . . 0 m 0 . . . 0
−1 0 . . . 0 0 m . . . 0
...

...
...

...
...

...
...

...
−1 0 . . . 0 0 0 . . . m


12



In determining the column space, we can ignore 0 columns, so we can freely
delete these from the matrix. Then we can add m times the leftmost column to
the first column of the right block to get

−1 0 0 . . . 0
−1 −m m . . . 0
...

...
...

...
...

−1 −m 0 . . . m


By adding the third, fourth,. . . columns to the second, we cancel out all of its
nonzero coefficients, reducing it to 0. Removing this column gives

−1 0 . . . 0
−1 m . . . 0
...

...
...

...
−1 0 . . . m


Since we obtained this matrix from the

(
BT C

)
matrix of Km,n through

column operations, they have the same column space and cokernel. The column
space of this matrix is all vectors whose entries are all equal mod m. An equiva-
lence class modulo this image is then defined by the differences between adjacent
entries mod m. There are n−1 of these differences for an n-dimensional vector,
so the cokernel is (Z/mZ)n−1.

3 Transformations of Boundary Graphs

In analogy with other cohomology theories, we expect the discrete harmonic
cohomology to reflect the “topology” of a network. In this section, we show a
basic motivating result in this area.

Conjecture 3.1. A bgraph is quasi-layerable if and only if for any ring R, any
R-module M , any network Γ given by the bgraph with unit conductances in R,
and any j ≥ 1, U jΓ,M ∼= 0.

3.1 Layerability

Lemma 3.2. If Γ′ is obtained from Γ with unit conductances by deleting a
boundary edge or boundary spike, then the inclusion Γ′ → Γ induces a natural
isomorphism UΓ,M → UΓ′,M .

Proof. When Γ′ is obtained from Γ by removing a boundary edge, every har-
monic potential u′ on Γ′ extends to a unique harmonic potential u on Γ, namely
the one that takes the exact same values as u′. Now consider when Γ′ is ob-
tained from Γ by removing a boundary spike. Denote the boundary and interior
vertices associated with the spike as b and i, respectively. Suppose u′ ∈ UΓ′,M .
We want to show that u′ extends to a unique harmonic potential u ∈ UΓ,M .
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Notice that the potential is determined at all vertices of Γ except for b. In order
to satisfy Kirchhoff’s Current Law, we must define u(b) such that∑
v∼i

γ(iv)(u(i)− u(v)) = γ(ib)(u(i)− u(b)) +
∑

v∼i,v 6=b
γ(iv)(u(i)− u(v)) = 0.

Hence, since γ(ib) is a unit, we must set

u(b) = u(i) +
1

γ(ib)

∑
v∼i,v 6=b

γ(iv)(u(i)− u(v)).

The reader may verify that in either case, the isomorphism UΓ,M → UΓ′,M is
natural.

Notice that this is the only time we actually use the fact that conductances
are units. However, the implications of this lemma justify our restriction of
conductances to units.

Lemma 3.3. If Γ′ is obtained from Γ by deleting a boundary edge, boundary
spike, or isolated boundary vertex, then the inclusion Γ′ → Γ induces an iso-
morphism U jΓ,M → U

j
Γ′,M for all j ≥ 1.

Proof. Take an injective resolution of M :

0→M → C0 → C1 → . . .

We will first consider the cases of deleting a boundary spike or boundary edge.
Since Γ′ → Γ induces a natural isomorphism UΓ,N → UΓ′,N for any R-module
N , we have an isomorphism of cochain complexes between UΓ,C• and UΓ′,C• .
Hence, since functors preserve isomorphisms, for any j ≥ 1 we have

U jΓ,M ∼= Hj(UΓ,C•) ∼= Hj(UΓ′,C•) ∼= U jΓ′,M .

Now we consider the case of removing an isolated boundary vertex. The
inclusion Γ′ → Γ induces a surjection UΓ,Cj � UΓ′,Cj since we can extend any
harmonic function on Γ′ to a harmonic function on Γ by setting the potential
at the isolated boundary vertex to be any value. Notice that if UΓ,Cj → UΓ′,Cj

is defined by projecting a harmonic function on Γ onto Γ′, ker(UΓ,Cj → UΓ′,Cj )
is isomorphic to the module of all possible values that the isolated boundary
vertex can take, which is Cj . We can then construct a short exact sequence of
cochain complexes:

0 0 0

0 C0 UΓ,C0 UΓ′,C0 0

0 C1 UΓ,C1 UΓ′,C1 0

...
...

...

14



This gives us a long exact sequence on cohomology

0→ H0(C•)→ UΓ,M → UΓ′,M → 0→ U1
Γ,M → U1

Γ′,M → 0

→ . . .→ 0→ UjΓ,M → U
j
Γ′,M → 0→ . . .

since Hj(C•) ∼= 0 for j ≥ 1. Thus, U jΓ,M ∼= U
j
Γ′,M for j ≥ 1.

3.2 Pasting Networks

Given some collection of bgraphs, an m-pasting of them is obtained by choosing
an m-tuple of distinct boundary vertices from each one, then identifying the
vertices in each position of all the tuples.

Lemma 3.4. Suppose M is an R-module, Γ′ and Γ′′ are networks and Γ is a
1-pasting of Γ′ and Γ′′. Then for all j ≥ 1,

U jΓ,M = U jΓ′,M ⊕ U
j
Γ′′,M

Proof. Let ι : U1
Γ,M ↪→ U1

Γ′,M ⊕ U1
Γ′′,M be the map obtained by defining the

functions on Γ′ and on Γ′′ using the relevant values on the larger graph. (In
particular, the two functions will agree on the pasted boundary vertex.) Since
every vertex of Γ is represented in Γ′ or Γ′′ with its value unchanged, this map
is injective.

Take an injective resolution of M :

0→M → C0 → C1 → . . .

Notice that for any moduleN , coker(ι) is the quotient of UΓ′,N⊕UΓ′′,N by the the
pairs of harmonic functions which have the same voltage on the shared boundary
vertex. This is just all possible values by which the two harmonic functions
can differ at the shared boundary vertex. Since adding a constant value to
the potential at each vertex results in another harmonic function (since the
definition of harmonicity depends only on the differences between potentials),
we can get any value in N . So, coker(ι) ∼= N . Then since Γ′ and Γ′′ are
sub-bgraphs of Γ, we have the short exact sequence of cochain complexes:

0 0 0

0 UΓ,C0 UΓ′,C0 ⊕ UΓ′′,C0 C0 0

0 UΓ,C1 UΓ′,C1 ⊕ UΓ′′,C1 C1 0

...
...

...
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This induces a long exact sequence on cohomology

0→ H0(UΓ,C•)→ H0(UΓ′,C• ⊕ UΓ′′,C•)→ H0(C•)→ H1(UΓ,C•)

→ · · · → Hj−1(C•)→ Hj(UΓ,C•)→ Hj(UΓ′,C• ⊕ UΓ′′,C•)→ Hj(C•)→ . . .

Since cohomology commutes with direct sum,

Hj(UΓ′,C• ⊕ UΓ′′,C•) ∼= Hj(UΓ′,C•)⊕Hj(UΓ′′,C•) ∼= U jΓ′,M ⊕ U
j
Γ′′,M ,

and for any j ≥ 2, Hj−1(C•) ∼= 0 ∼= Hj(C•). Hence, for each j ≥ 1 we have the
exact sequence

0→ UjΓ,M → U
j
Γ′,M ⊕ U

j
Γ′′,M → 0

Thus, Hj(UΓ,C•) ∼= Hj(UΓ′,C•)⊕Hj(UΓ′′,C•).

Corollary 3.5. If the graph Γ′ is obtained from Γ by deleting an interior spike,
then U jΓ′,M ∼= U

j
Γ,M for all j ≥ 1.

Proof. Recall that an interior spike is obtained simply by 1-pasting the graph
with one boundary vertex and one adjacent interior vertex, so the cohomology
of the graph with the spike added is obtained from the original one by taking
the direct sum with a trivial module.

Now suppose we have a finite abelian group Z/(p1
α1) × Z/(p2

α2) × . . . ×
Z/(pkαk). We already know that there is a network Γi such that U1

Γi,Z
∼=

Z/(piαi), namely Kp
ai
i ,2 with conductances all 1 in Z. We can then take a

1-pasting of Γ1, . . . ,Γk to form a new network Γ. By Lemma 3.4, U1
Γ,Z
∼=

Z/(p1
α1)× Z/(p2

α2)× . . .× Z/(pkαk). This proves the following theorem.

Theorem 3.6. Given any finite abelian group M , there is a network Γ such
that U1

Γ,Z
∼= M .

Consolidating the above results, we can get an algebraic consequence of
quasi-layerability.

Lemma 3.7. A graph has a boundary cutpoint if and only if it is a nontrivial
1-pasting of graphs, in which case it is specifically a pasting of the graphs formed
by splitting the cutpoint along the vertex corresponding to it.

Proof. First, assume a graph has a boundary cutpoint. Then in each of the com-
ponent graphs formed by splitting it, select the boundary vertex corresponding
to the boundary cutpoint in the original graph, and identify them together.
Then the resulting graph has exactly the same vertices as the original graph;
all edge relationships within the components remain the same, and the pasted
boundary vertex has all of the edge relationships of the original boundary cut-
point restored.

Similarly, assume a graph is formed by 1-pasting other graphs; then if the
boundary vertex at which the pasting occurred is removed, vertices originating
in different pasted graphs will no longer be connected, so the vertex is a cutpoint.
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Theorem 3.8. Let R be a ring, M an R-module, and Γ a network with unit
conductances in R. If the underlying graph of Γ is quasi-layerable (in particular,
if it is layerable), then U jΓ,M ∼= 0 for any j ≥ 1.

Proof. By induction on |V | + |E|. The base case is the graph with a single
isolated boundary vertex, on which harmonic functions are simply elements of
M , so its cohomology is trivial. Then assuming the proposition for |V |+ |E| ≤
n, consider a quasi-layerable graph with |V | + |E| = n + 1. Then we can
either contract a spike, delete an edge, delete an isolated vertex, or split a
boundary cutpoint (thus expressing the cohomology as a direct sum of those
of the components) to produce a quasi-layerable graph with |V | + |E| strictly
smaller. By the induction hypothesis, the resulting graph or graphs have trivial
cohomology, so by the induction hypothesis, Lemma 3.3, and Lemma 3.4, U jΓ,M
is a direct sum of trivial modules and is trivial.

This result is somewhat remarkable, because for a quasi-layerable boundary
graph, any assignment of unit conductances will produce a network with trivial
harmonic cohomology.

We would like it if the geometric property of quasi-layerability were actually
equivalent to this criterion of all cohomology modules for all networks on the
graph being trivial. Having proven one direction of Conjecture 3.1, we now state
the converse as a conjecture:

Conjecture 3.9. Given a bgraph G, if U jΓ,M ∼= 0 for every network Γ on G,
ring R, R-module M , and j ≥ 1, then G is quasi-layerable.

However, the hypothesis of this statement seems too general to work with.
Instead, we focus our attention on a much stronger statement:

WILL: From this point on, we need to edit this to shift the focus onto local
rings.

Conjecture 3.10. There exists a ring R (the “one ring to rule them all”) such
that if U1

Γ,R
∼= 0 for all networks Γ on a bgraph G, then G is quasi-layerable.

Our current candidate for the ring R is the ring of Eisenstein integers: Z[ζ3],
where ζ3 = e2πi/3. The reason for choosing this ring, and a description of our
progress on this conjecture, are explained in the next section.

Lemma 3.11. Suppose v is an interior vertex in a network Γ such that it has
no neighbors in intV , the sum of the conductances of incident edges is 0, and
changing v to a boundary vertex makes Γ layerable. Then

U1
Γ,R
∼=
U0 everywhere else

Γ,F/R

π(UR everywhere else
Γ,F )

,

where π is the projection UΓ,F → UΓ,F/R.

Proof.

STAR PASTING

17



4 Making U1
Γ,R Nontrivial

Conjecture 3.10 can be restated in the contrapositive:

Conjecture 4.1. Given any non-quasi-layerable bgraph, there is an assignment
of unit conductances in some ring R (specifically, Z[ζ3]) defining a network Γ
with U1

Γ,R nontrivial.

In this section, we refer to such an assignment as a nontrivial labeling in
R.

This suggests attempting to prove the conjecture by finding an algorithmic
way of assigning these conductances. While such an algorithm appears diffi-
cult to find in general, results on certain classes of bipartite graphs have been
obtained. (Here and elsewhere, a bipartite bgraph refers to one with no edges
between boundary vertices or between interior vertices; we never consider any
other sort of bipartition.) Overall, the case of bipartite graphs appears to be
significantly easier; this is related to the C block of the Kirchhoff matrix being
diagonal, since its off-diagonal entries describe interior-interior edges.

4.1 Why Z[ζ3]?

We choose to work in the ring Z[ζ3] because it is a PID with a useful property
that Z lacks:

Proposition 4.2. Each unit in Z[ζ3] can be expressed as a sum of two units.

Proof. The units in Z[ζ3] are 1, ζ3, ζ2
3 , −1, −ζ3, and −ζ2

3 . Additionally, since
1 + ζ3 + ζ2

3 = 0, 1 = −ζ3 − ζ2
3 . Having expressed 1 in this way, we can multiply

both sides by any other unit, which gives the result.

When constructing nontrivial labellings, we often add up all the unit con-
ductances incident to a vertex; this property allows us to switch the parity of
the resulting sum. The value of this will become clear in the following proofs.

Having said this, we have not yet explicitly found a bgraph which does not
have a nontrivial labeling in Z, and whether one exists is an interesting question;
it’s possible that the ring Z actually suffices to determine quasi-layerability.
However, Z[ζ3] seems easier to work with systematically.

4.2 Maximal Minors

As we have seen, it is usually easier to analyze the harmonic cohomology using
the cokernel of

(
BT C

)
. This opens it up to the tools of linear algebra and

modules, in particular one lemma presented below.

Lemma 4.3. Given an m×n matrix A with entries in some commutative ring R
defining a module homomorphism f : Rn → Rm, it is surjective (so its cokernel
is trivial) if and only if its m×m minors generate the entire ring.
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Proof. (due to Math StackExchange user Martin Brandenburg [1])
Note that surjectivity is equivalent to the existence of a homomorphism g

such that fg = id, represented by an n×m matrix B over R such that AB = Im.
First assume surjectivity. Then, the right inverse B exists. For each m×m

submatrix Yi of A formed by taking some subset of the columns, let Zi be the
corresponding submatrix of B formed by taking the rows with the same indices.
The Cauchy-Binet formula then gives that

1 = det(AB) =

k∑
i=1

det(Yi) det(Zi)

Then since there is a combination of the minors det(Yi) with coefficients in R
(the det(Zi)) equaling 1, the entire ring can be generated by the m×m minors.

Now instead assume that the minors generate the whole ring; then there
are coefficients λi such that

∑k
i=1 λi det(Yi) = 1. For each Yi, construct an

n×m matrix Bi in the following way: at each row index of Bi corresponding to
one of the columns used in Yi, insert the corresponding column of adj(Yi), the
adjugate of Yi, and make the remaining rows all 0. Then consider the matrix
B =

∑k
i=1 λiBi; we will compute AB. First notice that, because of the zero

columns in Bi, ABi = YiBi. Additionally, it is a property of the adjugate that
Yi adj(Yi) = det(Yi)Im. So

AB =

k∑
i=1

λiABi =

k∑
i=1

λiYiBi =

k∑
i=1

λi det(Yi)Im = Im

Since the matrix
(
BT C

)
is always wider than it is tall, the m×m minors

are the maximal minors, and we will refer to them as such.
This lemma then reduces the conjecture, in many cases, to finding a way to

fill in the entries of
(
BT C

)
such that all the maximal minors have a common

factor. With this approach in mind, we can already demonstrate nontrivial
labelings for a class of graphs.

Theorem 4.4. Given a bipartite bgraph G with no interior spikes and |∂V | ≤
| intV |, G has a nontrivial labeling in Z[ζ3].

Proof. Since the graph is bipartite, the edges incident to each interior vertex
are distinct from the edges incident to any other interior vertex. As such, we
can assign conductances in the following way:

• At each interior vertex of even degree, give all edges conductance 1.

• Each interior vertex of odd degree has degree at least 3, since there are
no spikes. Assign conductance −ζ3 to one edge and −ζ2

3 to another, and
1 to everything else.

Since −ζ3 − ζ2
3 = 1, the sum of this with an odd number of 1s is even.

So under this assignment, the sum of the conductances incident to each interior
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vertex is even and nonzero. Thus C will be a diagonal matrix with even, nonzero
entries. This implies the new network Γ is Dirichlet nonsingular.

Since
(
BT C

)
is an | intV |×|V |matrix, its maximal minors are obtained by

picking | intV | columns and taking the determinant of the resulting submatrix.
Since BT has |∂V | columns, if |∂V | < | intV |, every maximal minor must contain
a column from C. Since every column of C contains only a single, even entry,
cofactor expansion gives that every maximal minor must be divisible by 2.

If |∂V | = | intV |, there is a single maximal minor which does not contain
any column from C, the determinant of BT . Then the sum across each row
is still even, since it is the sum of all conductances incident to a given interior
vertex.

The determinant commutes with any ring homomorphism, so in particular
the determinant of BT mod 2 is equal to the determinant of BT interpreted as
a matrix over Z[ζ3]/(2). In this latter case, all the rows have entries summing
to 0 mod 2, so the rows do not span the entire space, and the determinant is 0
mod 2. In this case, too, every maximal minor is even. Either way, by Lemma
4.3,

(
BT C

)
has nontrivial cokernel, and U1

Γ,Z[ζ3] � 0.

Corollary 4.5. Given a bipartite bgraph with s interior spikes and |∂V | ≤
| intV | − s, it has a nontrivial labeling in Z[ζ3].

Proof. The boundary cutpoints attaching each of the interior spikes can be split
to give a bipartite graph with | intV | − s interior vertices, along with several
1-stars. Lemma 3.4 and the above theorem give the result.

4.3 Bipartite Graphs with 3 Interior Vertices

While the above theorem is a first step, the class of graphs it treats is ultimately
quite small. A more promising general approach is to examine ways of reducing
bgraphs to smaller ones in ways beyond the quasi-layerability operations, and
understand what effect this has on cohomology. Following is a lemma describing
how we can use one such operation, and then an application of that lemma to
show the conjecture for bipartite graphs with 3 interior vertices.

Lemma 4.6. Given any bgraph G, consider the bgraph G′ obtained by adding a
new boundary vertex v′, whose neighbors are exactly those of some other bound-
ary vertex v. Then if there is a Dirichlet nonsingular nontrivial labeling of G
over some ring containing nontrivial third roots of unity, there is one of G′.

Proof. Given the network Γ produced by a Dirichlet nonsingular nontrivial la-
beling of G, transform it into a network Γ′ on G′ as follows:

• Multiply the conductances on every edge incident to v by −ζ3.

• Give each edge incident to v′ the conductance of the original edge con-
necting v to the same vertex, multiplied by −ζ2

3 .

20



Now consider the effect of this transformation on
(
BT C

)
. First, the sums

across the rows of BT , and thus C, will not be changed: if −λvi is the term in
such a sum representing the conductance along the edge from v to some interior
vertex i, it will be replaced by ζ3λvi + ζ2

3λvi = −λvi.
Then we can split the maximal minors of the new matrix

(
B′T C ′

)
into 3

types:

• A maximal square submatrix may contain neither of the columns corre-
sponding to v, v′; then the columns composing it also occur in the original(
BT C

)
, and the determinant is the same.

• The submatrix may contain exactly one of the columns; in this case, its
columns will be the same as those of some maximal square submatrix
in
(
BT C

)
, except one will be multiplied by ζ3 or ζ2

3 . Thus the deter-
minant will be the same as some maximal minor of the original, up to
multiplication by a unit.

• The submatrix may contain both of the columns; since they are scalar
multiples of each other, the determinant is 0.

As a result, the set of maximal minors of
(
B′T C ′

)
is, up to multiplication

by units and 0, the same as the set of maximal minors of
(
BT C

)
. Since Γ is

given by a nontrivial labeling, by Lemma 4.3, the latter set generates a proper
ideal, so the former set does as well, and Γ′ is a nontrivial labeling of G′.

Using this lemma, we can often limit our investigation to graphs whose
boundary vertices all have distinct neighbors; however, this is not always the
case. Collapsing boundary vertices with the same neighbors in a non-quasi-
layerable graph can create boundary cutpoints, and may even render the graph
quasi-layerable. This particular issue inspired the definition of quasi-layerability
in the first place.

Theorem 4.7. Every non-quasi-layerable bipartite graph with 3 or fewer inte-
rior vertices has a nontrivial labeling in Z[ζ3].

Proof. For one interior vertex, the statement is vacuously true, since any bound-
ary vertex would have to be a spike, which could then be contracted, so the graph
would be layerable.

For two interior vertices, if any boundary vertex had degree 1, it could be
contracted to produce a graph with one interior vertex. After deleting boundary
edges, this would be layerable, by the above. So the only nonlayerable bipartite
bgraphs with two interior vertices are those for which every boundary vertex has
2 neighbors; these are exactly the Km,2, which we know from Theorem 2.3 have
a nontrivial labeling (while the proof applied there was in Z, it works identically
over Z[ζ3]).

Now consider a graph with 3 interior vertices and assume without loss of
generality that there are no boundary spikes or interior spikes. Call the three
interior vertices 1, 2, and 3; then associate to each boundary vertex the set of
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its neighbors. Since there are no boundary spikes, the possible sets of neighbors
are {1,2}, {1,3}, {2,3}, and {1,2,3}.

Then we can classify graphs based on which of these sets occur among the
boundary vertices. The proof proceeds by casework. In each case, however, we
use the same induction procedure: first, demonstrate a nontrivial labeling for
the non-quasi-layerable graph in the case with the fewest boundary vertices.

Then assume the statement is true for graphs of the class on n boundary
vertices and consider a graph of the class with n+ 1 boundary vertices. If there
are more boundary vertices than the base case, there must be two which have
the same set of neighbors. This graph can be obtained from a graph of the class
on n vertices by duplicating one of the boundary vertices, so by the induction
hypothesis and Lemma 4.6, the result holds. As such, we need only approach
the base cases separately.

• First, the case in which the graph has boundary vertices corresponding
to all 4 sets. For the base case, consider this graph, with one boundary
vertex representing each:

−ζ3 −ζ3

−ζ3
1

−ζ2
3

−ζ2
3 −ζ2

3

1 1

Depicted on the graph is a nontrivial labeling, which can be seen by con-
sidering the matrix

(
BT C

)
:−1 ζ2
3 0 ζ3 2 0 0

0 ζ2
3 ζ3 −1 0 2 0

−1 0 ζ3 ζ2
3 0 0 2


The sum of every column is divisible by 2, so any maximal submatrix is
degenerate mod 2; thus every maximal minor is 0 mod 2. By Lemma 4.3,
this is a nontrivial labeling.

• Suppose three sets are represented, either the three 2-element sets or two
2-element sets and the 3-element set. For the base cases, consider each of
the graphs having one boundary vertex with each set of interior neighbors.
These graphs have no interior spikes, since in all of the cases above, each
interior vertex is contained in at least 2 sets; additionally, they have only
3 boundary vertices, so by Theorem 4.4 there is a nontrivial labeling.

• Suppose two two-element sets are represented. Unlike in the previous
cases, some of the graphs of this type are quasi-layerable, specifically the
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Figure 3: Reduction of the type of quasi-layerable graph discussed above.

ones for which there is only one boundary vertex corresponding to one of
the sets (see Figure 4.3). Our induction must then run over graphs with
at least two boundary vertices in each class. The base case is the graph
with exactly two in each class:

1 1

1 1

1 1

1 1

Assigning conductance 1 everywhere produces for
(
BT C

)
−1 −1 0 0 2 0 0
−1 −1 −1 −1 0 4 0
0 0 −1 −1 0 0 2


As in the first case, the column sums are all even, so this is a nontrivial
labeling. The induction proceeds as in the other cases, except that in the
induction step, the identification of duplicate boundary vertices should
never reduce the number of boundary vertices sharing those neighbors
below 2.

• The penultimate case is that in which a two-element set and a three-
element set are represented. The base case is the graph with one boundary
vertex representing each, which is easily seen to be a K2,2 with an interior
spike; thus it has a nontrivial labeling.

• Finally, if only one set is represented, every boundary vertex has the same
neighbors; thus the graph is a complete bipartite graph, so if it is non-
quasi-layerable, it has a nontrivial labeling.

This method could, in theory, be extended to prove the result for general
graphs on three interior vertices, or bipartite graphs with larger fixed numbers
of interior vertices. However, while the former might be helpful, the latter is
impractical because the number of graphs which need to be checked in the base

case grows as 22| intV |
. Even to use this method for bipartite graphs with 4 inte-

rior vertices would require first demonstrating nontrivial labelings for upwards
of 1400 graphs.
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5 A Combinatorial Interpretation of detC

The following lemma is an elementary result in algebra.

Lemma 5.1. (Smith Normal Form.) Suppose R is a principal ideal domain
and A is an n × n matrix with entries in R. Then there is a decomposition
A = SDT where D is diagonal with entries in R and detS and detT are units
in R.

Using this we prove the following Lemma.

Lemma 5.2. Suppose A is an n×n matrix with entries in Z with nonzero deter-
minant, viewed as a map on Q. Let AQ/Z be the natural map AQ/Z : (Q/Z)n →
(Q/Z)n. Then | kerAQ/Z| = |detA|.
Proof. Using Smith Normal Form, we can write A = SDT for S,D, T matrices
with entries in Z, and S, T having determinants ±1. Then

|detA| =
n∏
i=1

|Dii|.

On the other hand, since S, T have unit determinants they are invertible and
thus a vector x ∈ Q/Z is in the kernel of AQ/Z if and only if it is in the kernel
of D, which is equivalent to having Diixi = 0 in Q/Z for all i. Since Dii is a
nonzero integer, this has Dii solutions for xi in Q/Z and thus there are

∏
|Dii|

elements of the kernel of AQ/Z. This gives the result.

Using the above we prove the following Theorem

Theorem 5.3. Suppose Γ is a Dirichlet non-singular network. Then the number
of Q/Z harmonic functions that are 0 on the boundary is equal to |det(C)|.
Proof. Observe that

kerCQ/Z ∼= U0 on boundary
Γ,Q/Z ,

since if u ∈ kerCQ/Z then (0 u) (where 0 is a row vector filled with |∂V | 0s),
is harmonic as is easily checked. We can do the same thing in reverse for any
v = (0 u) that is Q/Z harmonic and 0 on the boundary. From Lemma 5.2 we
get that | kerCQ/Z| = detC, and thus we get the result.

Corollary 5.4. Suppose Γ is a Dirichlet non-singular network. Then |U1
Γ,Z| <

∞.

Proof. Given any u ∈ UΓ,Q/Z, by the Dirichlet nonsingularity (implying that
the Dirichlet problem can be solved over Q), we can find a Q harmonic function
with the same boundary values as u since C is invertible. Call this Q harmonic
function v. Then we can project v onto Q/Z. We get then that u − v is Q/Z
harmonic with all boundary values 0. But if we are working in the harmonic
cohomology we don’t care about the images of Q harmonic functions, and thus
we get that, up to the image of a Q harmonic function, each Q/Z harmonic
function is equivalent to one with boundary values 0. It follows from the previous
theorem therefore that |U1

Γ,Z| ≤ |detC| <∞.
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6 Miscellaneous Algebraic Lemmas

In this section, we collect some minor lemmas which were not explored to the
same depth as the other topics in this paper. In particular, we have some basic
results on extending the derived functor to torsion modules or allowing the
conductances to be nonunits.

6.1 Factorization

Lemma 6.1. Let R be a PID and F its field of fractions. Any F/R-valued
harmonic function u can be expressed as

∑n
j=1 uj, where each uj ∈ UΓ,F/R and

the denominator of each coordinate of uj is a power of a prime pj.

Proof. For a prime (p), let T(p)UΓ,F/R be the (p)-torsion submodule of UΓ,F/R.
Then

UΓ,F/R
∼=

⊕
prime ideals (p)

T(p)UΓ,F/R,

because any torsion module over a PID is the direct sum of its p-torsion sub-
modules. In particular, any u can be expressed as

∑
uj , where uj is a pj-torsion

element for non-associate primes. This implies the denominator of each coordi-
nate of uj is a power of pj (after multiplying the numerator and denominator
by some unit).

6.2 Quotients by Principal Ideals

While we haven’t much investigated the effect of the derived functor on modules
other than the ring itself, there are a couple of simple results on quotient modules
of PIDs.

Proposition 6.2. For R a principal ideal domain, F its field of fractions,
and x ∈ R\{0}, an injective resolution of the ring R/(x) (considered as an
R-module) is given by

0→ R/(x)
1→1/x−−−−→ F/R

×x−−→ F/R→ 0

where the first map is defined by sending 1 to 1/x (since 1 generates the
module) and the second map is multiplication by x.

Proof. First, F/R is an injective module [3, p. 123]. It remains to show the
sequence is exact. The first map is injective: given some a ∈ R/(x) sent to 0,
then a/x = 0 in F/R. That is, a/x ∈ R, so a is a multiple of x, and is 0 in
R/(x). The kernel of the second map consists of all elements of the form a/x,
which is exactly the image of the first map. Finally, any element a/b of F/R
can be pulled back under the second map to a/bx. Thus the second map is
surjective and the sequence is exact.

Proposition 6.3. With R, F , and x as above, U1
Γ,R/(x)

∼= UΓ,F/R/xUΓ,F/R.
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Proof. This follows from the definition: applying the functor to the injective
resolution gives the chain complex

0→ UΓ,F/R
×x−−→ UΓ,F/R → 0

Then

U1
Γ,R/(x)

∼=
UΓ,F/R

im(×x)
∼=
UΓ,F/R

xUΓ,F/R

While the cohomologies for quotient rings seem to have a very different
description from that of the ring itself, they turn out to be closely connected.

Theorem 6.4. For any PID, U1
Γ,R/(x)

∼= U1
Γ,R/xU1

Γ,R.

Proof. Consider the short exact sequence 0 → R
×x−−→ R → R/(x) → 0, where

the map R → R is multiplication by x. Since UΓ,− is left exact, we can apply
it to our short exact sequence and extend the result to a long exact sequence of
derived functors

0→ UΓ,R
×x−−→ UΓ,R → UΓ,R/(x) → U1

Γ,R
×x−−→ U1

Γ,R � U1
Γ,R/(x) → 0→ . . .

Hence, U1
Γ,R/(x)

∼= U1
Γ,R/ ker(U1

Γ,R → U1
Γ,R/(x)), where ker(U1

Γ,R → U1
Γ,R/(x))

∼=
im(×x) ∼= xU1

Γ,R.

Corollary 6.5. U1
Γ,Z/n

∼= U1
Γ,Z/nU1

Γ,Z.

Corollary 6.6. If U1
Γ,R is finite, then U1

Γ,R
∼= 0 if and only if U1

Γ,R/(x)
∼= 0 for

every x ∈ R\{0}.
Proof. If U1

Γ,R is trivial, then certainly every quotient of it is trivial. Conversely,

if U1
Γ,R is nontrivial, then select some element of UΓ,F/R from a nonzero equiva-

lence class. Each of the values of this function has a denominator in R, so let x
be the product of these denominators. Then multiplication by x sends each of
the values of this function to an element in R, so it annihilates the element and
thus its equivalence class. Then the map ×x : U1

Γ,R → U1
Γ,R has nontrivial kernel

and is therefore not injective. Since U1
Γ,R is assumed to be finite, the map cannot

be surjective either, so the quotient U1
Γ,R/xU1

Γ,R
∼= U1

Γ,R/(x) is nontrivial.

Does this mean that it might be easier to consider the groups U1
Γ,R/(x) rather

than the whole group U1
Γ,R? This is uncertain. However, if it is, the following

lemma might help in that regard.

Lemma 6.7. Suppose Γ is a network with conductances in Z, v is an interior
vertex of Γ with no interior neighbors, and the sum of all conductances adjacent
to v is an integer j. Let Γ′ denote the network where we delete v. If p is any
integer relatively prime to j then

U1
Γ,Z/p

∼= U1
Γ′,Z/p
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Proof. Agree to use the usual injective resolution:

0 Z/p Q/Z Q/Z 0 0 · · ·
x 7→ x/p x 7→ px

We can get a surjection from

UΓ,Q/Z � UΓ′,Q/Z

since for any Q/Z harmonic function on Γ′, we can divide the sum of the voltages
at each boundary vertex adjacent to v by j (since we’re in Q/Z) to find a Q/Z
harmonic function on Γ that has the same values on Γ′. Hence the surjectivity.
Letting K1 and K2 denote the kernels of the following maps in the rows, we get
two rows of short exact sequences:

0 K1 UΓ,Q/Z UΓ′,Q/Z 0

0 K2 UΓ,Q/Z UΓ′,Q/Z 0

id

id
f g h

Where the f, g, h are the natural projections given by our injective resolution;
i.e. the maps where we multiply the elements of the domain by p. But now
observe that K1 = K2

∼= Z/j because for a harmonic function u to be in K1 (or
K2, for that matter) it must be that ju(v) = 0 in Q/Z, and u(w) = 0 for the
rest of the vertices. This equation has solutions isomorphic to Z/j, and thus
the claim. From here we can apply the Snake Lemma to get the short exact
sequence

0→ ker f → ker g → kerh→ coker f → coker g → cokerh→ 0.

Next we notice that since p is relatively prime to n, and f is a multiplication
by p map, we get that f is invertible, so ker f ∼= 0, and coker f ∼= 0. Therefore
we get that

ker g ∼= kerh and coker g ∼= cokerh.

This second isomorphism is our claim.

6.3 Multiplying the Conductances by a Constant

While our insistence on conductances being units is necessary to preserve the
geometric connection with contracting boundary spikes, there is no reason not
to consider what happens in more general cases. While we have not closely
examined how this deviates from the unit case, we have the following result in
the case that the conductances are all multiples of units by the same constant.

For a network Γ and c a nonzero element of the conductance ring, we denote
the network in which all conductances have been multiplied by c by cΓ.
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Theorem 6.8. If R is a PID, there is an exact sequence

0→ U1
Γ,R ↪→ U1

cΓ,R � U1
cΓ,R/(c) → 0

Proof. A harmonic function on Γ taking values in any module M is also har-
monic on cΓ; changing from Γ to cΓ simply multiplies the equations defining har-
monicity by c, so any function satisfying the original equations satisfies the new
ones. Furthermore, if the action of multiplication by c onM is injective, then any
function satisfying the new equations satisfies the old ones as well; this is true of
the field of fractions F , so UΓ,F

∼= UcΓ,F . Let QF/R = coker(UΓ,F/R ↪→ UcΓ,F/R);
then we have the diagram of exact sequences

0 UΓ,F UcΓ,F 0 0

0 UΓ,F/R UcΓ,F/R QF/R 0

id

id
f g h

Which, by the snake lemma, produces an exact sequence

0→ UΓ,R → UcΓ,R → 0→ U1
Γ,R → U1

cΓ,R → QF/R → 0

It remains to determine QF/R. Note that UΓ,F/R
∼= ker

(
BT C

)∣∣
F/R

while UcΓ,F/R ∼= ker c
(
BT C

)∣∣
F/R

; then we claim that UΓ,F/R = cUcΓ,F/R.

Given some u ∈ UΓ,F/R, we can consider some function v = u/c (since we are

working in F/R, this exists, although not uniquely), and then c
(
BT C

)
v =(

BT C
)
u = 0, so u ∈ cUcΓ,F/R. Conversely, given u = cv with v ∈ UcΓ,F/R,

then
(
BT C

)
u = c

(
BT C

)
v = 0, so u ∈ UΓ,F/R.

With this in place, we have QF/R = UcΓ,F/R/UΓ,F/R = UcΓ,F/R/cUcΓ,F/R =
U1
cΓ,R/(c) by Proposition 6.3, which gives the result.

Corollary 6.9. If U1
Γ,R is nontrivial, so is U1

cΓ,R.

7 Questions that Remain

• The Big Conjecture: Is there a ring such that, if the cohomologies cor-
responding to all assignments of unit conductances to a bgraph are all
trivial, then the graph is quasi-layerable? Is it Z[ζ3]?

• Specifically, does Z suffice? If it doesn’t, what’s a counterexample bgraph,
and can we classify the counterexamples? This leads into The Bigger
Question.

• The Bigger Question: Can we in any way classify bgraphs based on the
collection of harmonic cohomologies associated to their networks in some
ring? In any ring?
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• In general, what effect does gluing together graphs at multiple boundary
vertices have on the cohomology?

• What effect does changing an interior vertex to boundary have on the
cohomology if it does have interior neighbors?

• How do these results extend to non-PIDs?

• How do these results extend to non-unit conductances?

• Is discrete harmonic cohomology always finite/rank 0?

• Is (BT C)F not onto exactly when the graph is layerable? If so then we can
characterize the times when the cokernel interpretation fails to be trivial
anyways.

• What are the algebraic properties & cohomologies of Avi’s quad-graphs?

• Which non-quasi-layerable graphs have no proper non-quasi-layerable sub-
bgraphs?

• Dirichlet non-singularity is sufficient to give a finite cohomology, but it’s
not necessary. So what is a necessary condition for finite cohomology?

OTHER IDEAS:

• What happens when you multiply all the conductances by a constant.

• Folding duplicate boundary vertices together.

• Reducing series connections which are Dirichlet-singular.

• For a PID, U1
Γ,R/(x)

∼= U1
Γ,R/xU1

Γ,R.

• What does it mean for two networks to have isomorphic first cohomol-
ogy modules? Is this a good classification scheme for networks?? Maybe
analogies with non-simply connected surfaces will tell us this is hopeless...

• Here is a more concentrated version of the above question: suppose Γ and
Γ′ are two bipartite networks with all conductances 1, and U1

Γ,Z
∼= U1

Γ′,Zs.
What can we say about the underlying bgraphs? Perhaps some sort of
topological isomorphism? I don’t know enough examples of networks with
the same first cohomology module to know whether this is a dumb question
or not.

• Other examples–include as needed.

REFERENCES–cite some standard papers on electrical networks. Cite stan-
dard algebra textbooks if you think it’s necessary. May be useful to future stu-
dents reading the paper. Also, cite Lam and Pylyavsky for thinking of studying
the multiple n-gon graphs.

DIAGRAMS–use tikz or learn how to use TikzCD.
Plan for organization:
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1. Definitions

(a) Category of networks (including basic network definitions such as
layerability)

(b) U−,− as a bifunctor, left-exactness

(c) necessary homological algebra

2. Introducing U1
Γ,M :

(a) What it is for a PID

(b) coker(BT C)Z

(c) Brute-force calculation of Km,n? and Km,2 with the interior edge

3. Transforming Graphs

(a) Implications of layerability

(b) The converse conjecture (should this go at the end, or the beginning?)

(c) Pasting

(d) Star-pasting & turning interior vertices into boundary

(e) Constructing all finite abelian groups

4. Assigning unit conductances to make U1
Γ,Z[ζ3] nontrivial

(a) On bipartite graphs

(b) |intV | > |∂V |
(c) strategies for |∂V | > |intV |.

5. Q/Z-valued harmonic functions 0 on boundary

(a) det C and spanning trees

(b) more on the structure from Smith Normal Form?

6. Algebra Aside, or the pack of uselessness

(a) U1
Γ,R/(x), U

1
Γ,Rp

effects of deleting interior on U1
Γ,R/(x)

(b) multiplying conductances by constant

A Terms from Homological Algebra

In this section, we will present a brief introduction to the homological algebra
necessary to understand these results. We will not present proofs, and refer
readers to Vermani [3] or any other introduction to the subject.
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A.1 Exact Sequences

Let R be a ring. Then consider a sequence of R-modules and homomorphisms
between them:

. . . Mi−1 Mi Mi+1 Mi+2 . . .
φi φi+1 φi+2

Such a sequence is called a cochain complex if for all k, φk+1 ◦ φk = 0, or
equivalently, im(φk) ⊆ ker(φk+1). In the special case that im(φk) = ker(φk+1),
the sequence is called exact.

Given a cochain complex like the above (denoted M•), its cohomology
modules are defined by

Hk(M•) =
ker(φk+1)

im(φk)

Note that the sequence is exact if and only if the cohomology modules are
all trivial. In a sense, the cohomology measures how much the sequence fails to
be exact.

A short exact sequence is one of the form

0 L M N 0
φ ψ

The exactness packages together the information that:

• The image of the first map is 0, so ker(φ) = 0. Thus φ is injective.

• The kernel of the last map is N , so im(ψ) = N . Thus ψ is surjective.

• ker(ψ) = im(φ). By the first isomorphism theorem, N ∼= M/ im(φ). If the
injection φ is taken as identifying L with a submodule of M , N ∼= M/L.

Note that this last point gives us a way of extending any injection or surjec-
tion into an exact sequence, to which we can apply the techniques of homological
algebra:

• Given an injection ι : L ↪→ M , inserting coker(ι) = M/ im(ι) gives the
exact sequence 0→ L ↪→M � coker(ι)→ 0.

• Given a surjection π : M ↪→ N , inserting ker(π) gives the exact sequence
0→ ker(π) ↪→M � N → 0.

Given a functor F : R-Mod→ S-Mod for rings R and S, if φk+1 ◦ φk = 0,
F(φk+1) ◦ F(φk) = F(0) = 0, so applying the functor to a cochain complex
produces a cochain complex. We can then ask whether a functor preserves
short exact sequences. The answer is “sometimes, partially”.

We say a F is an exact functor if for every short exact sequence
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0 L M N 0
φ ψ

the sequence

0 F(L) F(M) F(N) 0
F(φ) F(ψ)

is exact. Similarly, F is a left exact functor if only the sequence

0 F(L) F(M) F(N)
F(φ) F(ψ)

is exact.

A.2 Derived Functors

Given a left exact functor, there is a canonical way to extend the truncated
exact sequence obtained by applying it to an exact sequence into a longer one,
with the right derived functors.

First, an injective module I is one such that, given any diagram of the
following type:

A B

I

∃

there exists a map B → I which makes the diagram commute. Intuitively,
any map from a module A into I can be extended to take values on any super-
module of A. Another way of stating this property is that the functor hom(−, I),
which takes a module and produces the module of all homomorphisms from it
to I, is exact.

Then, given an arbitrary module M , an injective resolution of M is an
exact sequence

0 M N0 N1 N2 . . .

such that the modules N j are injective.

Proposition A.1 ([3, p. 123]). Every module has an injective resolution.

The rings we deal with in this paper are usually principal ideal domains,
which have simple injective resolutions [3, p. 123]:

Proposition A.2. For any principal ideal domain R, let F be its field of frac-
tions, and consider R and F as R-modules. Then
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0 R F F/R 0 0 . . .

is an injective resolution of R.

For example, Z has the injective resolution 0→ Z→ Q→ Q/Z→ 0.
With these definitions in hand in hand, we can now define derived functors.

Given a left exact functor F and an injective resolution of some module 0 →
M → N0 → N1 → . . ., consider the cochain complex F(N•) given by

0 F(N0) F(N1) F(N2) . . .

(Note that M has been dropped from the sequence. The result is still a
cochain complex because the composition of the first two maps is trivially 0.)
Then the kth right derived functor at M is the kth cohomology module of
the sequence:

Fk(M) = Hk(F(N•))

Under this definition, the zeroth derived functor reduces to the original func-
tor itself [3, p. 142]:

Theorem A.3. For F a left exact functor, F0 is naturally equivalent to F . In
particular, for any module M , F0(M) ∼= F(M).

The value of right derived functors is that they can be used to extend left
exact sequences [3, p. 140]:

Theorem A.4. If 0→ L→M → N → 0 is an exact sequence and F is a left
exact functor, then there is a long exact sequence

0 F(L) F(M) F(N) F1(L)

F1(M) F1(N) F2(L) . . .

A.3 The Snake Lemma

Lemma A.5 ([3, p. 101]). Consider the commutative diagram

0 L M N 0

0 L′ M ′ N ′ 0

f g h

such that each of its rows is exact. Then there is an exact sequence

0 ker f ker g kerh coker f coker g cokerh 0
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with the maps between kernels and the maps between cokernels induced by the
corresponding maps in the diagram.

The Snake Lemma is a special case of a more general result, which we will
not refer to as the “Really Long Snake Lemma”.

Theorem A.6 ([3, p. 110]). Given a commutative diagram

0 0 0

0 L0 M0 N0 0

0 L1 M1 N1 0

0 L2 M2 N2 0

...
...

...

whose rows are exact and whose columns are cochain complexes, there is an
exact sequence

0 H0(L•) H0(M•) H0(N•) H1(L•)

H1(M•) H1(N•) H2(L•) . . .

As mentioned above, we will mostly be considering injective resolutions with
only 3 terms, which produce cochain complexes with only 2 terms. In this case,
the Snake Lemma is all we need.

References

[1] Brandenburg, Martin. “Re: Elementary proof that if A is a matrix map
from Zm to Zn, then the map is surjective iff the gcd of maximal minors is
1”. Math StackExchange. Stack Exchange, 17 Apr 2012. Web. 16 Jul 2015.

[2] Jekel, David. “Layering Graphs-with-Boundary and Networks”. 21
Jul 2015. http://www.math.washington.edu/~reu/papers/current/

davidj/Everything_4.pdf

34

http://www.math.washington.edu/~reu/papers/current/davidj/Everything_4.pdf
http://www.math.washington.edu/~reu/papers/current/davidj/Everything_4.pdf


[3] Vermani, Lekh R. An Elementary Approach to Homological Algebra. Boca
Raton: Chapman & Hall/CRC, 2003. Book.

TEMPORARY CITATION TEST

35


	Graphs and Harmonic Functions
	Graphs with Boundary
	Harmonic Functions
	The Dirichlet Problem and The Kirchhoff Matrix
	U as a Functor

	The Harmonic Cohomology Module
	Derived Functors
	U1Km,n, Z
	The Cokernel Interpretation

	Transformations of Boundary Graphs
	Layerability
	Pasting Networks

	Making U1, R Nontrivial
	Why Z[3]?
	Maximal Minors
	Bipartite Graphs with 3 Interior Vertices

	A Combinatorial Interpretation of detC
	Miscellaneous Algebraic Lemmas
	Factorization
	Quotients by Principal Ideals
	Multiplying the Conductances by a Constant

	Questions that Remain
	Terms from Homological Algebra
	Exact Sequences
	Derived Functors
	The Snake Lemma


