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Permutations

Definition

A permutation π = π1π2 . . . πn in the symmetric group Sn is a
bijection from the set {1, 2, . . . , n} to itself.
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Peak

Definition

An index i is a peak of a permutation π if πi−1 < πi > πi+1.
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Peak set

Definition

The peak set P(π) of a permutation π is the set of all peaks in π.

If π = 2 8 4 3 5 1 6 9 7 ∈ S9, then

P(π) = {2, 5, 8}.
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Permutations with a given peak set

Definition

Given any finite set S of positive integers, let

P(S ; n) = {π ∈ Sn : P(π) = S}.

Permutations in S3 whose peak set is {2}:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

P({2}; 3) =
{1 3 2, 2 3 1}
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Empty peak set

Theorem (Billey, Burdzy, and Sagan - 2013)

For n ≥ 1 we have
#P(∅; n) = 2n−1.

The peak set with a no elements is the base case for some of our
inductive arguments.
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Main enumeration theorem

Theorem (Billey, Burdzy, and Sagan - 2013)

If S = {i1 < i2 < · · · < is}, S1 = S \ {is}, and S2 = S1 ∪ {is − 1},
then

#P(S ; n) = p(S ; n)2n−#S−1,

where p(S ; n) is a polynomial depending on S of degree is − 1
given by

p(S ; n) =

(
n

is − 1

)
p(S1; is − 1)− 2p(S1; n)− p(S2; n).

Moreover, p(S ; is) = 0.
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Peak set with a constant element

Theorem (Billey, Burdzy, and Sagan - 2013)

If S = {m}, then

p(S ; n) =

(
n − 1

m − 1

)
− 1.

The peak set with a single element is the base case for some of our
inductive arguments.
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Peak set with a constant element

Example: Probability that P(π) = {50} if π ∈ S100

#P({50}; 100) =

((
100− 1

50− 1

)
− 1

)
2100−#{50}−1 ≈ 1.536× 1058

#P({50}; 100)

100!
≈ 1.713× 10−100
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Sage computation

We used Sage to:

Compute #P(S ; n) using alternating permutations and the
inclusion-exclusion principle

Sample values to interpolate the peak set polynomial

Factor and find the complex zeros of p(S ; n)
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Zeros of factored peak polynomials

Example: Zeros of factored peak polynomials

p({3, 7}; n) =
1

80
n2(n − 3)(n − 7)(n2 − 25

3
n +

62

3
)

p({6}; n) =
1

120
(n − 6)(n4 − 9n3 + 31n2 − 39n + 40)

p({4, 6, 9}; n) =
5

2016
n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)(n−9)
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All peaks are roots

Theorem

If S = {i1 < i2 < · · · < is}, then all i ∈ S are zeros of p(S ; n).

Proof sketch.

Induct on the peak sets whose maximum element is is .
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Complex zeros of a single peak

Where are the remaining zeros of a peak polynomial?

Recall that the degree of the polynomial is m − 1, where
m = max S . We have the most unknown zeros when the peak
set contains a single element.
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Complex zeros of a single peak

p({25}; n) =

(
n − 1

25− 1

)
− 1
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Complex zeros of a single peak

p({50}; n) =

(
n − 1

50− 1

)
− 1
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Complex zeros of a single peak

p({75}; n) =

(
n − 1

75− 1

)
− 1

Matthew Fahrbach Factoring peak polynomials



Introduction
Results

Conclusion

Complex zeros of p(S ; n)
Positivity conjecture
Polynomials for specific peak sets

Positivity conjecture

Our motivation for studying zeros comes from the following
conjecture.

Conjecture (Billey, Burdzy, and Sagan - 2013)

Let m = max S and cS
k be the coefficient of

(n−m
k

)
in the expansion

p(S ; n) =
m−1∑
k=0

cS
k

(
n −m

k

)
.

Each coefficient cS
k is a positive integer for all 0 < k < m and all

admissible sets S.
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Positivity conjecture

Note that we can sample values of p(S ; n) using the main
enumeration theorem.

#P(S ; n) = p(S ; n)2n−#S−1 =⇒ p(S ; n) =
#P(S ; n)

2n−#S−1

Example: Sample value of p({2, 5}; 6)

We calculate #P({2, 5}; 6) using a computer, so then

p({2, 5}; 6) =
#P({2, 5}; 6)

26−2−1
=

80

8
= 10.
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Positivity conjecture

Example: Positivity conjecture

If S = {2, 5} then deg p(S ; n) = 4, and we can interpolate p(S ; n)
by sampling 5 points.

0=p(S;5) 10=p(S;6) 35=p(S;7) 84 168 300

10 25 49 84 132
15 24 35 48
9 11 13
2 2

p(S ; n) = 10

(
n − 5

1

)
+ 15

(
n − 5

2

)
+ 9

(
n − 5

3

)
+ 2

(
n − 5

4

)
=

1

12
n(n − 1)(n − 2)(n − 5)
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Stronger conjecture than positivity

Conjecture

If S is admissible, then p(S ; n) does not have any zeros whose real
part is greater than max S.

The conjecture above implies the truth of the positivity conjecture,
because it implies that p(S ; n) and all of its derivatives are positive
after m = max S . The forward differences cS

k are discrete analogs
of the derivates of p(S ; n).
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Odd differences

The difference between consecutive peaks of S determines the
zeros of p(S ; n).

Example: Odd differences

p({2, 7}; n) =
1

180
n(n − 1)(n − 2)(n − 7)(n2 − 19

2
n + 27)

p({3, 5, 8}; n) =
1

120
n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 8)
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Final difference of 3

Theorem

If S = {i1 < i2 < · · · < is < is + 3}, then

p(S ; n) =
p(S1; is + 1)

2(is + 1)!
(n − (is + 3))

is∏
i=0

(n − i).

Note that p(S1; n) may be chaotic, but the zeros of p(S ; n) are
well-behaved by forcing is + 3 to be a peak.
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Run of adjacent peaks

Theorem

If S = {m,m + 3, . . . ,m + 3k} with k ≥ 1, then

p(S ; n) =
(m − 1)(n − (m + 3k))

2(m + 1)!(12k−1)

m+3(k−1)∏
i=0

(n − i).

Example

If S = {3, 6, 9}, then

p(S ; n) =
2n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 6)(n − 9)

2(4)!(12)
.
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Summary

1 Permutations with a given peak set can be enumerated by a
unique polynomial that is recursively defined.

2 We proved that all peaks in a peak set are zeros of its
corresponding peak polynomial.

3 Odd gaps between adjacent peaks determines some of the
zeros of the peak polynomial.

4 We know the peak polynomial for peak sets of the form
{m,m + 3, . . . ,m + 3k}.
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Questions

Questions?
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