Iterated Contraction of Permutation Arrays

Avi Levy

September 5, 2013

1 Chains

1.1 Definitions

A chain $\Sigma=\sigma_{0} \rightarrow \sigma_{1} \rightarrow \cdots \rightarrow \sigma_{m}$ is a sequence of permutations. $|\Sigma|=m$ denotes the number of transitions. $d(\Sigma)=\left|f p\left(\sigma_{m}\right)\right|-\left|f p\left(\sigma_{0}\right)\right|$ where $f p$ denotes the set of fixed points. Σ_{0} denotes σ_{0}.

Every permutation σ can be decomposed into a product of disjoint cycles, which we call the cycle decomposition of σ. If a cycle is a singleton, then it is called trivial.

1.2 Types of Chains

Fix a chain Σ made of permutations σ_{i}.
Σ is called

- decreasing if $i<j \Longrightarrow f p\left(\sigma_{i}\right) \subset f p\left(\sigma_{j}\right)$. Note that if Σ is decreasing then $d(\Sigma) \geq 0$.
- K-bounded if for all transitions $\sigma_{i} \rightarrow \sigma_{i+1}$, we have $d\left(\sigma_{i}, \sigma_{i+1}\right) \leq K$. This time, d denotes the Hamming distance.

2 Main Result

Theorem 2.1. If Σ is a decreasing $(K+1)$-bounded chain, then the cycle decomposition of Σ_{0} has at least $d(\Sigma)-K|\Sigma|$ non-trivial $(1 \bmod K)$-cycles.

Corollary 2.2. If Σ is a decreasing $(K+1)$-bounded chain and

$$
\frac{d(\Sigma)}{|\Sigma|}>K
$$

then Σ_{0} contains a j-cycle such that

- $1<j \leq K|\Sigma|$
- $j \equiv 1 \bmod K$

3 Iterated Contractions

Sudborough et. al. introduced a contraction operation for permutation arrays. For every σ, the contraction is defined to be

$$
\sigma^{\prime}=\sigma(n \sigma \cdot n)
$$

where n is the symbol to be deleted from $\sigma . \sigma^{(m)}$ denotes a permutation that is obtained by performing m contractions on σ.

Lemma 3.1. If σ and τ are permutations such that

$$
d(\sigma, \tau)-d\left(\sigma^{(m)}, \tau^{(m)}\right)>2 m
$$

then the cycle decomposition of $\sigma \tau^{-1}$ contains a j-cycle where $1<j<2 m$ and j is odd.

Theorem 3.2. Let $M(n, d)$ be a permutation array. Suppose that no element $\sigma \in M(n, d)$ contains a j-cycle in its cycle decomposition (where $1<j<2 m$ and j is odd). Then $M^{(m)}$ is a $P A(n-m, d-2 m)$.

4 Application to Permutation Groups

Theorem 4.1. Let $G(n, d)$ be a sharply transitive group. Then $G^{(m)}$ is a $P A(n-m, d-2 m)$ if and only if d has no odd divisor j where $1<j<2 m$.

