
GENERALIZATIONS OF THE CUT-POINT LEMMA

KONRAD SCHRØDER

Abstract. The cut-point lemma of [1] is generalized to a multiple-source

situation, and to the annulus; and a framework is provided that may prove
useful in constructing a cut-point lemma for medial graphs on annulus-alikes

with more than one center hole.
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Introduction

The cornerstone of the use of medial graphs to analyze the recoverability of
circular-planar graphs is the Cut-Point Lemma (from [1]; also below as corollary
2.3). The statement of the lemma considers a graph embedded in a disc, and relates
the maximal connection of that graph, which can be thought of as a maximal flow
on the graph given unit node capacities, from the nodes contained in a boundary
interval designated as the source, to the nodes contained in the complementary
boundary interval, which is designated as a sink.

In this note we wish to investigate generalizations to the Cut-Point Lemma:
specifically, we wish to consider cases in which source and sink are discontiguous,
consisting of more than one boundary interval each.

The proof of the Cut-Point Lemma given in [1] uses only arc uncrossing at the
boundary to convert the medial graph into one whose underlying graph has the
same maximal connection size, but which contains no arc crossings.

One difficulty with näıvely applying the cut-point lemma to our divided-source
case is that we might run out of empty boundary triangles while uncrossing the
chords, since we are only guaranteed to have three disjoint empty boundary trian-
gles, but we have four cut points. We must be careful not to disturb our counting
by making an inappropriate uncrossing at one of the cut points.

By allowing Y −∆ transformations, however, and certain interior uncrossings in
addition to uncrossings at the boundary, we can reach a crossing-free arrangement
of the geodesic arcs that has the same maximal connection.

Another difficulty is that, once in reduced form, the black polygons bounded by
our chords might have edges that intersect more than one source interval; we must
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impose conditions on the original sets of chords to prevent this from happening if
we hope to retain as simply expressible a conslusion as m + r = n.

In this note, the cut-point lemma of [1] is generalized to a multiple-source sit-
uation, and to the annulus; and a framework is provided that may prove useful
in constructing a cut-point lemma for medial graphs on higher annulus-alikes with
more than one center hole.

1. Reduction to Equivalent Crossing-Free Form

The following notation will be implicit in the propositions below. We are dis-
cussing finite collections of curves in the disc, all of which have both endpoints on
the boundary circle, no three of which intersect at any single point of the disc, and
no two of which intersect at more than one point, or at any point of the boundary
circle. Such collections of these curves are denoted in calligraphic letters (M, N ).
The boundary circle is partitioned into a set of nonempty open intervals Si and Ti,
i = 1, . . . , k, together with their endpoints, arranged so that Ti lies immediately
counterclockwise from Si and immediately clockwise from S(i+1) mod k. The inter-
vals Si are designated as source intervals, and the Ti are designated sink intervals.
Let S =

⋃k
i=1 Si and T =

⋃k
i=1 Ti. In addition, a two-coloring of the regions of the

disc under M (respectively N ) is assumed, with an associated graph GM divided
into boundary nodes (black cells that lie on the boundary circle) and interior nodes
(black cells not incident on the boundary circle). If a black cell does not contain
an endpoint of any boundary source interval, but it has at least one edge incident
on a boundary source interval, the corresponding node of GM is designated as a
source node; similarly, if a black cell does not contain an endpoint of any boundary
sink interval, but it has at least one edge incident on a boundary sink interval, the
corresponding node of GM is designated as a sink node. mM, or simply m if there
is no confusion, denotes the maximum flow in GM between source and sink nodes,
if unit node capacities are imposed. nM, or simply n, denotes the number of black
cell edges contained in source intervals; and rM, or simply r, denotes the number
of chords of M both of whose endpoints lie in the same source interval Si.

The purpose of this section will be the reduction of any finite chord collection
M to an equivalent collection N in which no chords cross. By analyzing the steps
necessary to reduce M to N , and by looking at the connection size in N , we can
develop criteria to predict the connection size in M.

To begin with, the following two lemmas from [1] will be necessary:

Lemma 1.1. Let M be as above. Denote by p the crossing of xy closest to x,
and let the chord that intersects xy be called uv. Then there is an empty boundary
triangle contained in 4xpu.

Proof. If4xpu is empty, the conclusion is valid. If not, there must be another chord
that intersects chord uv closer to u than p. Let q be the intersection nearest u,
and denote by st the chord that intersects uv at q. st cannot intersect the segment
xp, it cannot intersect uv twice, and q 6= p, so one endpoint, say s, must lie within
4xpu. Thus the triangle 4uqs ⊂ 4xpu, and 4uqs has the same property that one
leg is the boundary and a second leg has no crossings. SinceM is finite, continuing
in this way we must reach a boundary triangle that is contained within 4xpu and
which is empty. �
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Lemma 1.2 (Three Triangles Lemma). Let M be as above. Then the chords from
M form at least three disjoint empty boundary triangles.

Proof. Let a be the endpoint of one of the intersecting chords, and let b be the
intersection on that chord closest to a. By lemma 1.1, there exists an empty triangle
4cde somewhere on the boundary. Let c and d be the points on the boundary, and
let f and g be the opposite endpoints of their arcs, respectively. Apply lemma 1.1
to 4ceg and 4def , respectively. Since 4cde, 4ceg and 4def are all disjoint, the
three empty boundary triangles we have found must all be disjoint as well. �

Definition 1.3 (Connection-Equivalent). Let M, N , S and T be as above, and
suppose that M and N color the boundary circle identically. M and N are said
to be connection-equivalent if mM = mN .

Definition 1.4 (nr-Equivalent). Let {Si} be a set of disjoint open intervals on
the unit circle, and let M and N be collections of chords in the disc, each with a
respective two-coloring. Define nM as the number of black boundary intervals of
M contained in any of the intervals Si, define as rM the number of chords of M
with both endpoints in any of the Si; and similarly define nN and rN .
M and N are said to be nr-equivalent if nM − rM = nN − rN .

Fact 1.5. LetM and S1, . . . , Sk be as above. Let two chords ab and cd inM have
endpoints a and c within the same source interval Si, and let ab and cd intersect
at a point e. Suppose 4aec is empty. Then the chord collection N produced from
M by uncrossing ab and cd at e is both connection-equivalent and nr-equivalent to
M.

Definition 1.6 (Gridwork Form). Let M be as above, and let the boundary cir-
cle be partitioned into n boundary segments B1, . . . , Bn, ordered counterclockwise
around the circle, such that every endpoint of every curve ofM is contained in one
of the Bi. Denote byMi all the chords ofM that have at least one endpoint in Bi.
M is said to be in gridwork form as respects {Bi} if no chords of Bi ∩Bj intersect
one another for any i, j, and if addition M contains no chords that are reentrant
in any of the boundary segments Bi.

Proposition 1.7. LetM and S be as above, with k = 1. Let every chord ofM have
at least one endpoint in S. Suppose that there are two chords in M that intersect.
Then there is an empty boundary triangle one of whose sides lies completely in S.

Proof. Let a ∈ S be the endpoint of any chord ab ∈ M that intersects at least
one other chord of M. Let cd intersect ab at e such that there are no other chord
intersections on the segment ae. Either c or d must lie in S, by hypothesis; suppose
c. Then by lemma 1.1, there exists an empty boundary triangle somewhere within
4aec. ac ⊂ S, so our conclusion is valid. �

Proposition 1.8. Let M and S1, . . . , Sk be as above. Then M is both connection-
equivalent and nr-equivalent to a set N of chords, where N is in gridwork form.

Proof. Using Ringel’s Theorem, we can “comb” the crossings of all chords incident
on Si all into the region Di reachable from Si without crossing any chord not
incident on Si, using only Reidemeister type 3 movements [2][3]. Since Reidemeister
type 3 movements in the medial graph are equivalent to Y −∆ transformations in
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Figure 1. An illustration of the “comb and unravel” operation
described in proposition 1.8.

the underlying graph, this “combing” does not change the connection properties of
M.

Now consider the chords incident on Si restricted to Di; call this family of chords,
so restricted,Mi. By proposition 1.7, if any chords ofMi intersect within Di, there
exists an empty boundary triangle on Si. We can then uncross the chords on the
boundary segment Si without changing the size of the maximal connection using
fact 1.5. SinceM contains a finite number of chords, so doesMi, so a finite number
of boundary uncrossings will yield no crossings in Mi.

Performing these two operations for Si and Ti, for each i = 1, . . . , k, will result
in a chord collection for which no two chords with endpoints in the same source or
sink interval intersect, while preserving m and n− r.

Finally, removal of any arc reentrant in any of the Si or any of the Ti does not
change m or n− r. �

Proposition 1.9. Let M and S1, . . . , Sk be as above, with M in gridwork form,
and suppose that M contains two intersecting chords. Then there exists a pair of
chords that may be uncrossed to produce a collection N of chords, also in gridwork
form, that is both connection-equivalent and nr-equivalent to M.

Proof. LetM′ be the subset ofM consisting of chords that intersect other chords.
By hypothesis, M′ is non-empty; so by lemma 1.2 M′ has at least three empty
boundary triangles. Choose one of these: let chords ab and cd intersect at a point
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e, so that 4aec is an empty boundary triangle in M′. Note that, since M is in
gridwork form, 4aec must contain one or more cut points.

T S T T S T T S T T S T

a c a c c ca a

A A A A

Figure 2. The four cases described in the proof of proposition
1.9. White dotted lines indicate a connection that must be pre-
served; black dotted lines indicate a lack of connection, and hence
an acceptable breaking point.

Let A be the single-colored polygon contained within 4aec and having as two of
its edges ae and ce. Choose one of the two possible uncrossings of these two edges,
depending on the color of A and whether it contains any cut points or source or sink
intervals, according to the following cases. (Note that for some chord collections,
both directions of uncrossing may be valid.)

Case 1. A is white. There might be connections to the black regions to its left
or right, but since both are boundary sink nodes, they cannot participate in the
same connection. Uncross to create chords ad and bc.

Case 2. Case 1 is not satisfied, and A contains a cut point. Although A is black,
it cannot participate in a connection. Uncross to create chords ac and bd.

Case 3. Cases 1 and 2 are not satisfied, and the boundary intervals contained
in A are either all source intervals or all sink intervals. A could participate in a
connection as an endpoint, but within itself it cannot form a connection. Uncross
to create chords ad and cb.

Case 4. Cases 1–3 are not satisfied. Then A is black and does not contain any
cut points, and the boundary intervals contained in A include at least one source
interval and at least one sink interval. There might or might not be a connection
using A as an endpoint; there is definitely a connection with A as both source and
sink. Since both connections cannot exist simultaneously, we choose in favor of the
definite connection and uncross to create chords ac and bd.

Uncrossing chords ab and cd in either direction does not change n or r, and in
all cases we have preserved m.

It may be that by uncrossing ab and cd, we have created a collection that is no
longer in gridwork form; if that is the case, we can apply proposition 1.8 to return
us to gridwork form without affecting the number of crossings in the gridwork. �

Lemma 1.10. Let M and S1, . . . , Sk be as above. Then M is both connection-
equivalent and nr-equivalent to a collection N of chords in the disc containing no
intersections and for which r = 0.

Proof. Use proposition 1.8 to convert M to gridwork form, and then repeatedly
apply proposition 1.9 to remove the remaining intersections until none remain. �

Fact 1.11. Let {Si}, {Ti}, andM be as above, and suppose that no two chords of
M intersect, and that M contains no reentrant chords. Then mM is given by the
number of black polygons one of whose edges lies in some source interval Si, one
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of whose edges lies in some sink interval Tj , and which does not contain any of the
endpoints of any source interval Sk.

2. Cut Point Lemmas

At this point, we have a means to reduce an arbitrary M to an equivalent
intersection-free form N , where connections are easy to count. It is not correct to
conclude that m+r = n in all cases, however, since N could contain black polygons
that have edges contained in multiple different source intervals, or polygons one of
whose edges is completely contained within a source interval Si but another of
whose edges contains the endpoint of a different source interval Sj .

If after reducing to intersection-free form, however, every adjacent pair of sink
intervals Ti were connected by a chord, then the cases that present us difficulty
could be avoided.

Definition 2.1 (Encapsulation Condition). Let M, {Si}, and {Ti} be as above.
Let si be the number of chords with one endpoint in Si and the other endpoint not
in Si, Ti, or T(i+k−1) mod k, and let ti be the number of chords with one endpoint
in Ti and the other in T(i+k−1) mod k. If ti > si for all i, then M is said to satisfy
the encapsulation condition.

Lemma 2.2 (k-source Cut Point Lemma). LetM, {Si}, and {Ti} be as above, and
suppose that if k > 1, M satisfies the encapsulation condition. Then m + r = n.

Proof. Using lemma 1.10, we can transform M to an equivalent N containing no
intersections and no reentrant chords in S or T . If M has ti > si for all i, then N
has ti > 0 for all i; since N also has no intersections and no reentrant chords, then
no black polygon of N has edges that intersect more than one source interval, and
any black polygon of N has at most one edge that inersects any source interval.
That is also (trivially) true if k = 1. Thus N has m = n with r = 0; so M has
m + r = n. �

Corollary 2.3 (Cut Point Lemma). Let M, S, and T be as above, with k = 1.
Then m + r = n.

Corollary 2.4 (Double-Source Cut Point Lemma). Let M, {Si}, {Ti}, and m, n,
and r be defined as above, with k = 2. Suppose that there are strictly more chords
in T1 × T2 than there are in S1 × S2. Then m + r = n.

The double-source cut-point lemma allows us to form a cut-point lemma for the
annulus, subject to some restrictions. There are two natural ways the cut-point
lemma might be expressed on the annulus: first, we might want two contiguous
source regions, one on the inner and one on the outer boundary; second, we might
want a single source region, either on the outer boundary or on the inner boundary.
The following two propositions address these cases.

Proposition 2.5. Let M be a collection of curves in the annulus. Let S1 = X̂1, Y1

be a segment on the inside boundary of the annulus, and let S2 = X̂2, Y2 be a segment
on the outside boundary. Let B1 = Y1, X2 and B2 = Y2, X1 be curves drawn on
the annulus such that every curve of M intersects B1 or B2 at most once. (This is
always possible.) Denote by h1 the number of chords that span between B1 and B2

within the region X1Y1X2Y2, and by v2 the number of chords that span between B1

and B2 within the region X2Y1X1Y2. Denote by v1 the number of chords that span
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Figure 3. An illustration of chaining the two-source cut-point
lemma to provide a form of cut-point lemma on the annulus.

between S1 and S2 within the region X1Y1X2Y2 and by h2 the number of chords
that span between T1 and T2 within the region X2Y1X1Y2. Suppose that h1 > v1

and h2 > v2. Then m + r = n.

Proof. Chain the two semi-annular regions together as shown in figure 3. Because
the curves B1 and B2 cannot cross any medial line twice, and cannot have an
endpoint on a medial endpoint, the nodes on either side of curves B1 and B2 are
identically matched, and no medial line is reentrant in B1 or B2. If the conditions
for corollary 2.4 are met on X2Y1X1Y2, then, any connection in X1Y1X2Y2 has a
matching path in X2Y1X1Y2 that will take it to the boundary. �

Proposition 2.6. Let M be a collection of curves in the annulus. Let S1 = X̂1, Y1

be a segment on the inside boundary of the annulus, and let X̂2, Y2 be a segment
on the outside boundary. Let B1 = Y1, X2 and B2 = Y2, X1 be curves drawn on the
annulus such that every curve of M intersects B1 or B2 at most once. Denote by
v2 the number of chords that span between B1 and B2 within the region X2Y1X1Y2,
and by h2 the number of chords that span between T1 and T2 within the region
X2Y1X1Y2. Suppose that h2 > v2. Then m + r = n.

Proof. The proof is the same as for the previous proposition; but using corollary
2.3 to count the connections in X1Y1X2Y2 instead of corollary 2.4. �
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