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Abstract

We show that we can construct an N -to-1 graph for any N using Bern-
stein polynomials, Legendre polynomials, and complete graph equivalents
of graphs composed of multiple 4-stars.
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1 Preliminaries

1.1 Electrical Networks and the Inverse Problem

In our investigation, we consider undirected, connected, finite graphs with no
loops and with a set of vertices that can be partitioned into boundary nodes
and interior nodes. We distinguish between the two by using closed circles (•)
to denote boundary nodes and open circles (◦) to denote interior nodes. The
set of boundary nodes is always nonempty. In our diagrams, nodes may be
drawn more than once; if the same node appears more than once, it is labeled
with the same number each time. We will use the terms “nodes” and “vertices”
interchangeably.

Definition Let E be the set of edges in a graph G. A conductivity function is
a function γ : E → R+ that assigns each edge, el, to a positive real number.

Definition A resistor network, Γ(G, γ), is a graph G together with a conduc-
tivity function γ.

Definition Let Γ = (G, γ) be a resistor network on a graph G with n nodes
(v1, v2, · · · , vn). The Kirchhoff matrix of Γ is an n × n matrix K that encodes
information about the conductivities on each edge in the following way:

Ki,j =

{
γi,j if i 6= j
−∑i6=j γi,j i = j

where
γi,j =

∑
all edges el joining vi to vj

γ(el)

and γi,j = 0 if there is no direct edge between vertices i and j.
These are some properties of the Kirchhoff matrix:
• γi,j ≥ 0 for all i 6= j (i.e., all off-diagonal entries are positive or zero).
• Row sums are zero.
• K is symmetric.
If G has n nodes, let G have m boundary nodes, where m ≤ n and all

boundary nodes come before interior nodes in the indexing. We can partition
the Kirchhoff matrix in the following way:

K =

[
A B
BT C

]
where A is an m×m matrix and C is an n−m× n−m matrix.

Definition Let Γ = (G, γ) be a resistor network on a graph G with n nodes
(v1, v2, · · · , vn), the firstm ≤ n of which are boundary nodes. The response matrix
of Γ is Λ, an m×m matrix defined as:

Λ = A−BC−1BT ,
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where A, B, C, and BT are submatrices of the Kirchhoff matrix as described
above. The entries of Λ are written as λi,j .

The response matrix has the same properties as the Kirchhoff matrix:
• λi,j ≥ 0 for all i 6= j (i.e., all off-diagonal entries are positive or zero).
• Row sums are zero.
• Λ is symmetric.

We will use the notation Λγ to refer to the the specific response matrix associated
to the network Γ with conductivity function γ.

For more detailed treatment of these definitions, see the work of Curtis and
Morrow in [1].

The Inverse Problem The forward problem is to find the response matrix
of a graph from its conductivities. The inverse problem, a facet of which we will
examine in this paper, is to ask whether we can recover the conductivity γ on
each edge given only the graph and the response matrix.

1.2 Graph Structures

Definition An n-star is a graph where one interior node is connected to exactly
n boundary nodes, and each boundary node is only connected to that interior
node. An example of a 4-star is shown in Figure 1.
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Figure 1: 4-star

The graphs that we will work with are entirely constructed of four-stars
patched together in various ways.

Definition A complete graph on n vertices, Kn, is a graph with n boundary
nodes where each boundary node is connected by an edge to every other bound-
ary node. An example of a complete graph on four vertices is shown in Figure
2.

Definition A star-K transformation (also known as interiorizing) is a process
of removing the interior node in an n-star so that it becomes a complete graph
Kn. This process retains information about how each of the boundary nodes in
the n-star is connected. See Figure 3 for an example of this transformation on
a 4-star.
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Figure 2: Complete graph on 4 vertices, K4

For each n-star, there can be more than one way to represent the complete
graph. This is primarily determined by the way that the n-stars are connected
to one another. In the case of the 4-star, if each boundary node is connected to
at least two interior nodes, the complete graph will form a square, and if one
of the boundary nodes is only connected to a single interior vertex, it will form
a pyramid (see Figures 4 and 5). Notice that the square and the pyramid are
identical when they are not part of a larger graph as in Figure 3.
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Figure 3: Star-K transformation from a 4-star to K4. Notice that the square
and the pyramid are identical ways of drawing the transformation.

Performing a star-K transformation on a graph composed of multiple n-stars
results in the appearance of multiple edges (see Figure 5), which are structures
in the graph where there are two or more edges eα between a pair of boundary
nodes i and j. Let the conductivity on eα be µα. All conductivities must be
positive, thus, µα > 0 for all µα and the total conductivity λi,j between two
nodes must be the sum of conductivities of the edges between them. For n edges
between nodes vi and vj :

λi,j =

n∑
α=0

µα (1)
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Figure 4: Example graph with multiple 4-stars.
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Figure 5: Star-K equivalent of Figure 4.

We will perform star-K transformations on our original graphs and focus on
their complete graph equivalents.

Previous documents on this topic (namely, Kempton’s work in [4] and Wu’s
work in [5]) use the term “R-multigraph” to refer to the graph constructed by
performing a star-K transformation on a graph composed of multiple n-stars.
We will not use this term; when we need to refer to this graph by name, we will
simply call it the “complete graph equivalent” of the original graph.

Definition The quadrilateral rule describes the relationship among the con-
ductivities of each edge in any quadrilateral in a complete graph. Given the
complete graph in Figure 6, with conductivity µα on each edge eα, the quadri-
lateral rule states that µ1µ2 = µ3µ4 = µ5µ6. The same quadrilateral rule applies
to the pyramid shown in Figure 7. More detailed definitions of the quadrilateral
rule can be found in [4] and [5].

Theorem 1.1. Let Γ = (G, γ) be a resistor network where G is a graph com-
posed of n-stars. Let Kn be the complete graph obtained by performing a star-K
transformation on G. The network on G is response-equivalent to the network
on Kn if and only if the conductivities on Kn satisfy the quadrilateral rule.
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Figure 6: Quadrilateral rule for a square K4 graph. µ1µ2 = µ3µ4 = µ5µ6
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Figure 7: Quadrilateral rule for a pyramid K4 graph. µ1µ2 = µ3µ4 = µ5µ6

Proof. This is proven in [3].

The quadrilateral rule and the appearance of multiple edges from the trans-
formation of connected n-stars into a complete graph allows us to consider the
propagation of unknown functions through the graph, which contributes to our
understanding of N -to-1 graphs, which we define below.

1.3 N-to-1 Graphs

As we saw above in Figure 4 and Figure 5, a star-K transformation of a graph
composed of multiple n-stars can result in the creation of multiple edges. How-
ever, the response matrix only provides information about the total conductivity
between two boundary nodes, not about the individual conductivities of each
of the edges that constitute that connection. Therefore, the response matrix
does not give us full information about the conductivities on the edges of the
complete graph equivalent. This leads us to investigate the ways in which we
can use the double edges introduced by the star-K transformation to propagate
unknown functions through the graph.

Definition Let G be a graph such that if we fix G, we can associate n distinct
conductivity functions to it to form n different networks:

Γ1 = (G, γ1),Γ2 = (G, γ2), · · · ,Γn = (G, γn).

If each of these networks has the same response matrix, i.e:
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Λγ1 = Λγ2 = · · · = Λγn ,

then we call G an N -to-1 graph.

If we set the conductivity of one of the multiple edges in the complete graph
equivalent equal to an unknown function—for example, let eα be one of the
multiple edges between nodes v1 and v2 and let eα = x —we can leave the
response matrix unchanged but introduce a variable into the set of conductivities
on the complete graph equivalent. Later in this paper, we will show that we
can use different graph structures to propagate this unknown function f(x) =
x through the graph to yield polynomials in x with N distinct positive real
roots in (0, 1). Because these polynomials have N distinct positive real roots,
we will show that such graphs can also have N distinct sets of conductivities
corresponding to the same response matrix and are therefore N -to-1.

Let us begin with µα = f(x) = x as the conductivity of one of the multiple
edges making up λ0,1, where λ0,1 is the entry in the response matrix correspond-
ing to nodes v0 and v1. We will construct a polynomial, p(x), by propagating
x through the graph and looping back around to λ0,1. By Equation 1, we will
have:

λ0,1 = p(x) + x (2)

And we will define:
σ(x) = p(x) + x (3)

This is the polynomial for which we will want to find N distinct positive real
roots. In order for the graph to have valid conductivites, σ(x) must have N
distinct positive real solutions to σ(x) = λ0,1 for some λ0,1 > 0. All of the
solutions must also produce positive conductivities on each edge in the graph.
For our construction of N -to-1 graphs, we will construct p(x) to be a linear
combination of xk(Cj − x)n. We will let Cj = 1 for all j because this choice
makes p(x) a very common type of polynomial, and we may use Legendre and
Bernstein polynomials. Notice that this will restrict our roots to x < 1 otherwise
it would produce zero or negative conductivities. We will show how to construct
xk(Cj − x)n in Section 3. We will then show how to explicitly construct p(x)
and address these conditions more specifically in Sections 5 and 6.

2 Bernstein Polynomials

Definition The Bernstein basis polynomials, br,n, are of the form

br,n(x) =

(
n

r

)
xr(1− x)n−r (4)

where 0 ≤ r ≤ n.
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The Bernstein basis polynomials of degree n form a basis for the vector space
of polynomials of degree less than or equal to n.

Definition Given a function f on [0, 1], the Bernstein polynomial, Bn, is a
linear combination of the br,n:

Bn(f, x) =

n∑
r=0

f
( r
n

)
br,n(x)

=

n∑
r=0

f
( r
n

)(n
r

)
xr(1− x)n−r. (5)

2.1 Properties of Bernstein Polynomials

Property 2.1. Given a function f ∈ C[0, 1] and any ε > 0, there exists an
integer N such that

|f(x)−Bn(f ;x)| < ε, 0 ≤ x ≤ 1

for all n ≥ N ; i.e., the Bernstein polynomials for a given continuous function
f on [0, 1] will converge uniformly to f on [0, 1].

Proof. The proof is provided in [2].

Property 2.2. If f ∈ Ck[0, 1], for some integer k ≥ 0, then B
(k)
n (f ;x) con-

verges uniformly to f (k)(x) on [0, 1].

Proof. The proof is provided in [2].

As a result of Property 2.1 and since the Bernstein polynomials form a basis,
x can be written in terms of Bernstein polynomials. Given precisely by Equation
5, x is:

x =

n∑
r=0

r

n

(
n

r

)
xr(1− x)n−r, for n ≥ 1. (6)

Property 2.3. The Bernstein basis polynomials form a partition of unity.
Thus,

n∑
r=0

br,n =

n∑
r=0

(
n

r

)
xr(1− x)n−r = 1.

Proof. Consider that (1− x+ x)n = 1. Applying the binomial theorem, we get
that

1 = (1− x+ x)n =

n∑
r=0

(
n

r

)
xr(1− x)n−r.

8



Property 2.4. For C ∈ R and pn(x), a Bernstein polynomial of degree n such
that pn(x) =

∑n
r=0 ar

(
n
r

)
xr(1 − x)n−r, the polynomial can be shifted up by a

constant C by adding C to every coefficient ar of pn(x):

pn(x) + C =

n∑
r=0

(ar + C)

(
n

r

)
xr(1− x)n−r

Proof.

n∑
r=0

(ar + C)

(
n

r

)
xr(1− x)n−r =

n∑
r=0

ar

(
n

r

)
xr(1− x)n−r + C

n∑
r=0

(
n

r

)
xr(1− x)n−r.

Using Property 2.3,

n∑
r=0

ar

(
n

r

)
xr(1− x)n−r + C

n∑
r=0

(
n

r

)
xr(1− x)n−r =

n∑
r=0

ar

(
n

r

)
xr(1− x)n−r + C

= pn(x) + C.

3 Construction of Bernstein Polynomials Through
a Network of Four-Stars

We will show that we can construct a Bernstein polynomial with positive coef-
ficients.

Lemma 3.1. We can construct a graph such that if we propagate an unknown
edge conductivity x through it, we can obtain a conductivity whose value is de-
fined by x or λ− x, where λ is a positive constant.

Proof. Let us take the edge corresponding to f1 to have an unknown conduc-
tivity, x, and propagate this through the graph in Figure 8. Notice that Figure
8 is only one of many pyramids that would be part of the graph. Using the
quadrilateral rule, we get:

f2 = f1 = x if λ1,2 = λ2,3

and

f3 = λ0,3 − f2 = λ0,3 − x.

Thus, through this pyramid, we have transformed an x into a λ− x.
Once again, if we take the edge corresponding to f1 to have an unknown

conductivity x and propagate this through the graph in Figure 9, we get:
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Figure 8: Here we propagate an x through the graph to output a λ− x.

f2 = f1 = x if λ1,2 = λ2,3

and

f3 = λ0,3 − f2 = λ0,3 − x.

We propagate this through the second pyramid to get:

f4 = f3 = λ0,3 − x if λ0,4 = λ4,5,

f5 = λ3,5 − f4 = λ3,5 − (λ0,3 − x),

and

f5 = x if λ0,3 = λ3,5

Thus, through this pyramid, we have propagated an x through the graph
without transforming it. It is important to note that these pyramids would be
connected to others in the complete graph and thus the x could be propagated
through the graph in more than one direction to produce several edges in the
graph with a conductivity defined by x. We can repeat this processes and extend
the graph by simply adding cycles of pyramids.

It will be useful to notice that we could add a positive coefficient to the
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output of x by changing the relationship between λ4,5 and λ0,4. So that,

f4 =
f3λ4,5
λ0,4

=
(λ0,3 − x)λ4,5

λ0,4

=
λ0,3λ4,5 − λ4,5x

λ0,4

and

f5 = λ3,5 − f4

= λ3,5 −
λ0,3λ4,5
λ0,4

+
λ4,5x

λ0,4

If we then required that λ3,5 =
λ0,3λ4,5

λ0,4
, we would obtain an output of

λ4,5

λ0,4
x.
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Figure 9: Here we propagate an x through the graph to output an x.

Lemma 3.2. We can construct a graph such that if we propagate an unknown
function x through it, we can obtain a conductivity whose value is defined by xk.

Proof. From Lemma 3.1, we can obtain an x or a λ−x from the graph. We can
then extend the graph and wrap it around itself to input the x or λ − x into
the square multipliers in the graph. Using the graph shown in Figure 10, which
would be part of a larger graph (such as the one in Figure 11), we can input x
into the edges e1 and e2 and propagate through the network.

Notice the input from the top and bottom edges is x. Since these will have
come from propagation through another part of the graph, λ1,3 and λ2,4 will
both have double edges which we have not shown in Figure 10. Thus by the
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Figure 10: Here, we propagate two x’s through the graph to output an x2.
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Figure 11: Example of a simple 3-to-1 graph construction. The arms wrap
around to input back into the graph. The nodes labeled with the same number
are the same nodes drawn twice and each of the dotted edges is drawn twice.

quadrilateral rule:

f1 =
x2

λ1,2

and

f2 = λ3,4 − f1 = λ3,4 −
x2

λ1,2
.

We use the first pyramid remove λ3,4:
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f3 = f2 = λ3,4 −
x2

λ1,2
if λ5,6 = λ4,5

f4 = λ3,6 − f3 = λ3,6 − (λ3,4 −
x2

λ1,2
)

=
x2

λ1,2
if λ3,6 = λ3,4.

We use the second pyramid to remove λ1,2:

f5 =
f4λ7,8
λ3,7

=
x2λ7,8
λ3,7λ1,2

= x2 if
λ7,8
λ3,7

= λ1,2

Notice that though f5 = x2, it is not an edge that can be input into the rest of
the graph, thus we must continue propagation.

f6 = λ6,8 − f5 = λ6,8 − x2.

We use the third pyramid to output x2:

f7 = f6 = λ6,8 − f5 = λ6,8 − x2 if λ6,9 = λ9,10

f8 = λ8,10 − f7 = λ8,10 − (λ6,8 − x2)

= x2 if λ8,10 = λ6,8

At this point, the x2 is on the second part of the double edge which means
that it would be input into the next peice of the graph simply as x2. We could
easily repeat this process using the generated x2 and another x to produce x3,
then do the same for successively higher powers and generate xk for any integer
k.

Lemma 3.3. We can construct a graph such that if we propagate an unknown
function x through it, we can obtain a conductivity whose value is defined by
(1− x)k.

Proof. From Lemma 3.1, we have shown that we can produce λ − x from the
graph. We can simply set λ = 1 to produce (1 − x). This will mean that we
must restrict the values of x to x < 1 to maintain our sign conditions. Then, as
in the proof of Lemma 3.2, we can substitute (1−x) everywhere that x appears;
the same process applies and the result will be of the form (1 − x)k instead of
xk.

Lemma 3.4. We can construct a graph such that if we propagate an unknown
function x through it, we can obtain a conductivity whose value is defined by
Cxr(1− x)n−r, where C > 0.
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Proof. In Lemmas 3.2 and 3.3, we have shown that we can construct a graph
to produce conductivities defined by (1 − x)k and xk. It follows that simply
by inputting them into either side of our square multiplier, we can produce a
function:

f =
1

λi,j
xk1(1− x)k2 (7)

for some conductivity λi,j and integers k1 and k2. Notice that it would not be
difficult to choose k1 and k2 such that k1 = r and k2 = n− r for given n and r.
Also, since λi,j does not have a double edge, the only requirement is that λ > 0
and it must satisfy the quadrilateral rule in the square. Thus it would not be
difficult to choose 1

λi,j
such that 1

λi,j
= C. Alternatively, this constant, C can

be produced by adding a coefficient to the x as it is propagated through the
graph as mentioned briefly in Lemma 3.1. Notice that

(
n
r

)
is a positive constant

for given n and r, thus by this process and choosing the appropriate C, we can
produce any Bernstein basis polynomial.

Lemma 3.5. Given a function f that is strictly positive on [0, 1], we can con-
struct Bn(f ;x) by creating multiple edges between a set of nodes.

Proof. We have shown that it is possible to produce any Bernstein basis poly-
nomial through squares and pyramids in the graph. Notice that each element
of the linear combination, Bn, is simply a Bernstein basis polynomial with a
coefficient. Since the function f is positive on [0, 1], these coefficients will all
be positive. We have already shown that we can alter the conductivities on the
graph to produce any positive coefficient. By adding additional arms to the
graph, we can produce multiple Bernstein basis polynomials. If each of these
edges with conductivity defined by the produced Bernstein basis polynomial
corresponds to the same two nodes, the total conductivity between the nodes,
λ0,1, is simply equal to the sum of the conductivities of all of the edges as in
Equation 1. An example of this is shown in Figure 12. Each of the shaded nodes
is connected to other nodes in the graph that are not shown.
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Figure 12: Here we add edges that have been propagated through the graph.
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Corollary 3.6. The above construction of a graph producing a Bernstein poly-
nomial preserves all sign conditions for each edge’s conductivity.

Proof. All choices for λi,j are independent of each other, except for the equalities
specified when propagating the x. Therefore, choosing one set of conductivities
will not affect choices for the other conductivities. This allows us to choose
any conductivities that will maintain correct sign conditions, namely that each
λi,j that needs to have x subtracted from it is greater than x or, when we
create larger polynomials, λi,j > xk. For the λi,j that do not need to fulfill this
criterion, there is no restriction on how large their value has to be, so they can
be exactly the value necessary to yield the desired coefficients on each Bernstein
basis polynomial.

4 Bernstein Polynomial Approximations of Func-
tions

By Lemma 3.5, we can propagate an x through the graph to yield a positive
linear combination of the Bernstein basis polynomials associated to a function
f(x) that is strictly positive on [0, 1]. This propagation will yield the polynomial
Bn(f ;x). Because this propagated polynomial loops around the graph and is
made up of the functions representing the conductivities on all but one of the
multiple edges in λ0,1, with the other edge having conductivity x, λ0,1 will have
a value given by

Bn + x = σ(x),

where σ(x) is the same polynomial that we referenced in Equation 3. If we
can show that the equation σ(x) = λ0,1 has exactly N distinct positive real
solutions on (0, 1), then we will know that we can construct an N -to-1 graph
by producing the appropriate Bn.

We will determine the “appropriate” Bn by designating a function, h(x), that
is approximated by the Bernstein polynomial Bn(h;x) which can be constructed
through a graph. Before we can define h(x), however, we must define a function
g(x) that has properties similar to those of σ(x).

Let g(x) (shown in Figure 13) be a function that satisfies the following conditions
on [0, 1]:
• g(x) is continuous and differentiable
• g(x) > 1 at all points on (0, 1)
• g(x) = λ has N solutions in the interval (0, 1), where λ > 1

The number of solutions that g(x) = λ has on (0, 1) is equal to the number
of distinct positive conductivities that we can place on the graph, thus giving
rise to an N -to-1 graph. Note that we choose roots on the open interval (0, 1)
because no edge can have conductivity zero and because we want to be able to
choose λi,j = 1.

Let h(x) = g(x)− x. We know that h(x) is positive because g(x) is greater
than 1, and we only wish to approximate the function on the interval [0, 1].
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Therefore, by Lemma 3.5, we can construct Bn(h;x) through the graph. By
Theorem 2.1, Bn(h;x) approximates h(x), and by Theorem 2.2, Bn(h;x)+x = λ
will have the same number of solutions as g(x) = λ on [0, 1]. We obtain the
relationship

Bn(h;x) ≈ g(x)− x,
so

Bn(h;x) + x ≈ g(x),

and
σ(x) ≈ g(x).
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Figure 13: g(x)

Because the sign conditions on each λi,j have been satisfied by Bn(h;x) (by
Corollary 3.6), we have created a polynomial σ(x) with N distinct positive real
roots on (0, 1) such that each root will produce distinct conductivities on the
graph but will produce the same response matrix. We only consider those roots
on (0, 1) because, as mentioned before, any roots that lie outside that interval
will result in invalid (i.e. negative or complex) conductivities. Also, we have
guaranteed that each coefficient in the linear combination of the Bernstein basis
polynomials is positive by the conditions we placed on g(x). Therefore, we have
shown that we can construct an N -to-1 graph for any N.

This shows us that producing an N -to-1 graph is possible. However, it does
not give us a specific way to construct such a graph. For any Bn(f ;x), the
role of the function f is to define the coefficients needed on the Bernstein basis
polynomials br,n in order to correctly approximate the function. The method
we have just outlined hinges upon finding an appropriate function (in our case,
g(x)) that satisfies the conditions we have stated. Because this method does
not allow us to state explicitly what an N -to-1 graph construction would be,
we use Legendre polynomials in the next section to give us explicit coefficients
needed for each Bernstein basis polynomial.
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5 Legendre Polynomials

Definition Bonnet’s recursion formula, (n + 1)Pn+1(x) = (2n + 1)xPn(x) −
nPn−1(x), where P0(x) = 1 and P1(x) = x gives us an explicit representation
of the Legendre polynomials:

Pn(x) =

n∑
k=0

(−1)k
(
n

k

)2(
1 + x

2

)n−k (
1− x

2

)k
(8)

The standard Legendre polynomials have roots in the interval (−1, 1). Be-
cause we are trying to construct polynomials with n distinct positive real roots
and we have restricted x < 1, we want the roots of the Legendre polynomials to
instead be in the interval (0, 1). We can shift the Legendre polynomials to the
desired interval.

Definition The shifted Legendre polynomials are constructed by setting x =
2x− 1 so that Equation 8 becomes:

Pn(2x− 1) = P̃n(x) =

n∑
k=0

(−1)k
(
n

k

)2

xn−k (1− x)
k
. (9)

The first few shifted Legendre polynomials are:

n = 0 : P̃0(x) = 1

n = 1 : P̃1(x) = 2x− 1

n = 2 : P̃2(x) = (1− x)2 − 4x(1− x) + x2

n = 3 : P̃3(x) = −(1− x)3 + 9x(1− x)2 − 9x2(1− x) + x3

n = 4 : P̃4(x) = (1− x)4 − 16x(1− x)3 + 36x2(1− x)2 − 16x3(1− x) + x4

For our purposes, we will want the Legendre polynomials to be structured
similarly to Bernstein polynomials. Therefore, we will take r = n − k which
makes k = n− r and plug this into the shifted Legendre polynomial. With this
substitution and the fact that

(
n
n−r
)

=
(
n
r

)
, Equation 9 becomes:

σ̃(x) = P̃n(x) =

n∑
r=0

(−1)n−r
(
n

r

)2

xr (1− x)
n−r

. (10)

We will call this σ̃(x) because it is almost the σ(x) that we would like to
construct however, it does not satisfy all the requirements for σ(x).

6 Explicit Polynomial Construction for an N-to-
1 Graph

We have shown that we can construct a polynomial p(x) of linear combinations
of xk(1−x)n−k where σ(x) = p(x)−x. Notice that all coefficients of p(x) must
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be positive and that all the roots of σ(x) = λ0,1 must be less than 1 in order
to ensure that the conductivity of each edge is positive. Our final polynomial
σ(x) will be a shifted version of a Legendre polynomial and our constructed
polynomial p(x) will be a Bernstein polynomial.

We will begin constructing our polynomial with Legendre polynomials. In
the discussion of Legendre polynomials, we shifted them to have roots in the
interval (0, 1) so that all of the roots of the polynomial we construct will be
positive and since we have set Cj = 1, we cannot have any roots larger than 1.
For now we will be working with σ̃(x). From Equation 6, we have an explicit
representation of x in terms of Bernstein polynomials and from Equation 10, we
have σ̃(x). Thus we can write an “almost” p(x) function,

p̃(x) = σ̃(x)− x

=

n∑
r=0

(−1)n−r
(
n

r

)2

xr (1− x)
n−r

+

n∑
r=0

r

n

(
n

r

)
xr(1− x)n−r

=

n∑
r=0

(
(−1)n−r

(
n

r

)
− r

n

)(
n

r

)
xr (1− x)

n−r
. (11)

Notice that p̃(x) does not maintain the sign conditions on all of our conductiv-
ities for our λi,j ’s. We fix this by shifting the entire polynomial up. We do this
by adding a sufficiently large constant to ensure positive coefficients using Prop-
erty 2.4. The largest possible magnitude for a negative coefficient of p̃(x) will
occur when

(
n
r

)
has the largest value; this occurs at

(
n
dn2 e
)
. Since r

n will never

be greater than 1, adding
(
n
dn2 e
)

+ 1 to each coefficient is sufficient to produce

all positive coefficients of p̃(x).

p(x) = p̃(x) +

(
n

dn2 e

)
+ 1

=

n∑
r=0

(
(−1)n−r

(
n

r

)
− r

n
+

(
n

dn2 e

)
+ 1

)(
n

r

)
xr (1− x)

n−r
. (12)

Notice that p(x) maintains the sign conditions and has n distinct roots in
the interval (0, 1). Thus, we can write σ(x) in this way:

σ(x) = σ̃(x) +

(
n

dn2 e

)
+ 1

= p̃(x) +

(
n

dn2 e

)
+ 1 + x

= p(x) + x

=

n∑
r=0

(
(−1)n−r

(
n

r

)
− r

n
+

(
n

dn2 e

)
+ 1

)(
n

r

)
xr (1− x)

n−r
+ x (13)
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We now have an explicit formula for the nth degree polynomial that we can
use to construct an N -to-1 graph. Let λ0,1 =

(
n
dn2 e
)

+ 1, because we shifted the

polynomial up by
(
n
dn2 e
)

+1 and thus the solutions to σ(x) = λ0,1 would occur at

the zeros of the original shifted Legendre polynomial. Notice that σ(x) satisfies
all the necessary properties, σ(x) = λ0,1 has n solutions in the interval (0, 1)
and since Cj = 1 for all j, Cj > x for all solutions. σ(x) and λ0,1 for n = 2
through n = 5 are plotted in Figures 14-17.The first few σ(x) and p(x) are:

n = 1 : p(x) = (1− x) + 2x

σ(x) = (1− x) + 2x+ x

n = 2 : p(x) = 4(1− x)2 + x(1− x) + 3x2

σ(x) = 4(1− x)2 + x(1− x) + 3x2 + x

n = 3 : p(x) = 3(1− x)3 + 20x(1− x)2 + x2(1− x) + 4x3

σ(x) = 3(1− x)3 + 20x(1− x)2 + x2(1− x) + 4x3 + x

n = 4 : p(x) = 8(1− x)4 + 11x(1− x)3 + 75x2(1− x)2 + 9x3(1− x) + 7x4

σ(x) = 8(1− x)4 + 11x(1− x)3 + 75x2(1− x)2 + 9x3(1− x) + 7x4 + x

n = 5 : p(x) = 10(1− x)5 + 79x(1− x)4 + 6x2(1− x)3 + 204x3(1− x)2 + 26x4(1− x) + 11x5

σ(x) = 10(1− x)5 + 79x(1− x)4 + 6x2(1− x)3 + 204x3(1− x)2 + 26x4(1− x) + 11x5 + x.
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Figure 14: When n = 2 there are two solutions to σ(x) = λ0,1 = 3

To summarize the previous steps for constructing σ(x) = p(x) + x with the
necessary properties:
• Take the shifted Legendre polynomial with roots in the interval (0, 1). This

is σ̃(x).
• Write x in terms of Bernstein polynomials.
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Figure 15: When n = 3 there are three solutions to σ(x) = λ0,1 = 4
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Figure 16: When n = 4 there are four solutions to σ(x) = λ0,1 = 7

• Define p̃(x) = σ̃(x)− x and write it in Bernstein polynomials.
• Define p(x) = p̃(x) +

(
n
dn2 e
)

+ 1 to shift p̃(x) up so that all of the coeficents

are positive.
This process will produce p(x) from Equation 12 and σ(x) from Equation

13. By setting σ(x) =
(
n
dn2 e
)

+ 1 this will produce n positive real solutions with

positive edge conductivities for all n solutions.
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Figure 17: When n = 5 there are five solutions to σ(x) = λ0,1 = 11

7 Discussion

7.1 Comparing Constructions Using Bernstein Polynomi-
als and Legendre Polynomials

We have seen that it is possible to propagate a function f(x) = x through a
variety of graph structures to yield Bernstein polynomials with positive coeffi-
cients. The limitation of using only Bernstein polynomials is that in order to
construct an N -to-1 graph, we must find a function g(x) such that it has N
solutions to the equation g(x) = λ on the open interval (0, 1). Such a function
may be difficult to specify, so the method outlined in Section 4 only tells us
that it is possible to construct such a graph; it does not provide us with specific
tools to do so.

The advantage that Legendre polynomials afford us is the ability to write
down exact graph constructions explicitly and obtain known (though compli-
cated) roots. Legendre polynomials of degree n are known and calculable, and
when shifted, they are also able to be written as Bernstein basis polynomials
with known coefficients. We saw above that if σ(x) = p(x) + x, where σ(x)
is a shifted positive Legendre polynomial, we can write σ(x) in the form of a
Bernstein polynomial. Because x can also be written as a Bernstein polynomial
(see Section 2.1), we can write p(x) = σ(x)− x as a Bernstein polynomial and
therefore construct a graph that produces it. In this case, we have specific steps
for this construction: because the Legendre polynomial of degree n is known,
we can specify exact relationships between the conductivities of some edges on
the graph. We can construct the exact graph that we need.

One thing to note here is that although we have presented an explicit way of
constructing these graphs, this method is far from pleasant to implement. Be-
cause Bernstein basis polynomials depend on the multiplication of large numbers
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of x and (1− x) terms, the graphs needed to construct them are very large and
complicated. It seems unlikely to us that actually drawing such a graph would
be useful or illustrative.

7.2 Use of Other Polynomials

In this document, we focused on the use of two specific polynomials—Bernstein
and Legendre—to construct N -to-1 graphs. We did this because Bernstein
polynomials and Legendre polynomials have known and convenient properties
that make construction easier and more straightforward or universally explicit.
Instead of using Legendre polynomials, however, we can choose to use any poly-
nomial we want as long as its roots lie on (0, 1). This is because the Bernstein
basis polynomials br,n form a basis for all polynomials of degree at most n, so
we can always write any polynomial as a linear combination of the br,n. As
shown in Section 3, we can propagate an x through our graph to yield this
linear combination.

7.3 Further Research

Very little is known about N -to-1 graphs. There is much work to be done in
studying them and how they fit into our understanding of electrical networks.
What follows is a list of possible topics to explore regarding N -to-1 graphs:
• Finding the genus of an N -to-1 graph. Is it dependent on N only, or on

other factors as well?
• Parametrizing the response matrix. Is there a more explicit way of doing

this? We have identified some relationships between edge conductivities based
on the quadrilateral rule, but is there a way to formalize this? Can we read off
some or all these relationships directly from the response matrix?
• Computing conductivities for an example graph. We noted in Section 7.1

that actually writing down an example of an N -to-1 graph constructed using
these methods is tedious. However, it may be possible and useful to write a
program that carries the computations through the graph without having to
draw the graph itself.
• Negative and/or complex roots. In this paper, we focused solely on roots

that were positive and real. However, it would be conceivable to construct
polynomials that yielded negative or even complex roots. In the context of
electrical networks, what does it mean for a graph to have non-positive, non-
real conductivities on its edges? How does this change our assumptions about
restrictions on the λi,j?
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