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Abstract. The purpose of this paper is to present a method for constructing

n-1 graphs that is simple to perform for all n ≥ 2.
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1. Preliminary Notions

The uninitiated reader should refer to [9] sections 1 to subsection 4.0 for rele-
vant background material1. Terms relevant to this paper are: graph with boundary
(G = (V,E)) (we do not allow loops, but do allow multi-edges), the partition of the
node set into boundary nodes (∂V ) and interior nodes (intV ), conductivity defined
on the edge set (γ : E → R+), resistor network (Γ = (G, γ)), Inverse Problem (see
below), n-1 graphs (see below), Kirchoff matrix (K) and response matrix (Λ), n-
star (Fn) and complete graph on n vertices (Kn), the Star-K Transformation and
the Quadrilateral Rule (see below), R-Multigraph (the final network from perform-
ing Star-K Transformations), and R-Matrix (similar to Response Matrix, except
whereas the response matrix gives the sum of conductivities of a multi-edge of the
R-Multigraph, the R-Multigraph gives each individual edge conductivities within a
multi-edge of the R-Multigraph). In particular recall that:

Definition 1.1 (Inverse Problem). The inverse problem associated with resistor
networks is, given a graph G: given a response matrix Λ, find the conductivity (or
equivalently, the Kirchoff matrix) that yields the response matrix (ie. solve Λ→ γ).
Thus, the inverse problem is to recover γ (or equivalently K) from Λ. Note: the
forward problem is unique [1].

Definition 1.2 (n-1 graphs). For some networks (that are non-circular planar),
the correspondence between γ (or K) and Λ is neither one-to-one nor infinite-to-
one but is instead n-to-one for some n ∈ N with n ≥ 2. In this sense, for a given
response matrix Λ, there exists n different γ’s that created the Λ. That is, there are
n solutions to the inverse problem, Λ→ γ. We call such networks n-1 graphs (or the
less often used but more appropriate n-1 networks). The first example discovered
was the 2-1 triangle-in-triangle graph [2]. The existence and structure of n-1 graphs
for n ≥ 2 has been of considerable interest to the University of Washington REU
since that paper: see [5][6][7][8][9][10].

Definition 1.3 (The Star-K Transformation and the Quadrilateral Rule). Given
an n-star (Fn), with the boundary to interior conductivities γ1, · · · , γn, we can
transform the n-star into a complete graph on n vertices (Kn). The resulting
boundary to boundary conductivities, λij for 1 ≤ i 6= j ≤ n, are given by the
formula:

γiγj
σ

= λij

where σ =
∑

i γi. The resulting edge conductivities of the Kn satisfy the Quadri-
lateral Rule:

(1.4) λijλkl = λikλjl for all i 6= j 6= k 6= l

Thus graphically, opposite sides of any rectangle have the same products. Given a
Kn, we have an inverse equation that gives us an n-star if and only if equation 1.4
is satisfied:

γi = αi

∑
j

αj

1I refer to Courtney’s paper because her previous work and encouragement most directly
influenced this paper, though many other papers were of indirect influence.
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where αi =

√
λijλik
λjk

. This is the K-Star Transformation. Hence, every n-star is

one-to-one with a Kn that satisfies the Quadrilateral Rule, by the Star-K Trans-
formation (originally proved in [3]).

Also, to review,

(1) The n-1 graph problem is to find a network Γ for which there exists a
response matrix Λ that corresponds to n different sets of edge conductivities
γ : E → R+ (or equivalently, n different Kirchoff matricesK) for each n ∈ N
and n > 1. Hence, we want to find examples of n-1 graphs for all n > 1.
Note that all edge conductivities must be positive!

(2) Applying Star-K Transformations to a graph (whose conductivities are
given by the Kirchoff matrix) eventually gives us its R-Multigraph (conduc-
tivities given by the R-Matrix). Since the Kirchoff matrix and its R-Matrix
are one-to-one (by the Star-K Transformation), we could equivalently say
the n-1 inverse problem is to find a network Γ for which there exist a re-
sponse matrix Λ that corresponds to n different R-Matrices (or equivalently,
n different parametrizations for the R-Matrix/R-Multigraph).

(3) Note that when the R-Matrix has single-edges, it is equivalent to the re-
sponse matrix entries, or λ’s. When the R-Matrix has multi-edges, the
response matrix holds only the sums (λ =

∑
multi-edge f ’s) of their con-

ductivities. Hence, we only need to parametrize the unknown edge conduc-
tivities, the individual edges within multi-edges. As an example of what
we do not want, in infinite-1 graphs (see series example in [9]), there exists
some multi-edge (eg. say a double) for which the positive sum λ can be par-
titioned arbitrarily into two (or more) positive pieces f0 + f1 = λ without
other conditions; hence there are infinitely many corresponding R-Matrices.
In other words, we could parametrize this double-edge of the R-Multigraph
as f0 and λ − f0; there are infinite possible values for the parameter f0,
hence the entire graph is infinite-1.

2. Introduction

Based on previous work by Ilya [6] and Courtney [9] on 3-1 graphs, we take
a constructive approach to solving the n-1 graph problem. The 2-1 triangle-in-
triangle graph [2], the 2n-1 graphs of Jennifer and Shen [5] and Cynthia [10], and
the 3-1 graphs of Ilya [6] and Courtney [9], all have a common structural motif:
these graphs are constructed from four-star multiplexers joined in cyclic
structures. Such graphs have response matrices that are easy to parametrize by
to the Quadrilateral Rule, and their cyclic architectures create the necessary con-
straint equations on parameter values [9]: the trick to constructing n-1 graphs
is to constrain the parameter(s) by using an equation(s) (a constraint
equation) which has finite n solutions. Hence, we avoid the ∞-1 multi-edge
illustrated above. (Note that we also have to ensure positivity). As an example,
we recall the classic case of the triangle-in-triangle [2] as presented in [9]:

Example: Triangle-in-Triangle. Figure 1a shows the triangle-in-triangle graph
as originally discovered in [2], Figure 1b shows the unfolded version, and Figure 1c
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(c) R-Multigraph with parametrization

Figure 1. Triangle-in-Triangle Graph.

shows its product under Star-K Transformations (ie. its R-Multigraph), with its
edges parametrized2.

Letting x = f0, we can use the Quadrilateral Rule and the Multi-Edge Rule (the
simple observation that the sum of the conductivities of a multi-edge is given by an

2Note: Open dots denote boundary nodes, closed dots denote interior nodes. Some nodes may
be written more than once, for example 0 and 1 in Figure 1; these represent where the Figure
has been ”unfolded” along connections between adjacent stars. Red edges represent multi-edges;

blue edges (see Figure 3) represent multi-edges resulting from boundary edges. Dotted red edges
represent a repetition of some solid red edge; these occur at unfoldings, and we draw them to
clarify the number of edges in that multi-edge
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entry λ of the response matrix) to parametrize the R-Matrix/R-Multigraph. We
parametrize from left to right, taking into consideration positivity conditions:

f0 = x
f1 = λ02λ13/f0 = c1/f0
f2 = λ23 − f1 = c2 − f1, where c2 > f1 for all solutions x.
f3 = λ24λ35/f2 = c3/f2
f4 = λ45 − f1 = c4 − f3, where c4 > f3 for all solutions x.
f5 = λ40λ51/f4 = c5/f4

and finally the constraint equation

f0 = λ01 − f5 = c0 − f5, where c0 > f5 for all solutions x.

This can be rewritten as f0 + f5 − c0 = 0. Substitution gives us the constraint
equation in x:

x+
c5

c4 −
c3

c2 −
c1
x

− c0 = 0

or equivalently as the linear fractional transformation:

(c4c2 − c3)x2 + (c5c2 − c4c1 − c0c4c2 − λc3)x− c5c1 − c0c4c1
(c4c2 − c3)x− c4c1

= 0

2.1. Discussion and Big Ideas. The numerator is a quadratic with two roots.
Thus, this graph could be 2-1, if there is a choice of c’s which give positive real
solutions to the quadratic, and such that for both solutions of x, the above positivity
conditions are satisfied (all parametrized edges are positive). If we can find such
a choice of c’s, then we can then find an appropriate choice of λ’s (ie. response
matrix entries) which produce those c’s. Then we have two legitimate sets of
R-Matrix conductivities (parametrized by the two solutions for x) for the same
response matrix. We can then recover the original γ’s of the triangle-in-triangle
graph by the K-Star Transformation, and such a graph will be n-1.

However, the singularity in the denominator poses problems, and careful con-
siderations of the sign of derivatives of f ’s are used in Courtney’s paper to ensure
positivity of all edge conductivities [9]. The 3-1 graphs in [6][8][9] also relied on
a constraint equation that was a linear fractional transformation. Because of sin-
gularities, ensuring positivity of parametrized edges becomes a difficult problem.
Courtney’s paper shows a careful argument for doing this for the 3-1 graph, and
readers are encouraged to look at her results [9]. Two things are of note. Firstly,
the graph must be constructed in a certain way to control the derivatives of f ’s in
order to ensure positivity. Thus, “similar” graphs (with one more or one less inver-
sion) can be proven to not have viable choices for c’s; structure itself is important.
Secondly, extending the derivative/singularity/half-plane argument to n > 3 seems
very difficult.

We will show in this paper that exploring the breadth of multiplexers gives us an
alternative method of constructing n-1 graphs, that instead of forming a constraint
function that is a linear rational transformation, we can connect multiplexers
in such a way to produce a constraint equation that is an arbitrarily
chosen polynomial in x, instead of a rather hairy linear fractional transforma-
tion. We do this by introducing multipliers and the inversion trick, and avoiding
reciprocators altogether (explained in section 4). Since polynomials do not have
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singularities, we avoid the issues in the previous paragraph altogether. Thus, we
may begin by choosing an nth degree polynomial p(x) with positive real zeroes, and
then constructing a graph which will yield our chosen constraint equation p(x).
Moreover, we will show that ensuring positivity of the other parametrized edges
along the way is quite simple using the inversion trick.

3. Star-Based Graphs, Multiplexers, and Parametrizations

3.1. Star-Based Graphs. All examples of n-1 graphs so far are what we will call
star-based graphs, and we will solve the n-1 graph problem by constructing new
types of star-based graphs from new four-star multiplexers.

(a) Star-Based Graph

(b) R-Multigraph

Figure 2

Definition 3.1 (Star-Based Graphs). A star-based graph is a graph constructed
from stars “connected” to other stars. Two different stars (which do not share
interior nodes) are said to be connected if they share two or more boundary nodes.
In our constructions, we will only allow two connected stars to share exactly two
boundary nodes. We also will allow three or more stars to be connected at the
same two boundary nodes; indeed we desire such structures to make the constraint
equation. We also will allow boundary to boundary edges (henceforth just boundary
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edge) between two boundary nodes of the same star (never from different stars, but
possibly between the pair of boundary nodes shared by connected stars). In our
constructions, we allow only one boundary edge per pair of boundary nodes, else
they will be infinite-1 and so will our graphs. For simplicity, we will only use
four-stars, because it is easy to satisfy the Quadrilateral Rule.

Figure 2a shows an example of a star-based graph, and Figure 2b shows its R-
Multigraph. Note that the R-Multigraph has a multi-edge for each instance of a
connection or boundary edge. Hence, it is a simple matter to get the R-Multigraph
of a star-based graph, and also a simple matter to parametrize the unknown edge
conductivities within multi-edges: they merely have to satisfy the Quadrilateral
Rule and the Multi-Edge Rule.

0 1

2 3

4

58

10 11

0

7

6

1

0 1

9

f0

f1

f2

f3
f4

f5
f6

f7

f8
f9

f10

f11

f12

f13

f14

Figure 3. Courntney’s 3-1 graph. See [9].

The triangle-in-triangle example gives an example of such a parametrization.
The act of parametrizing R-Multigraphs always start with choosing which edges will
be represented by parameters, and then by proceeding in a certain direction until all
unknown edges are parametrized; if there is a cyclic structure, we will end up with a
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constrain equation. In the triangle-in-triangle example, we start by parametrizing
the edge f0, and continue from left to right. For a more complicated example,
Figure 3 represents graphically a parametrization of Courtney’s 3-1 graph. We will
call the arrow diagram for the parametrization as a parametrization diagram. The
constraint equation is

f0 + f7 + f14 = λ01.

3.2. Multiplexers. Courtney’s 3-1 graph uses two different multiplexers, the re-
ciprocator and the inversion. A multiplexer is a K4 (or more generally a Kn) where
some subset of its edges are of unknown edge conductvity. In a star-based graph,
such unknown edges arise from either a connection with another K4, or from a
boundary edge, and the R-Multigraph of a star-based graph is created by connect-
ing different types of multiplexers. Two multiplexers are of different types if they
cannot be superimposed upon each other; thus they have different sets of unknown
edges under superposition.

In Courtney’s 3-1 graph, Figure 3, there are two functionally distinct multiplex-
ers: the reciprocator (Figure 4a) and the inversion (Figure 4b). The parametriza-
tion diagram (Figure 3) passes through each multiplexer in a particular direction,
and determines which unknown edges of the multiplexer are input edges and which
are output edges. Different types of multiplexers are parametrized differently using
the Quadrilateral Rule. Hence, if f is the parametrization of an input edge, then
the output edge of a reciprocator is c/f ; the two output edges of an inversion are
c1f and c2f . (The c’s are product and quotients of entries λ’s in the response
matrix: see subsections 4.5 and 4.2). Hence, all reciprocators are functionally the
same, all inversions are functionally the same, while all reciprocators and inversions
are functionally different.

(a) Reciprocator (b) Inversion

Figure 4. Multiplexers.

Note: The useful thing about the inversion is that it is the only multiplexer with
more outputs than inputs (see Figure 3). This allows us to split a parametrization
into branches, a very useful construction. For one of the inversions in Figure 3,
we only care about one of its outputs, so to preserve the inversion’s structure, we
construct a boundary edge over the extraneous output. Alternatively, if we did not
want to use boundary edges, we could construct a degenerate multiplexer such as
in Figure 5b.
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3.3. How to Represent Parametrizations. We can represent the parametriza-
tion if we treat each multiplexer and each multi-edge as a transition between adja-
cent unknown edges. Hence, if all inputs of a transition are uniquely determined,
all outputs of the transition are uniquely determined. For example, if we let f be
an input, a reciprocator can be represented as:

f
R //c/f

and an inversion can be represented as:

f
I //

I

  

c1f

c2f

Also, a n-multi-edge can be represented as (if and only if n − 1 edges of an
n-multi-edge are uniquely determined, then the nth edge is uniquely determined):

f1 ks +3λ− f1 − f2 · · · fn−1

f2
rz

2:

· · ·

fn−1

��

?G

where λ−f1−f2 · · · fn−1 > 0 for all solutions x (positivity condition; see subsection
3.4).

Their sum is the constant λ, an entry in the response matrix. We use double
arrows to distinguish multi-edge transitions from multiplexer transitions. Often,
a n-multi-edge is used to create the final constraint equation; hence there is no
output and we write

λ− f1 − f2 · · · fn−1 = 0

where fi are functions in our parameters x1, · · · , xp, (we often choose as few pa-
rameters as possible, and our n-1 graph will have only one).

Note that an initial parameter is never preceded by a transition; a multiplexer
transition is always preceded and followed by a multi-edge transition; a multi-
edge transition may be preceded and followed by another multiplexer transition, a
boundary edge (always denoted “B”, because we do not care about its value), or
terminate as a constraint equation (denoted by “= 0”). If there is no termination
multi-edge, then the graph cannot possibly be n-1, it must be ∞-1.

We may also condense a multiplexer transition and its following multi-edge tran-
sition; for example:

f
I //

I

  

c1f ks +3c2 − c1f = 0

c2f ks +3B
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becomes

f
I //

I

%%

c2 − c1f = 0

B
or, in the presence of a boundary edge, it is sufficient to write

f
I //c2 − c1f = 0 .

since it is understood that if only one of two outputs of an inversion is represented,
the second output must be an extraneous boundary edge.

Hence, we can write the parametrization of the triangle-in-triangle example as

f0
R //f1 ks +3f2

R //f3 ks +3f4
R //f5 ks +3λ− f5 − f0 = 0

or as

x
R //c2 −

c1
x

R //c4 −
c3

c2 −
c1
x

− λ R //λ− x− c5

c4 −
c3

c2 −
c1
x

= 0 .

3.4. An Important Consideration: Restricting our Domain. In construct-
ing our n-1 graphs, we will begin by choosing n distinct positive real roots x1 < x2 <
· · · < xn, which are the roots of polynomial p(x) = (x− x1)(x− x2) · · · (x− xn) =
xn−an−1x

n−1+ · · ·±a1x∓a0 where ai > 0 for all i (the signs must alternate due to
Descartes’ Rule of Signs), and construct a graph which yields are chosen constraint
equation p(x). For multi-edge transitions, it is necessary to ensure positivity for all
eventual solutions x: we must have λ− f1 − f2 · · · fn−1 > 0. But since we already
know what the eventual values of x are, we can consider a restriction of R+ to a
finite interval I ⊂ R+, where I = (a, b) such that 0 < a < x1 < · · · < xn < b <∞.
The property that we want to preserve as we parametrize f ’s will be boundedness
of f ’s on I (that 0 < f < ∞ on I). This will allow us to ensure positivity as we
parametrize.

Why is such a restriction not relevant to previous 3-1 graphs that used constraint
equations that were linear fractional transformations? Because we do not have the
power to choose the roots of the numerator and denominator beforehand: if all
zeroes of the numerator are positive, and I is a finite interval that includes it, we
still have no guarantee that the singularities, the zeroes of the denominator aren’t
also in I. The behavior at singularities is not known to us. Hence, why we go
through the trouble of arguing with derivatives/singularities/half-planes [9]. But
with the approach in this paper, we avoid the problem of singularities, and avoid
behavior at 0 and ∞.

4. A Closer Look at Multiplexers

4.1. Enumerating Multiplexers. The are 11 different K4 multiplexers, 11 dif-
ferent ways of choosing a subset of unknown edges from the six edges of a K4

network, up to superposition (Figure 5). Note, however, that some of these multi-
plexers actually have unknown edges that are already uniquely determined by the
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(a)

(b)

(c) (d)

(e) (f) (g)

(h) (i)

(j)

(k)

Figure 5. Enumerating Multiplexers.
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Quadrilateral Rule; we call such multiplexers degenerate. Multiplexers (b) and (c)
are essentially multiplexer (a). Multiplexer (e) is essentially multiplexer (d)3. We
are left with multiplexers (a), (d), (f), (g), (h), (i), (j), and (k). Multiplexer (a) is
trivial, and we will also ignore multiplexers (j) and (k) because they are too cum-
bersome to use (Remark: I don’t think including them adds anything that can’t
already be done with the other four multiplexers). We are thus left to consider
multiplexers (d), (f) and (g) together, (h), and (i).

We have already seen multiplexers (d) (Figure 4a: reciprocator) and (g) (Figure
4b: inversion, though drawn differently). Multiplexer (f) cannot be supperposed
on (g), but is functionally equivalent under the Quadrilateral Rule, and is therefore
an alternative inversion. We will use the common conformation of the inversion
as was shown in Figure 4b. We call multiplexer (h) the cross-reciprocator : this
multiplexer has been seen before in various 2n-1 graphs [5][10]. Finally, multiplexer
(i) is new, and we will call it the multiplier, for reasons that will become apparent.

We now take a closer look at the parametrizations of each of these four multiplexers
in turn.

4.2. The Inversion (Scaling and Splitting an Input). The parametrization
of the inversion is shown in Figure 6. By the Quadrilateral Rule,

f0λ23 = f1λ13 = f2λ03

thus
f1 = λ23f0/λ13 = c1f0 and f2 = λ23f0/λ03 = c2/f0

which are positive. Moreover, if 0 < f < ∞ on I, then both 0 < c1f < ∞ and
0 < c2f < ∞, so boundedness is preserved. We may choose the constants c1 and
c2 independently.

0

2

1

3

f1

f0

f2

Figure 6. Inversion.

Hence, we can represent the inversion transition as

f
I //

I

  

c1f

c2f

3This offers a simple reason why the “Race Track Graph” is 2-1 [4][5][10]: it is essentially the
square-in-square graph with degenerate extra multiplexers.
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or, if one of the outputs is a boundary edge, it is sufficient to write

f
I //c1f

and the transition pair of inversion followed by a multi-edge (inversion pair) as

f
I //c1f ks +3c2 − c1f

or

f
I //c2 − c1f

Since 0 < c1/f <∞ on I, there exists some c2 large enough such that 0 < c2−c1f <
∞ on I, so we can preserve boundedness.

4.3. The Inversion Trick. What happens when we have an arbitrary multiplexer
pair (G) (which we assume preserves boundedness on I) followed by an inversion
pair (I)? (hence, multiplexer, multi-edge, inversion, multi-edge, in order). We get
something like this:

f
G //c1 −G(f)

I //c3 − c2(c1 −G(f)) .

where c1 > G(f) on I, and c3 > c2(c1 −G(f)) on I. If we let c2 = 1 and c3 = c1,
which certainly satisfies the positivity condition c3 > c2(c1 −G(f)) on I, we get

f
G // I //G(f) .

We get G(f) as our output! More importantly, none of the intermediate c’s
remain in the expression: they will not be present in the constraint equation p(x).
So I will be independent of what we choose for their values, and they will not
affect our ability to define I such that it contains all the solutions of the constraint
equation p(x); rather, since we said earlier that for our n-1 graph construction we
already have a p(x) in mind, and hence an I in mind, we can go back and choose
appropriate c’s at any time. That is, as long as the boundedness property is being
preserved by multiplexers (true for reciprocators, inversions, and (as we will show)
multipliers), and the initial parameter is bounded to begin with (which it is, since
x is bounded on I), we can always choose c2 = 1, and c1 and c3 large enough to
ensure positivity of those intermediate edges.

4.4. Passing Along an Input. One use of the inversion trick is to let the multi-
plexer pair G be an inversion pair with constant 1. Hence,

f
I //c− f I //f .

We have passed an input two inversions downstream. We can keep doing this
and make an arm made of inversions of arbitrary length 2N inversions that passes
on the value f (or some positive constant multiple of f), or 2N + 1 inversions
that passes on the value c − f (of c minus some positive constant multiple of f).
Moreover, because we can get two outputs from each inversion, we can also split
the same input into multiple copies of itself. An example of using inversions to
create branching arms is shown in Figure 7. A possible parametrization is given,
with a choice of response matrix entries given in blue, where L represents a value
sufficiently large to ensure positivity of that edge on I. We call such structures
a structure of inversions. We should only care about the input and outputs of a
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Figure 7. A Structure of Inversions.

structure of inversions, where the intermediate c values are easily chosen under the
inversion rule to not affect the outputs.

Arms are important structures because in order to fold a network back on itself
to make a cycle, the two ends (the two nodes that are repeated due to unfolding)
must be at least three nodes apart4, lest it introduce undesired multi-edges which
would actually change the multiplexers themselves.

4.5. The Reciprocator (Taking the Reciprocal of an Input). The parametriza-
tion of the reciprocator is shown in Figure 8. By the Quadrilateral Rule,

f0f1 = λ02λ13 = λ03λ12 = c1

thus
f1 = c1/f0

which is positive since f0 and c1 are positive. Moreover, if 0 < f < ∞ on I, then
0 < c1/f <∞, so boundedness is preserved.

Hence, we can represent the reciprocator transition as

f
R //c/f

and the transition pair of reciprocator followed by a multi-edge (reciprocator pair)
as

f
R //c1/f ks +3c2 − c1/f

or

f
R //c2 − c1/f

Since 0 < c1/f < ∞ on I, there exists some c2 large enough such that 0 < c2 −
c1/f <∞ on I, so we can preserve boundedness.

4The reason that the triangle-in-triangle graph needs to have a series of three reciprocators and

no less is that trying to fold a series of two reciprocators actually introduces many more multi-
edges that desired: indeed they are not reciprocators, they have no single-edges. Conjecture: three

nodes apart is sufficient distance for separating a node from itself.
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0 2

1 3

f1f0

Figure 8. Reciprocator.

However, the choice of c’s will determine the coefficients and hence the solutions
of the constraint equation p(x), and thus determines the bounds of I in order for
it to contain all the solutions. Hence, the choice of c’s and I is not independent, in
most cases. We can force this to not be the case by using the inversion trick, which
will return our function c1/f :

f
R //c2 − c1/f

I //c2 − (c2 − c1/f) = c1/f

Example 2-1 Graph. Using a reciprocator and an inversion arm of length four,
we can construct a 2-1 graph (Figure 9). It is similar to the triangle-in-triangle
graph, but easier to evaluate.

The constraint equation is

x+
1

x
= λ =⇒ x2 − λx+ 1 = 0

which has two positive real solutions if we choose any value λ > 2. Hence, this
graph is 2-1.

4.6. The Cross-Reciprocator. The cross-reciprocator is similar to the recipro-
cator, except that it allows two lines of parametrizations to intersect one another.
The parametrization of the cross-reciprocator is shown in Figure 10. By the Quadri-
lateral Rule,

f0f1 = f2f3 = λ03λ12 = c

thus

f1 = c/f0 and f3 = c/f2.

Note that the two lines of parametrizations are not independent from each other,
they share the constant c. Thus, choosing c for one line of parametrization limits the
choice for the other. This is not a problem if the parametrizations are symmetric,
as in the case of the (3, 3)-torus [5][10] and other 2n-1 graphs; it allows us the ability
to adjoin graphs, though not in an independent way5.

5There exists a way of adjoining graphs, using boundary edges, such that the graphs remain

independent: say you have two parallel arms of inversions, we can make them independent by
placing an extra boundary edge where the two arms touch, with multi-edge sum large enough to

“buffer” the outputs going into these multi-edges. See Figure ??? for example.
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(a) One possible parametrization

0
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(b) Untransformed graph

Figure 9. Example 2-1 Graph
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1 3

f2
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f1f0

Figure 10. Cross-Reciprocator.
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4.7. The Multiplier (Taking the Product/Quotient of Two Inputs). The
parametrization of the multiplier is shown in Figure 11. By the Quadrilateral Rule,

f0f1 = f2λ02 = f3λ03

thus

f2 = f0f1/λ02 = c2f0f1 and f3 = f0f1/λ03 = c3f0f1

which are positive. Moreover, if 0 < f0, f1 < ∞ on I, then both 0 < c2f0f1 < ∞
and 0 < c3f0f1 < ∞, so boundedness is preserved. We may choose the constants
c2 and c3 independently.

0 2

1 3

f1f0

f3

f2

Figure 11. Multiplier.

Hence, we can represent the multplier transition as

f
M //

M

��

c2fg

g c3fg

or, if one of the outputs is a boundary edge, it is sufficient to write

f
M //c2fg

g

and the transition pair of inversion followed by a multi-edge (inversion pair) as

f
M //c2fg ks +3c4 − c2fg

g

or

f
M//c4 − c2fg

g

Since 0 < c2fg < ∞ on I, there exists some c4 large enough such that 0 < c4 −
c2fg <∞ on I, so we can preserve boundedness.
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Adding an inversion and using the inversion trick returns our function c2fg:

f
M //c4 − c2fg

I //c4 − (c4 − c2fg) = c2fg

g

5. Putting it All Together: How to Construct N to 1 Graphs

We present a general method for constructing N to 1 graphs. We eventually want
a nth degree polynomial p(x) with n arbitrary positive real roots, x1, x2, · · · , xn.
Thus, p(x) = (x − x1)(x − x2) · · · (x − xn) = xn − an−1x

n−1 + · · · ± a1x ∓ a0,
where ai > 0 for all i and the signs alternate (no coefficient is 0), a fact ensured by
Descartes Rule of Signs. Because this form is the same for all possible choices of
positive real solutions to the parameter, we can construct one graph for each n that
works for aribtrary choices of ai’s and thus xi’s. Let I be a interval belonging to
(0,∞) which contains xi for all i, as in discussion above. I will allow us to use the
inversion rule to ensure intermediate edge positivities. We will construct a graph
that results in the polynomial p(x) = (xn +an−2x

n−2 +an−4x
n−4 + · · · ) + (Cn−1−

an−1x
n−1 + Cn−3 − an−3x

n−3 + · · · ) = (Cn−1 + Cn−3 + · · · ) ± a0 = C, which is
equivalent to p(x) = xn − an−1x

n−1 + · · · ± a1x∓ a0 = 0. The Ci’s for odd i’s are
chosen sufficiently large such that Ci − aixi > 0 on I, as in discussion above, and
also sufficiently large such that C = (Cn−1 + Cn−3 + · · · ) ± a0 > 0 (if n is even,
sign of a0 is negative).

5.1. Construction Algorithm. An algorithm for constructing a n-1 graphs for
n ≥ 2 is given as follows:

(1) Let there be an inversion with one edge parametrized as x. Extend the
above inversion to a structure of inversions which gives us n copies of x and
a copy of a1x (n odd) or C1 − a1x (n even). Let these be on sufficiently
long arms. As always, choose appropriate intermediate values using the
inversion trick.

(2) Starting with k = 2, use the copy of xk and a copy of x as inputs to a
multiplier, with output xk. Use some structure of inversions to give us a
copy of xk and a copy of akx

k (n− k even) or C3 − a3x3 (n− k odd). Let
these be on sufficiently long arms.

(3) Use the copy of xn−1 and a copy of x as inputs to a multipler, xn.
(4) Create an n-multi-edge using the n remaining arms, which are

(if n odd) xn, Cn−1 − an−1x
n−1, an−2x

n−2, · · · , C2 − a2x2, a1x or
(if n even) xn, Cn−1 − an−1x

n−1, an−2x
n−2, · · · , C1 − a1x.

Let the response matrix entry representing the sum of this multi-edge have
value

(if n odd) C = Cn−1 + Cn−3 + · · ·+ C2 + a0 or
(if n even) C = Cn−1 + Cn−3 + · · ·+ C1 − a0.

Choose Ci’s sufficiently large to ensure positivity of their associated edges
on I, and to ensure positivity of C.

This gives us the constraint equation p(x) = xn − an−1x
n−1 + · · · ± a1x ∓ a0 =

(x− x1)(x− x2) · · · (x− xn) as desired. Thus, there are n positive real values that
the parameter x can take, and by construction, every edge parametrized by x is
positive. Thus this four-star-based graph is n to 1.
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5.2. Building the Requisite Structures. The discussion in sections 1−4 justify
the existance of a star-based graph which satisfies the above algorithm. Here we
present general examples of how to build (1) the structure of inversions, which
generates enough copies of x and either a1x or C1 − a1x, and (2) the structure of
multipliers, which combines the copies of x to give

xn, Cn−1 − an−1x
n−1, an−2x

n−2, · · · .

5.2.1. Structure of Inversions. For n odd, we need one copy of a1x and n copies
of x. Figure 12 gives such a structure of inversions for n = 5. We can extend
this tower to arbitrary height. There are many ways of creating such structures of
inversions, and we choose one that is easily extended.

x

x

x

cx

x

x

x

x

x

x

x

1/c

x

1cx

1

1

Figure 12. Structure of Inversions (n odd)

For n even, we need one copy of C1 − a1x and n copies of x. Figure 13 gives such
a structure of inversions for n = 6. We can extend this tower to arbitrary height.
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x

x

x

x

x

L-cx
cx

x

1/c
1

x

x

x

x

xx

x

x

Figure 13. Structure of Inversions (n even)

5.2.2. Structure of Multipliers. Working backwards from xn, we have a multiplier
with an x input from the structure of inversions and a xn from a multiplier-inversion
pair (Figure 14). The output of this multiplier is part of the n-multi-edge that
results in the constraint equation.

x x(n-1)

xn

x(n-1)

L-x(n-1)

Figure 14. xn Multiplier
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For k = n − 1, we want to output Cn−1 − an−1x
n−1. Hence, we need to add an

inversion arm of odd and sufficient length. Figure 15a shows the structure up to
xn−1. Three inversions is minimal. In Figure 15b, we show that folding the final
flap, of the Cn−1−an−1x

n−1 edge to the xn edge, indeed works. This is the general
substructure for when n− k odd.

x x(n-1)

xn

x(n-1)

L-x(n-1)

L-cx(n-1)
1/c 1

x(n-1) cx(n-1)

(a) (b)

Figure 15. xn−1 Structure (n− k odd)

For k = n − 2, and in general n − k even, we need to add an inversion of even
and sufficient length. Two inversions is minimal (Figure 16 shows the structure up
to xn−1). We alternate the directions neighboring arms point to avoid their ends
(which form the n-multi-edge) being too close together and introducing extraneous
multi-edges.

x x(n-1) L-cx(n-1)

x(n-1) cx(n-1)

1/c 1

xn

L-x(n-1)

x(n-1)

xcx(n-2)

L-cx(n-2)

x(n-2)

1/c1

L-cx(n-2)

cx(n-2)

x(n-2)

x(n-2)

Figure 16. xn−2 Structure (n− k even)
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We continue this structure backwards until k = 2. Combing the structure of
inversions and structure of multipliers gives us our n-1 graphs.

6. Examples of Constructing n-1 Graphs

The 2-1 graph is a special case, and does not follow the above construction
exactly, but follows the same principles. The 3-1 and 5-1 graphs give examples for
n odd, and the 4-1 and 6-1 graphs give examples for n even. These examples can
be extended to higher n.

2-1 Graph. Figure 17 shows a 2-1 graph with a possible parametrization. The
constraint equation is

x2 + (L− cx)− λ = 0.

If we choose roots a, b > 0, then the constraint equation is x2 − (a + b)x + ab, so
we choose c = (a+ b), L− λ = ab, and L > max(ca, cb, a, b, a2, b2).
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(b) Untransformed

Figure 17. 2-1 Graph.
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3-1 Graph. Figure 18 shows a 3-1 graph. The constraint equation is

x3 + (L− c2x2) + c1x = λ =⇒ x3 − c2x2 + c1x+ (L− λ) = 0.

Compare coefficients with chosen polynomial and choose L sufficiently large.

x

x

xx

x2

x2

L-x2

L-cx2

x

x3

cx

cx λ

x

1/c

xx

1
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0

2

1

0

1

0

1

3

4
3

4

0

2
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1
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cx2x2

1/c 1

1

1

Figure 18. 3-1 Graph.
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Figure 19. 3-1 Graph Untransformed
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5-1 Graph. Figure 20 shows a 5-1 graph.
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Figure 20. 5-1 Graph.
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4-1 Graph. Figure 21 shows a 4-1 graph.
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Figure 21. 4-1 Graph.
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6-1 Graph. Figure 22 shows a 6-1 graph.
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Figure 22. 6-1 Graph.
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