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Abstract. Proofs that the Race Track graph in [1] is 2 to 1, the Pseudo 2 to
1 graph is 1 to 1, and the (3,3)-torus in [1] is 64 to 1 are provided so as to
demonstrate the procedure of showing that a graph’s response matrix can have
a certain number of sets of postivie conductivities.
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1 Preliminaries

Definition 1. When referring to a graph, G, we mean a connected, undirected,
finite graph with no loops along with a vertex set V that can be partitioned into
two disjoint subsets, Vint and ∂V, where vertices in Vint are represented by
an open dot and vertices in ∂V are represented by a black dot. ∂V is always
nonempty.

Definition 2. Suppose E is the set of edges in a graph. A conductivity on a
graph G is a function γ: E→R

+ that assigns to each edge, e, in a graph to a
positive real number, γ(e).

Definition 3. A resistor network, Γ = (G, γ), is a graph, G, with a conduc-
tivity function, γ.

Definition 4. Suppose Γ = (G, γ) is a resistor network with n vertices (v1, v2, ...vn).
Then the Kirchhoff Matrix of Γ = (G, γ) is an n x n matrix, K, with entries
defined as

Ki,j =

{

γij if i 6= j,
−∑

i 6=j γij if i = j,
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where
γij =

∑

all edges e joining vi to vj

γ(e)

Note that if there doesn’t exist a direct edge between vi and vj in G, then
γij = 0.

Here are some notable characteristics of the Kirchhoff Matrix.
1. γij ≥ 0, ∀i 6= j (i.e. off-diagonal entries are always positive or 0)
2. Row sums are 0.
3. K is symmetric.

Definition 5. Suppose Γ = (G, γ) is a resistor network with n vertices (v1, v2, ...vn)
where m of them are boundary vertices. The response matrix of Γ = (G, γ) is
an m x m matrix, Λ, defined as

Λ = A−BC−1BT

where A, B, and C are submatrices obtained from the Kirchhoff Matrix in the
following fashion.

Submatrices of the Kirchhoff Matrix used in obtaining the Response Matrix

A is an m x m submatrix, and C is an (n−m) x (n−m) submatrix. C is shown
to be invertible in [3]. Entries of Λ are designated as λij .

Here are some notable characteristics of the Response Matrix. Note how they
are identical to the characteristics of the Kirchhoff Matrix.
1. λij ≥ 0, ∀i 6= j (i.e. off-diagonal entries are always positive or 0)
2. Row sums are 0.
3. Λ is symmetric.
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Given a response matrix, Λ, and a graph, G, is it possible to recover all the
conductivities of the edges, γ, in the graph, G, that created the response ma-
trix? This is known as the inverse problem for resistor networks.

Definition 6. Let n ≥ 1. A graph is n to 1 if there are n unique sets of positive
conductivities for the edges that correspond to its response matrix. Note that if
G is 1 to 1, then G is uniquely recoverable (i.e. there is only one set of positive
conductivities for the edges that corresponds to the response matrix).

In this paper, we will specifically focus on graphs built out of 4-stars and a tech-
nique for determining whether or not a graph built out of 4-stars is uniquely
recoverable. If it is not uniquely recoverable, we will be able to tell how many
sets of positive conductivities for the edges are valid for its response matrix.

Definition 7. An n−star is a graph with n boundary vertices and one interior
vertex, where each boundary vertex is connected by a single edge to the interior
vertex and there are no other edges.

A 4-star

Definition 8. A complete graph on n vertices, denoted Kn (so as to distinguish
it from the Kirchhoff Matrix, K), is a graph with n boundary vertices, no interior
vertices, and a single edge connecting every pair of vertices.

A complete graph on 5 vertices, K5

Definition 9. A Star − K Transformation (also known as ”interiorizing”)
takes a n-star and creates a complete graph from it with the interior vertex
removed.
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Example 1. Here is an example of a 4-star going through a Star-K Transfor-
mation to form a complete graph.

A 4-star undergoes a Star-K Transformation to form the complete graph, K4.

How would we apply a Star-K Transformation to a graph composed of multiple
n-stars? Perform a Star-K Transformation on each n-star in the graph and then
connect the results.

Example 2. Here is an example of two 4-stars going through a Star-K Trans-
formation.

A double edge is formed by connecting two 4-stars that have undergone Star-K
Transformations.

Definition 10. The R −Multigraph is the complete graph formed after per-
forming a Star-K Transformation on a graph composed of n-stars. Edges in the
R-Multigraph also have their own conductivities labeled as µij .
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Definition 11. The R−Matrix is a matrix that stores the values of the µij ’s
on the R-Multigraph. If a multiple edge occurs in the R-Multigraph, the R-
Matrix separates the multiple edges by storing both values in a set as the entry
in the matrix. This differs from the response matrix since a multiple edge in
the R-Multigraph results in a sum of their conductivities as the entry in the
response matrix. When there is only a single edge in the R-Multigraph, the
response matrix and the R-Matrix will share the same entry. See [2] for an
example.

Definition 12. Given the following 4-star with its conductivities, we perform
a Star-K Transformation on it.

γi is the conductivitiy of the edge connecting i to the interior vertex in the
4-star. µij is the conductivity of the edge connecting i and j in the

R-Multigraph.

The Quadrilateral Rule states that

µ0,1µ2,3 = µ0,2µ1,3 = µ0,3µ1,2

According to [3], µij =
γiγj

σ
where σ is the sum of all conductivities of edges in

the 4-star. Thus, the quadrilateral rule holds since

µ0,1µ2,3 = (
γ0γ1
σ

)(
γ2γ3
σ

) = (
γ0γ2
σ

)(
γ1γ3
σ

) = µ0,2µ1,3 = (
γ0γ3
σ

)(
γ1γ2
σ

) = µ0,3µ1,2

According to [4], if the resistor network Γ is already its own complete graph,
then the response matrix of Γ is easily calculated. An entry λij of the response
matrix is directly equal to the conductivity of the edge connecting vertices vi
and vj in the resistor network.

If the resistor network is not a complete graph, then there exists some com-
plete graph, say Kn, whose edge conductivities, µij ’s, can be used to calculate
the entries, λij of the response matrix of the resistor network. We say that the
resistor network is response equivalent to the complete graph Kn.
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Theorem 1. Suppose that the resistor network Γ is a graph composed of n-
stars. Let Kn be the complete graph obtained by performing a Star-K transfor-
mation on Γ. Then Γ is response equivalent to the complete graph Kn iff the
conductivities on Kn satisfy the quadrilateral rule.

Proof. See [4].

Suppose we are given a resistor network composed of n-star(s) and wish to find
the conductivities of its edges. We apply a Star-K transformation to obtain
the complete graph. If we can parametrize our response matrix (choosing cer-
tain values for some λij ’s) such that the conductivities in the complete graph
satisfy the quadrilateral rule, then, by Theorem 1, our resistor network would
be response equivalent to the complete graph. By [2], this means that if there
only exists one edge between two vertices i and j in the complete graph, the λij

entry in the response matrix is directly equal to the conductivity of the edge
joining i and j in the complete graph. However, we must exercise caution in the
cases where are multiple edges between two vertices. Suppose there are multi-
ple edges joining the vertices i and j in the complete graph. In this case, the
λij entry in the reponse matrix is the sum of the conductivities of all multiples
edges connecting i and j in the complete graph.

Knowing only the sum of edges in the complete graph is not enough to recover
conductivities of the edges of the resistor network. It is necessary to obtain the
conductivities of each separate edge in the complete graph. See equation 2 in
[2] for a formula that acquires the conductivities of the edges in the graph of
the resistor network from the conductivities of edges on the complete graph.
However, this equation is more difficult to use if the edges of the complete
graph have negative conductivities. Thus, we will use the general formula in
[5] in these instances. If our response matrix can only recover 1 set of positive
conductivities for the resistor network, our resistor network graph is said to be
uniquely recoverable (1 to 1). However, if our response matrix can recover mu-
tiple working sets of positive conductivities, the resistor network is not uniquely
recoverable. We say that a graph for a resistor network is n to 1 if there are n
sets of positive conductivities valid for a single response matrix.
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2 The Race Track graph

Example 3. Consider the Race Track graph in [1].

We shall prove that it is is 2 to 1. In other words, we want to show that there
exists two sets of positive conductivities that are valid for its response matrix.

Proof. We begin by labeling the graph’s vertices.

A redrawing of the Race Track graph by careful examination of the hidden stars
might be beneficial before a Star-K Tranformation. For example, there is a 4-
star on the left formed by the interior vertex 10 and the boundary vertices 0, 2,
6, and 8.
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The Race Track graph Redrawn
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We perform a Star-K transformation on the redrawn Race Track graph.

The R-Multigraph of the Race Track graph

We will assume that the conductivities of the edges in the R-Multigraph satsify
the quadrilateral rule. By Theorem 1, the resistor network is response equivalent
to the R-Multigraph. By the definition of response equivalent, this would mean
that the λij entry in the response matrix is directly equal to the conductivity
of the edge joining i and j in the complete graph if there only exists one edge
between two vertices i and j. If there exists two edges connecting i and j, the
λij entry in the reponse matrix is the sum of the conductivities of the two edges
connecting i and j in the complete graph. This is what the author of [2] refers
to as the ”response matrix condition.”
To find the conducitivities of edges in the resistor network, we need the con-
ductivities of each edge in the R-Multigraph. We shall label the edges in the
double edges with fj ’s.
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R-Multigraph

To start, assume f0(x) = x. From there, one can determine equations for all the
fj(x)’s knowing that the response matrix condition and quadrilateral rule must
be satisfied by our assumption. We obtain the following system of equations

f0(x) = x

f1(x) =
λ1,2λ0,3

f0(x)
by quadrilateral rule (λ0,3λ1,2 = f0(x)f1(x))

f2(x) =
λ1,2λ0,3

λ0,1

f3(x) = λ2,3−f2(x) by response matrix condition (λ2,3 = f3(x)+f2(x))

f4(x) =
λ2,4λ3,5

f3(x)

f5(x) = λ4,5 − f4(x)

f6(x) =
λ4,6λ5,7

f5(x)

f7(x) = λ6,7 − f6(x) =
λ7,8λ6,9

λ8,9

.

.

.
At this point, it is realized that f2(x) is completely determined by our choices
for λ1,2, λ0,3, and λ0,1 . Similarly, f7(x) is completely determined by our choices
for λ7,8, λ6,9, and λ8,9. However, once f7(x) is known, it is easy to obtain f6(x)
by using the response matrix condition f7(x) = λ6,7 − f6(x). Once f6(x) is

known, it is easy to obtain f5(x) using the quadrilateral rule f6(x) =
λ4,6λ5,7

f5(x)

and our choices for λ4,6 and λ5,7. We continue this process to obtain f4(x)
and f3(x). Thus, f2(x) to f7(x) can be easily determined after certain λij ’s
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are chosen. These edges will be relabeled in blue. fj ’s will also be completely
relabeled.

Relabeled R-Multigraph

Assume f0(x) = x and determine equations for all the fj(x)’s knowing that
the response matrix condition and quadrilateral rule must be satisfied. Note
that although it may not be clear from the picture, there are 2 edges between
vertices 0 and 2. We will also include the sign of the derivative for each fj(x).
The purpose of this will be made clear later.

Sign of Derivative Equation
+ f0(x) = x

− f1(x) =
λ0,6λ2,8

f0(x)

+ f2(x) = λ0,2 − f1(x)

− f3(x) =
λ0,3λ1,2

f2(x)

+ f4(x) = λ1,3 − f3(x)

− f5(x) =
λ1,7λ3,9

f4(x)

+ f6(x) = λ7,9 − f5(x)

− f7(x) =
λ7,8λ6,9

f6(x)

Suppose x0 is a value such that fj(x0) is non-positive. Using fj(x0) in the
equation for obtaining conductivities of the edges in the resistor network from
the conductivities of edges in the complete graph may yield negative values or
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0. But γi>0. Thus, all fj(x)’s must be positive. This restricts the range of
values that can be chosen for certain λij ’s. This will be examined in greater
detail.

Recall we want to prove that there exists two sets of positive conductivities
for a single response matrix. Due to the equation for obtaining conductivities
of edges in the resistor network from the conductivities of edges in the complete
graph, there needs to be two sets of positive fj(x)’s. To find these two sets of
positive fj(x)’s, consider

Σ(x) = f0(x) + f7(x) = x+ f7(x) = λ6,8

Examining the behavior of Σ(x) will reveal whether or not there are two sets of
positive conductivities.

Assume that f7(x) is a linear term over a linear term. Thus, limx→∞ Σ(x) =
limx→∞ x + f7(x) = ∞. Similarly, limx→−∞ Σ(x) = −∞. Due to the assump-
tion, a horizontal line can only cross Σ(x) 0, 1, or 2 times throughout the whole
graph.

Denote the singularity of f7(x) as y0. Any singularity of f7(x) is also a sin-
gularity of Σ(x). It is explained in [1] why Σ(x) must have a positive singu-
larity, and since we only have y0 as the singularity for Σ(x), y0 must be positive.

Σ(x) is heavily dominated by f7(x) near its singularity, y0. Since f7(x) has
a negative derivative, Σ(x) must have a negative slope close to y0. Thus, we
have the following possible graph for Σ(x).
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Behavior of Sigma

We call the area to the right of y0 Sector II and the area to the left Sector I.
Note that, at this point, this may not be the exact graph of Σ(x). We do not
know if Σ(x) is ever actually positive in Sector I. There is also the possibility
that Σ(x) may have some negative values in Sector II.

To prove that the Race Track graph is 2 to 1, we must show that there ex-
ists a positive λ6,8 (represented by a horizonal line) which crosses Σ(x) exactly
two times and both times within the same sector. The crossings must also occur
in the same sector for which all fj(x)’s are positive. ([2])

From observation of the graph of Σ(x) above, one can draw a positive hori-
zontal line representing λ6,8 in such a way that it crosses Σ(x) only twice and
in the same sector. We will suppose that these two crossings occur at x0 and
x1 where x0<x1.

Behavior of Sigma
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Note that in Sector I, we have no guarantee that the positive horizontal line
represeting λ6,8 would ever cross Σ(x) because we don’t know if Σ(x) will ever
actually be positive in Sector I.

What remains left to show is that all fj(x)’s are positive in Sector II.

Obviously, f0(x) = x is positive in Sector II since the x’s in Sector II are
positive (recall y0 is positive). If f0(x) is positive in Sector II, it follows that

f1(x) =
λ0,6λ2,8

f0(x)
is positive in Sector II also since λij ’s are positive.

Recall that f2(x) = λ0,2 − f1(x). We can choose our λ0,2 in such a way that
f2(x) will be positive in Sector II. Suppose z0 is the root of f2(x) = λ0,2−f1(x).
Then f2(z0) = λ0,2 − f1(z0) = 0. In order for f2(z0)>0, we need λ0,2>f1(z0).
Let λ0,2 = f1(z0) + C0,2 where C0,2 is some positive number. By substitution,
f2(x) = λ0,2 − f1(x) = (f1(z0) + C0,2)− f1(x). Now f1(x) has a negative slope
because of its negative derivative. Thus, f1(z0)>f1(x) if z0<x. Let’s choose
z0 = y0, the singularity of Σ(x). Then f1(y0)>f1(x) if y0<x. So, if we restrict
our x to be on the right of y0, then f2(x) = f1(y0)− f1(x)+C0,2>0 (recall C0,2

is positive). So, by choosing λ0,2 to be f1(y0) + C0,2, we have guaranteed that
f2(x) will be positive in Sector II.

It might be questionable to the reader as to why one might need to add C0,2

into λ0,2 since f2(x) would be positive in Sector II anyway without C0,2. How-
ever, if λ0,2 = f1(y0), this will create a problem in calculating the first term,
f5(y0), in f6(x) = f5(y0) − f5(x). To calculate f5(y0), one would need f4(y0)

since f5(x) =
λ1,7λ3,9

f4(x)
. To calculate f4(y0), we would need f3(y0) since f4(x) =

λ1,3−f3(x). To obtain f3(y0), f2(y0) is needed since f3(x) =
λ0,3λ1,2

f2(x)
. However,

if λ0,2 = f1(y0), then f2(y0) = λ0,2 − f1(y0) = f1(y0) − f1(y0) = 0. But, if
f2(y0) = 0 then f3(y0) would have a 0 in its denominator. Thus, to avoid such
an issue, we let λ0,2 = f1(z0) + C0,2 where C0,2 is a positive number.

In general, we add a Ci,j to a λij when choosing the λij in such a way to
make a fij(x) positive in a certain sector. However, we do not add a Cij to a
λij when we are creating a singularity for a fij .

If f2(x) is positive in Sector II, it follows that f3(x) =
λ0,3λ1,2

f2(x)
is positive in

Sector II also since λij ’s are positive.

Recall that f4(x) = λ1,3 − f3(x). We can choose our λ1,3 in such a way that
f4(x) is positive in Sector II. Suppose z1 is the root of f4(x) = λ1,3 − f3(x).
Then f4(z1) = λ1,3 − f3(z1) = 0. In order for f4(z1)>0, we need λ1,3>f3(z1).
Let λ1,3 = f3(z1) + C1,3 where C1,3 is some positive number. By substitution,
f4(x) = λ1,3 − f3(x) = (f3(z1) + C1,3)− f3(x). Now f3(x) has a negative slope
because of its negative derivative. Thus, f3(z1)>f3(x) if z1<x. Let’s choose
z1 = y0, the singularity of Σ(x). Then f3(y0)>f3(x) if y0<x. So, if we restrict
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our x to be on the right of y0, then f4(x) = f3(y0) − f3(x) + C1,3>0 (recall
C1,3 is positive). So, by choosing λ1,3 to be f3(y0) + C1,3, we have guaran-
teed that f4(x) will be positive in Sector II. The reasoning as to why we choose
to add C1,3 into λ1,3 is similar to the reasoning as to why we added C0,2 into λ0,2.

If f4(x) is positive in Sector II, it follows that f5(x) =
λ1,7λ3,9

f4(x)
is positive in

Sector II also since λij ’s are positive.

Our choice of y0 as the singularity of Σ(x) will determine λ7,9. Since y0 is

the singularity of f7(x) =
λ7,8λ6,9

f6(x)
, f6(y0) = 0. Now f6(x) = λ7,9 − f5(x). So

f6(y0) = λ7,9 − f5(y0) = 0. Thus, λ7,9 = f5(y0). By substitution, f6(x) =
f5(y0) − f5(x). So, in order for f6(x)>0, we need f5(y0)>f5(x). Now f5(x)
has a negative slope because it has a negative derivative. Thus, f5(y0)>f5(x) if

y0<x. Thus, f6(x) is positive in Sector II. It follows then that f7(x) =
λ7,8λ6,9

f6(x)

is positive in Sector II also since λij ’s are positive.

Thus, all fj(x)’s are positive in Sector II. The Race Track graph is 2 to 1.
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Let’s attempt to create a 2 to 1 graph by choosing appropriate λij ’s using the
Race Track graph. We will use the algorithm outlined in [2].

Step 1: Pick a positive value, y0, to be the singularity of f7(x). This will
also be the singularity of Σ(x). Let y0 be 3.

Step 2: Choose values of the λij ’s in the quadrilateral to uphold the quadrilat-
eral rule. We will label the blue edges as A, B, C, D, E, and F . By using our
choices for λij ’s, we can obtain values for these edges. After substitution, we
obtain a new set of equations for our fj(x)’s.

R-Multigraph of the Race Track

By the quadrilateral rule

f0(x)f1(x) = λ0,6λ2,8 = λ2,6λ0,8

Choose λ0,6 = 1, λ2,8 = 1, and λ2,6 = 1. This forces λ0,8 = 1.

By the quadrilateral rule

f7(x)f6(x) = Fλ8,9 = λ6,9λ7,8

Choose λ8,9 = 1, λ6,9 = 1, and λ7,8 = 1. This forces F = 1.

By the quadrilateral rule

f4(x)f5(x) = λ1,7λ3,9 = λ3,7λ1,9
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Choose λ1,7 = 1, λ3,9 = 1, and λ3,7 = 1. This forces λ1,9 = 1.

By the quadrilateral rule

f2(x)f3(x) = λ0,1A = λ0,3λ1,2

Choose λ0,1 = 1, λ0,3 = 1, and λ1,2 = 1. This forces A = 1.

Now F = 1, and by the response matrix condition, E = λ6,7 − F = λ6,7 − 1. If
we choose λ6,7 = 1, then E = 0, but we must have positive conductivities. So,
let’s choose λ6,7 = 2. Thus, E = 1.

By the quadrilateral rule, D =
λ5,6λ4,7

E
. Since E = 1, D =

λ5,6λ4,7

1 = λ5,6λ4,7.
Let’s choose λ5,6 = 1 and λ4,7 = 1. Thus, D = 1.

Now D = 1, and by the response matrix condition, C = λ4,5 −D = λ4,5 − 1. In
order to have positive conductivities, λ4,5>1. So, let’s choose λ4,5 = 2. Thus,
C = 1.

By the quadrilateral rule, B =
λ2,5λ3,4

C
= λ2,5λ3,4 since C = 1. Let’s choose

λ2,5 = 1 and λ3,4 = 1. Thus, B = 1.

Now, by the response matrix condition, A = λ2,3 − B. We already know that
A = 1 and B = 1. This forces λ2,3 = 2.

By the quadrilateral rule

DE = λ4,6λ5,7 = λ5,6λ4,7

We already know that D = 1, E = 1, λ5,6 = 1, and λ4,7 = 1. This forces
λ4,6λ5,7 = 1. Let’s choose λ4,6 = 1 and λ5,7 = 1.

By the quadrilateral rule

BC = λ2,4λ3,5 = λ3,4λ2,5

We already know that B = 1, C = 1, λ3,4 = 1, and λ2,5 = 1. This forces
λ2,4λ3,5 = 1. Let’s choose λ2,4 = 1 and λ3,5 = 1.

Now we can substitute and obtain a new set of equations for our fj(x)’s.

Sign of Derivative Equation
+ f0(x) = x
− f1(x) =

1
f0(x)

+ f2(x) = λ0,2 − f1(x)
− f3(x) =

1
f2(x)

+ f4(x) = λ1,3 − f3(x)
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− f5(x) =
1

f4(x)

+ f6(x) = λ7,9 − f5(x)
− f7(x) =

1
f6(x)

Step 3: Obtain the other λij values that were determined by our choice of
singularity for Σ(x) and by making fj(x)’s positive in Sector II (the region to
the right of y0 = 3).

We have established that in order for f2(x) to be positive we need λ0,2 =
f1(y0) + C0,2 where C0,2 is some positive number. Let C0,2 = 1. Since y0 = 3,
λ0,2 = f1(3) + 1 = 1

3 + 1 = 4
3 .

We have established that in order for f4(x) to be positive we need λ1,3 =
f3(y0) + C1,3 where C1,3 is some positive number. Let C1,3 = 1. Since y0 = 3,
λ1,3 = f3(3) + 1 = 1 + 1 = 2.

We have established that in order for y0 to be the singularity of Σ(x), λ7,9 =
f5(y0). Since y0 = 3, λ7,9 = f5(3) = 1.

After substitution, we obtain a new set of equations for our fj(x)’s.

Sign of Derivative Equation
+ f0(x) = x

− f1(x) =
1
x

+ f2(x) =
4
3 − 1

x
= 4x−3

3x

− f3(x) =
3x

4x−3

+ f4(x) = 2− 3x
4x−3 = 5x−6

4x−3

− f5(x) =
4x−3
5x−6

+ f6(x) = 1− 4x−3
5x−6 = x−3

5x−6

+ f7(x) =
5x−6
x−3

Thus, Σ(x) = x+ 5x−6
x−3

Step 4: Choose an x-coordinate for one of the two crossings between λ6,8 and
Σ(x) in Sector II to determine λ6,8. Check if any fj ’s are negative by this choice
of x. Create the response matrix. For the specific x-coordinate chosen, create
the R-Matrix. Find the conductivities of edges in the Race Track graph corre-
sponsding to the choice of x-coordinate.
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We will choose x = 4 for the x-coordinate for a crossing in Sector II. All fj ’s
are positive at x = 4.

Equation
f0(4) = 4

f1(4) =
1
4

f2(4) =
13
12

f3(4) =
12
13

f4(4) =
14
13

f5(4) =
13
14

f6(4) =
1
14

f7(4) = 14

Thus, Σ(4) = 4 + 14 = 18 = λ6,8. This is a positive λ6,8 as required. Now
we have all the λij ’s we need, and using the fact that row sums are 0 and re-
sponse matrices are symmetrical, we can create the response matrix, Λ. Note
that λij = 0 if there doesn’t exist a direct edge between vertices i and j in the
R-Multigraph.

Λ =

































−16
3 1 4

3 1 0 0 1 0 1 0
1 −6 1 2 0 0 0 1 0 1
4
3 1 −22

3 2 1 1 1 0 1 0
1 2 2 −8 1 1 0 1 0 1
0 0 1 1 −6 2 1 1 0 0
0 0 1 1 2 −6 1 1 0 0
1 0 1 0 1 1 −25 2 18 1
0 1 0 1 1 1 2 −8 1 1
1 0 1 0 0 0 18 1 −22 1
0 1 0 1 0 0 1 1 1 −5

































The response matrix of the Race Track graph
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For x = 4, we have the following R-Matrix.

R =

































−16
3 1 { 1

4 ,
13
12} 1 0 0 1 0 1 0

1 −6 1 { 12
13 ,

14
13} 0 0 0 1 0 1

{ 1
4 ,

13
12} 1 −22

3 {1, 1} 1 1 1 0 1 0
1 { 12

13 ,
14
13} {1, 1} −8 1 1 0 1 0 1

0 0 1 1 −6 {1, 1} 1 1 0 0
0 0 1 1 {1, 1} −6 1 1 0 0
1 0 1 0 1 1 −25 {1, 1} {4, 14} 1
0 1 0 1 1 1 {1, 1} −8 1 { 13

14 ,
1
14}

1 0 1 0 0 0 {4, 14} 1 −22 1
0 1 0 1 0 0 1 { 13

14 ,
1
14} 1 −5

































The R-Matrix corresponding to x = 4

Since the conductivities of all edges in the complete graph are positive for x = 4,
we can easily use equation 2 in [2] to obtain the conductivities of edges (γi’s) in
the Race Track graph.

γi = αi

∑

m

αm

where

αi =

√

µi,jµi,k

µj,k

Note that i, j, and k are vertices all within the same quadrilateral, and
∑

m αm

is the sum of all the αm’s in the quadrilateral. Let us figure out the conductivities
of edges in the Race Track graph using the first quadrilateral.

Quadrilateral One and the 4-star compared to it

α0 =
√

µ0,2µ0,3

µ2,3
=

√

13

12
∗1
1 =

√

13
12

Note that α0 =
√

µ0,2µ0,1

µ2,1
and α0 =

√

µ0,3µ0,1

µ3,1
all work too. Also, µ0,2 = f2(4)

and µ2,3 = A = 1 since we are looking at only the first quadrilateral.
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α1 =
√

µ0,1µ1,3

µ0,3
=

√

12
13

α2 =
√

µ0,2µ2,3

µ0,3
=

√

13
12

α3 =
√

µ1,3µ2,3

µ1,2
=

√

12
13

Since
∑

m αm is the sum of all the αm’s in the quadrilateral,

∑

m

αm = α0 + α1 + α2 + α3 =
50√
13
√
12

Thus, we have the following conductivities for the edges in the Race Track graph.

γ0 = α0

∑

m αm =
√

13
12 (

50√
13

√
12
) = 50

12

γ1 = α1

∑

m αm =
√

12
13 (

50√
13

√
12
) = 50

13

γ2 = α2

∑

m αm =
√

13
12 (

50√
13

√
12
) = 50

12

γ3 = α3

∑

m αm =
√

12
13 (

50√
13

√
12
) = 50

13
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We repeat this process for all the quadrilaterals (six total) and obtain all the
conductivities of the edges in the Race Track graph corresponding to x = 4.

The Race Track graph with conductivities corresponding to x = 4

Step 5: Determine the x-coordinate for the other crossing. Plug this x into the
equations for the fj(x)’s and note if any are negative. For this 2nd x-coordinate,
create the 2nd R-Matrix. Find the conductivities of edges in the Race Track
graph corresponsding to this x-coordinate.

When is Σ(x) = λ6,8? Solving for x in Σ(x) = x+ 5x−6
x−3 = λ6,8 = 18 reveals two

solutions: 4, as expected, and 12.
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Graph of Sigma crossing λ6,8 at 4 and 12

Plugging 12 into the fj(x)’s shows that all the fj(x)’s are positive at this 2nd
crossing.

Equation
f0(12) = 12

f1(12) =
1
12

f2(12) =
5
4

f3(12) =
4
5

f4(12) =
6
5

f5(12) =
5
6

f6(12) =
1
6

f7(12) = 6
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For x = 12, we have the following R-Matrix.

R =

































−16
3 1 { 1

12 ,
5
4} 1 0 0 1 0 1 0

1 −6 1 { 4
5 ,

6
5} 0 0 0 1 0 1

{ 1
12 ,

5
4} 1 −22

3 {1, 1} 1 1 1 0 1 0
1 { 4

5 ,
6
5} {1, 1} −8 1 1 0 1 0 1

0 0 1 1 −6 {1, 1} 1 1 0 0
0 0 1 1 {1, 1} −6 1 1 0 0
1 0 1 0 1 1 −25 {1, 1} {12, 6} 1
0 1 0 1 1 1 {1, 1} −8 1 { 5

6 ,
1
6}

1 0 1 0 0 0 {12, 6} 1 −22 1
0 1 0 1 0 0 1 { 5

6 ,
1
6} 1 −5

































The R-Matrix corresponding to x = 12

We obtain the conductivities for the edges in the Race Track graph correspond-
ing to x = 12 using equation 2 in [2].

The Race Track graph with conductivities corresponding to x = 12

Thus, with one single response matrix, we can obtain two sets of positive con-
ductivities for the edges in the Race Track graph.
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3 The Pseudo 2 to 1 graph

Example 4. Consider the Pseudo 2 to 1 graph.

The Pseudo 2 to 1 graph
Note the edge connecting vertices 6 and 1.

We will show that there exists a way to draw a positive horizontal line repre-
senting λ0,1 such that it crosses the graph for Σ(x) twice but in two different
sectors where in one sector, all fj(x)’s are positive, and in the other sector, at
least one fj(x) is negative. In addition, the x-coordinates of the crossing points
are both positive.

We begin by performing a Star-K Transformation on the Pseudo 2 to 1 graph
to obtain its R-Multigraph.

The R-Multigraph of the Pseudo 2 to 1 graph

Once again, assume that f0(x) = x and determine equations for all the fj(x)’s
knowing that the response matrix condition and quadrilateral rule must be sat-
isfied.
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Sign of Derivative Equation
+ f0(x) = x

− f1(x) =
λ1,3λ0,2

f0(x)

+ f2(x) = λ2,3 − f1(x)

− f3(x) =
λ3,5λ2,4

f2(x)

+ f4(x) = λ4,5 − f3(x)

− f5(x) =
λ5,6λ0,4

f4(x)

+ f6(x) = λ0,6 − f5(x)

+ f7(x) =
f6(x)λ1,7

λ0,7

− f8(x) = λ1,6 − f7(x)

+ f9(x) =
f6(x)λ1,7

λ6,7

Consider
Σ(x) = f0(x) + f9(x) = x+ f9(x) = λ0,1

Examining the behavior of Σ(x) will reveal why there is only one set of conduc-
tivities that can be considered.

Assume that f9(x) is a linear term over a linear term. Thus limx→∞ Σ(x) =
limx→∞ x + f9(x) = ∞. Similarly, limx→−∞ Σ(x) = −∞. Due to the assump-
tion, a horizontal line can only cross Σ(x) 0, 1, or 2 times throughout the whole
graph.

Suppose y0 is the singularity of f9(x). Thus, it is also a singularity of Σ(x).
Since this is the only singularity of Σ(x) and there must always exist a positive
singularity for Σ(x) by [1], y0 is positive.

Σ(x) is heavily dominated by f9(x) near its singularity, y0. Since f9(x) has
a positive derivative, Σ(x) must have a positive slope close to y0. Armed with
this knowledge of Σ(x), let’s try to graph it.

26



Graph of Σ(x)
Note that this may not be an exact graph of Σ(x).

For now, we shall call the area to the right of y0 Sector II and the area to the
left Sector I.

From observation of the graph of Σ(x), there exists a way to draw a positive
horizontal line representing λ0,1 such that it crosses the graph for Σ(x) twice.
However, every such horizontal line will always cross Σ(x) in two different sec-
tors. So, we know that the Pseudo 2 to 1 graph is at most 1 to 1. To prove that
the Pseudo 2 to 1 graph is 1 to 1, we need to show that all fj(x)’s are positive
in a sector where a crossing occurs.

Graph of Σ(x) with λ0,1

Note that this may not be an exact graph of Σ(x).

Recall that y0 is positive since at least one singularity must be positive by
[1]. Thus, f0(x) = x is positive also to the right of y0. It follows then that

f1(x) =
λ1,3λ0,2

f0(x)
is positive to the right of y0 since λij ’s are positive. Thus, both

f0(x) and f1(x) are positive in Sector II.

Recall that f2(x) = λ2,3 − f1(x). We can choose our λ2,3 in such a way that
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f2(x) will be positive in Sector II. Let z0 be the root of f2(x). So f2(z0) =
λ2,3 − f1(z0) = 0. So, in order for f2(z0)>0, we need λ2,3>f1(z0). Let λ2,3 =
f1(z0) + C2,3 where C2,3 is some positive number. By substitution, f2(x) =
λ2,3 − f1(x) = (f1(z0) + C2,3)− f1(x). Now f1(x) has a negative slope because
of its negative derivative. Thus, f1(z0)>f1(x) if z0<x. Let’s choose z0 = y0, the
singularity of Σ(x). Then f1(y0)>f1(x) if y0<x. So if we restrict our x to be on
the right of y0 then f2(x) = f1(y0)−f1(x)+C2,3>0 (recall C2,3 is positive). So,
by choosing λ2,3 to be f1(y0)+C2,3, we have guaranteed that f2(x) will be posi-

tive in Sector II. It follows then that f3(x) =
λ3,5λ2,4

f2(x)
is positive to the right of y0

also since λij ’s are positive. Thus, both f2(x) and f3(x) are positive in Sector II.

Our choice of y0 as the singularity of Σ(x) forces λ4,5 to be a certain value.

Note that f9(x) =
f6(x)λ1,7

λ6,7
has a singularity when f6(x) = λ0,6 − f5(x) has a

singularity when f5(x) =
λ5,6λ0,4

f4(x)
has a singularity when f4(x) = 0. Since y0

is the value such that f4(y0) = λ4,5 − f3(y0) = 0, λ4,5 = f3(y0). By substitu-
tion, f4(x) = f3(y0) − f3(x). So, in order for f4(x)>0, we need f3(y0)>f3(x).
Now f3(x) has a negative slope because it has a negative derivative. Thus,
f3(y0)>f3(x) if y0<x. Thus, f4(x) is positive to the right of y0. It follows then

that f5(x) =
λ5,6λ0,4

f4(x)
is positive to the right of y0 also since λij ’s are positive.

Thus, both f4(x) and f5(x) are positive in Sector II.

Recall that f6(x) = λ0,6 − f5(x). We can choose our λ0,6 in such a way that
f6(x) will be positive in a slightly smaller portion of Sector II. Let z1 be the
root of f6(x). So f6(z1) = λ0,6 − f5(z1) = 0. So, in order for f6(z1)>0, we need
λ0,6>f5(z1). Let λ0,6 = f5(z1) + C0,6 where C0,6 is some positive number. By
substitution, f6(x) = λ0,6 − f5(x) = (f5(z1) + C0,6) − f5(x). Now f5(x) has a
negative slope because of its negative derivative. Thus, f5(z1)>f5(x) if z1<x.
Let’s choose z1 = y0 + ε. Then f5(y0 + ε)>f5(x) if y0 + ε<x. So if we restrict
our x to be on the right of y0 + ε then f6(x) = f5(y0 + ε) − f5(x) + C0,6>0
(recall C0,6 is positive). Let’s readjust Sector II so that it is the area to the
right of y0 + ε. So, by choosing λ0,6 to be f5(y0 + ε) +C0,6, we have guaranteed

that f6(x) will be positive in Sector II. It follows then that f7(x) =
f6(x)λ1,7

λ0,7

and f9(x) =
f6(x)λ1,7

λ6,7
are positive to the right of y0 + ε also since λij ’s are pos-

itive. Thus, f6(x), f7(x), and f9(x) are positive in Sector II. Note that f0(x),
f1(x), f2(x), f3(x), f4(x), and f5(x) will still be positive in Sector II despite
this readjustment since y0<y0 + ε.
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Graph of Σ(x) with readjusted Sector II

It might be questionable to the reader as to why one might need z1 = y0 + ε
instead of z1 = y0. Suppose z1 = y0. Then λ0,6 = f5(z1)+C0,6 = f5(y0)+C0,6.

But in order to calculate f5(y0) =
λ5,6λ0,4

f4(y0)
, we need f4(y0). But f4(y0) =

λ4,5 − f3(y0) = f3(y0)− f3(y0) = 0 (recall that λ4,5 = f3(y0)). But that would
mean that f5(y0) would have a 0 in the denominator. To avoid this issue we
add an ε to z1.

Typically, we will need to add or subtract the root of a fj(x) by an epsilon
if the fj(x) is after another fh(x) that contains a λij that is forced to be a
certain value by our choice of singularity for Σ(x) and before another fl(x) that
is a term of Σ(x). In this specific example, epsilon is added to z1, the root of
f6(x), and f6(x) is after f4(x), an equation that contains λ4,5 which was forced
to be f3(y0) due to our choice of y0 as the singularity of Σ(x) and before f9(x)
which is a term in Σ(x) = x+ f9(x).

By the quadrilateral rule,

f6(x)λ1,7 = f7(x)λ0,7 = f9(x)λ6,7

Choosing f6(x), λ1,7, λ0,7, f9(x), and λ6,7 will force f7(x) to be a certain value.
Thus, one can easily choose a big enough λ1,6 such that f8(x) = λ1,6 − f7(x) is
positive to the right of y0 + ε.

Thus, all fj(x)’s are positive to the right of y0 + ε. So all fj(x)’s are posi-
tive in a sector where a crossing can occur, specifically Sector II. Thus, the
Pseudo 2 to 1 graph is 1 to 1.
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Let’s attempt to create a 1 to 1 graph by choosing appropriate λij ’s using the
Pseudo 2 to 1 graph.

Step 1: Pick a positive value, y0, to be the singularity of f9(x). This is also the
singularity of Σ(x). Let y0 be 1.

Step 2: Choose values of the λij ’s in the quadrilateral to uphold the quadrilat-
eral rule. After substitution, we obtain a new set of equations for our fj(x)’s.

By the quadrilateral rule,

f0(x)f1(x) = λ1,3λ0,2 = λ0,3λ1,2

Choose λ1,3, λ0,2, and λ0,3 = 1. This forces λ1,2 = 1 too.

By the quadrilateral rule,

f2(x)f3(x) = λ3,5λ2,4 = λ3,4λ2,5

Choose λ3,5, λ2,4, and λ3,4 = 1. This forces λ2,5 = 1 too.

By the quadrilateral rule,

f4(x)f5(x) = λ5,6λ0,4 = λ0,5λ4,6

Choose λ5,6, λ0,4, and λ0,5 = 1. This forces λ4,6 = 1 too.

By the quadrilateral rule,

f6(x)λ1,7 = f7(x)λ0,7 = λ6,7f9(x)

Choose λ1,7 and λ6,7 = 1.

Now we subsitute to obtain a new set of equations for the fj(x)’s

Sign of Derivative Equation
+ f0(x) = x
− f1(x) =

1
f0(x)

+ f2(x) = λ2,3 − f1(x)
− f3(x) =

1
f2(x)

+ f4(x) = λ4,5 − f3(x)
− f5(x) =

1
f4(x)

+ f6(x) = λ0,6 − f5(x)
+ f7(x) = f6(x)
− f8(x) = λ1,6 − f7(x)
+ f9(x) = f6(x)
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Step 3: Obtain the other λij values that were determined by our choice of
singularity for Σ(x) and by making fj(x)’s positive in Sector II (the region to
the right of y0 = 1 + ε). Also, after we have determined f7(x), choose a λ1,6

such that f8(x) = λ1,6 − f7(x) will be positive in Sector II.

We have established that in order for f2(x) to be positive we need λ2,3 =
f1(y0) + C2,3 where C2,3 is some positive number. Let C2,3 = 1. Since y0 = 1,
λ2,3 = f1(1) + 1 = 1 + 1 = 2.

We have established that in order for y0 to be the singularity of Σ(x), λ4,5 =
f3(y0). Since y0 = 1, λ4,5 = f3(1) = 1.

We have established that in order for f6(x) to be positive we need λ0,6 =
f5(y0 + ε) +C0,6 where C0,6 is some positive number. Let C0,6 = 1 and ε = 0.1.
Since y0 = 1, λ0,6 = f5(1 + 0.1) + 1 = 1 + 1 = 13.

After substitution, we obtain a new set of equations for our fj(x)’s.

Sign of Derivative Equation
+ f0(x) = x
− f1(x) =

1
x

+ f2(x) = 2− 1
x
= 2x−1

x

− f3(x) =
x

2x−1

+ f4(x) = 1− x
2x−1 = x−1

2x−1

− f5(x) =
2x−1
x−1

+ f6(x) = 13− 2x−1
x−1 = 11x−12

x−1

+ f7(x) = f6(x) =
11x−12
x−1

− f8(x) = λ1,6 − f7(x) = λ1,6 − 11x−12
x−1

+ f9(x) = f6(x) =
11x−12
x−1

Let λ1,6 = 100. So, f8(x) = λ1,6 − 11x−12
x−1 = 100 − 11x−12

x−1 . Note that this
choice keeps f8(x) positive in Sector II. Thus, we have the following equations
for the fj(x)’s.

Sign of Derivative Equation
+ f0(x) = x

− f1(x) =
1
x

+ f2(x) =
2x−1

x

− f3(x) =
x

2x−1

+ f4(x) =
x−1
2x−1
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− f5(x) =
2x−1
x−1

+ f6(x) =
11x−12
x−1

+ f7(x) =
11x−12
x−1

− f8(x) = 100− 11x−12
x−1

+ f9(x) =
11x−12
x−1

Thus, Σ(x) = x+ 11x−12
x−1 .

Step 4: Choose an x-coordinate for the crossing between λ0,1 and Σ(x) in Sector
II to determine λ0,1. Check if any fj ’s are negative by this choice of x. Create
the response matrix. For the specific x-coordinate chosen, create the R-Matrix.
Find the conductivities of edges in the Pseudo 2 to 1 graph corresponsding to
the choice of x-coordinate.

We will choose x = 6 for the x-coordinate for the crossing in Sector II. All
fj ’s are positive at x = 6.

Equation
f0(6) = 6

f1(6) =
1
6

f2(6) =
11
6

f3(6) =
6
11

f4(6) =
5
11

f5(6) =
11
5

f6(6) =
54
5

f7(6) =
54
5

f8(6) =
446
5

f9(6) =
54
5

Thus, Σ(6) = 6 + 11∗6−12
6−1 = 84

5 = λ0,1. This is a positive λ0,1 as required.
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Recall that by the quadrilateral rule,

f6(x)λ1,7 = f7(x)λ0,7 = λ6,7f9(x)

We chose in Step 2 for λ1,7 and λ6,7 = 1. Since f6(6), f7(6), and f9(6) =
54
5 , by

substitution, we have
54

5
∗ 1 =

54

5
∗ λ0,7 = 1 ∗ 54

5

This forces λ0,7 = 1.

Now we have all the λij ’s we need, and using the fact that row sums are 0
and response matrices are symmetrical, we can create the response matrix, Λ.
Note that λij = 0 if there doesn’t exist a direct edge between vertices i and j
in the R-Multigraph.

Λ =

























−33.8 84
5 1 1 1 1 13 1

84
5 −119.8 1 1 0 0 100 1
1 1 −6 2 1 1 0 0
1 1 2 −6 1 1 0 0
1 0 1 1 −5 1 1 0
1 0 1 1 1 −4 1 0
13 100 0 0 1 1 −116 1
1 1 0 0 0 0 1 −3

























The response matrix of the Pseudo 2 to 1 graph

For x = 6, we have the following R-Matrix.

R =

























−33.8 {6, 54
5 } 1 1 1 1 { 11

5 , 54
5 } 1

{6, 54
5 } −119.8 1 1 0 0 { 54

5 , 446
5 } 1

1 1 −6 { 1
6 ,

11
6 } 1 1 0 0

1 1 { 1
6 ,

11
6 } −6 1 1 0 0

1 0 1 1 −5 { 6
11 ,

5
11} 1 0

1 0 1 1 { 6
11 ,

5
11} −4 1 0

{ 11
5 , 54

5 } { 54
5 , 446

5 } 0 0 1 1 −116 1
1 1 0 0 0 0 1 −3

























The R-Matrix corresponding to x = 6
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We obtain the conductivities for the edges in the Pseudo 2 to 1 graph corre-
sponding to x = 6 using equation 2 in [2].

The conductivity of the edge connecting vertex 1 to vertex 6 in the Pseudo
2 to 1 graph is directly equal to f8(6) =

446
5 .

The Pseudo 2 to 1 graph with conductivities corresponding to x = 6

Step 5: Determine the x-coordinate for the other crossing. Plug this x into the
equations for the fj(x)’s and note if any are negative. For this 2nd x-coordinate,
create the 2nd R-Matrix. Find the conductivities of edges in the Pseudo 2 to 1
graph corresponsding to this x-coordinate.

When is Σ(x) = λ0,1? Solving for x in Σ(x) = x + 11x−12
x−1 = λ0,1 = 84/5

reveals two solutions: 6, as expected, and 4
5 .

Graph of Σ(x) crossing λ0,1 at 4
5 and 6
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Plugging 4
5 into the fj(x)’s shows that f4(

4
5 ) and f5(

4
5 ) are negative.

Equation
f0(

4
5 ) =

4
5

f1(
4
5 ) =

5
4

f2(
4
5 ) =

3
4

f3(
4
5 ) =

4
3

f4(
4
5 ) = − 1

3

f5(
4
5 ) = −3

f6(
4
5 ) = 16

f7(
4
5 ) = 16

f8(
4
5 ) = 84

f9(
4
5 ) = 16

For x = 4
5 , we have the following R-Matrix.

R =

























−33.8 { 4
5 , 16} 1 1 1 1 {−3, 16} 1

{ 4
5 , 16} −119.8 1 1 0 0 {16, 84} 1
1 1 −6 { 5

4 ,
3
4} 1 1 0 0

1 1 { 5
4 ,

3
4} −6 1 1 0 0

1 0 1 1 −5 { 4
3 ,

−1
3 } 1 0

1 0 1 1 { 4
3 ,

−1
3 } −4 1 0

{−3, 16} {16, 84} 0 0 1 1 −116 1
1 1 0 0 0 0 1 −3

























The R-Matrix corresponding to x = 4
5

Because of the negative conductivities, we will not use equation 2 in [2] to obtain
conductivities for the edges in the Pseudo 2 to 1 graph corresponding to x = 4

5
due to the difficulty of determining the α’s (see [5]). We will use the general
formula provided in [3].

γi = −
det

[

µi,i µi,j

µi,k µj,k

]

µj,k

where
µi,i = −(µi,j + µi,k + µi,l)

35



Note that i, j, k, and l are vertices in the same quadrilateral. Let’s determine the
conductivities of edges in the Pseudo 2 to 1 graph using the third quadrilateral
and this general formula.

Quadrilateral Three and the 4-star compared to it

According to the general formula,

µ0,0 = −(µ0,6 + µ0,5 + µ0,4) = −(−3 + 1 + 1) = 1

Note that µ0,6 = f5(
4
5 ) = −3 since we are looking only in the third quadrilateral.

So

γ0 = −
det

[

µ0,0 µ0,6

µ0,4 µ4,6

]

µ4,6
= −

det

[

1 −3
1 1

]

1
= −4

Similarly,

µ4,4 = −(µ4,5 + µ4,6 + µ4,0) = −(−1

3
+ 1 + 1) = −5

3

γ4 = −
det

[

µ4,4 µ4,5

µ4,0 µ0,5

]

µ0,5
= −

det

[

− 5
3 − 1

3
1 1

]

1
=

4

3

µ5,5 = −(µ5,6 + µ5,0 + µ5,4) = −(1 + 1− 1

3
) = −5

3

γ5 = −
det

[

µ5,5 µ5,6

µ5,4 µ4,6

]

µ4,6
== −

det

[

− 5
3 1

− 1
3 1

]

1
=

4

3

µ6,6 = −(µ6,5 + µ6,4 + µ6,0) = −(1 + 1− 3) = 1
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γ6 = −
det

[

µ6,6 µ6,5

µ6,0 µ5,0

]

µ5,0
= −

det

[

1 1
−3 1

]

1
= −4

We repeat this process for all the quadrilaterals (4 total) and obtain all the
conductivities of the edges in the Pseudo 2 to 1 corresponding to x = 4

5 .

The conductivity of the edge connecting vertex 1 to vertex 6 in the Pseudo
2 to 1 graph is directly equal to f8(

4
5 ) = 84.

The Pseudo 2 to 1 graph with conductivities corresponding to x = 4
5

Thus, with a single response matrix, we can only obtain one set of positive
conductivities for the edges in the Pseudo 2 to 1 graph.
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4 The (3,3)-Torus

Example 5. Consider the following resistor network, the (3,3)-torus. We will
show that the (3,3)-torus is 64 to 1.

A (3,3)-torus labeled

We redraw the (3,3)-torus first so it will be easier to perform a Star-K Trans-
formation.
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The (3,3)-torus Redrawn
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We now perform a Star-K Transformation on the (3,3)-torus.

The R-Multigraph of the (3,3)-torus
Boundary vertices are labeled in red.

Like the previous examples, we determine equations for the fj(x)’s. However,
we will need to perform this a total of six times, for each row and column in the
R-Multigraph. Essentially, there will be 6 cycles, or 6 sets of fj(x) equations to
consider.
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We begin with the first cycle. Assume we know that f0(x1) = x1 (the subscript
of x represents what cycle the equations represent). Determine equations for all
the fj(x1)’s knowing that the response matrix condition and quadrilateral rule
must be satisfied.

Sign of Derivative Equation
+ f0(x1) = x1

− f1(x1) =
λ2,5λ0,3

f0(x1)

+ f2(x1) = λ3,5 − f1(x1)

− f3(x1) =
λ3,8λ5,6

f2(x1)

+ f4(x1) = λ6,8 − f3(x1)

− f5(x1) =
λ0,6λ2,8

f4(x1)

Thus, Σx1
(x1) = x1 + f5(x1) = λ0,2.

Assume that f5(x1) is a linear term over a linear term. Thus limx1→∞ Σx1
(x1) =

limx1→∞ x1 + f5(x1) = ∞. Similarly, limx1→−∞ Σx1
(x1) = −∞. Due to the

assumption, a horizontal line can only cross Σx1
(x1) 0, 1, or 2 times throughout

the whole graph.

Denote the singularity of f5(x1) as y1. Note that y1 is also the singularity
of Σx1

(x1). Since this is the only singularity of Σx1
(x1), by [1], y1 is positive.

Σx1
(x1) is heavily dominated by f5(x1) near y1. Since f5(x1) has a negative

derivative, Σx1
(x1) has a negative slope near y1.

Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ0,2 such that it crosses Σx1

(x1) twice in the same sector. We need
to show that all fj ’s in the first cycle are positive in the sector where both
crossings occur.

f0(x1) is positive in Sector II since y1 is positive. It follows that f1(x1) is
positive in Sector II since λij ’s are always positive.
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We can force f2(x1) to be positive in Sector II by choosing λ3,5 = f1(y1) +C3,5

where C3,5 is some positive number. It follows that f3(x1) is positive in Sector II.

The choice of y1 as the singularity forces λ6,8 = f3(y1). Since f4(x1) =
λ6,8 − f3(x1) and λ6,8 = f3(y1), f4(x1) = f3(y1) − f3(x1). Since f3(x1) has
a negative derivative, f4(x1) is positive in Sector II. It follows that f5(x1) is
positive in Sector II.

Thus, all fj ’s in the first cycle are positive in Sector II.

For the second cycle,

Sign of Derivative Equation
+ f6(x2) = x2

− f7(x2) =
λ0,4λ1,5

f6(x2)

+ f8(x2) = λ4,5 − f7(x2)

− f9(x2) =
λ4,8λ5,7

f8(x2)

+ f10(x2) = λ7,8 − f9(x2)

− f11(x2) =
λ1,8λ0,7

f10(x2)

Thus, Σx2
(x2) = x2 + f11(x2) = λ0,1.

Assume that f11(x2) is a linear term over a linear term. Thus limx2→∞ Σx2
(x2) =

limx2→∞ x2 + f11(x2) = ∞. Similarly, limx2→−∞ Σx2
(x2) = −∞. Due to the

assumpion, a horizontal line can only cross Σx2
(x2) 0, 1, or 2 times throughout

the whole graph.

Denote the singularity of f11(x2) as y2. Note that y2 is also the singularity
of Σx2

(x2). Since this is the only singularity of Σx2
(x2), by [1], y2 is positive.

Σx2
(x2) is heavily dominated by f11(x2) near y2. Since f11(x2) has a nega-

tive derivative, Σx2
(x2) has a negative slope near y2.
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Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ0,1 such that it crosses Σx2

(x2) twice in the same sector. We need
to show that all fj ’s in the second cycle are positive in the sector where both
crossings occur.

f6(x2) is positive in Sector II since y2 is positive. It follows that f7(x2) is
positive in Sector II since λij ’s are always positive.

We can force f8(x2) to be positive in Sector II by choosing λ4,5 = f7(y2) +C4,5

where C4,5 is some positive number. It follows that f9(x2) is positive in Sector II.

The choice of y2 as singularity forces λ7,8 = f9(y2). Since f10(x2) = λ7,8−f9(x2)
and λ7,8 = f9(y2) due to the choice of singularity, f10(x2) = f9(y2) − f9(x2).
Since f9(x2) has a negative derivative, f10(x2) is positive in Sector II. It follows
that f11(x2) is positive in Sector II.

Thus, all fj ’s in the second cycle are positive in Sector II.

For the third cycle,

Sign of Derivative Equation
+ f12(x3) = x3

− f13(x3) =
λ1,3λ2,4

f12(x3)

+ f14(x3) = λ3,4 − f13(x3)

− f15(x3) =
λ4,6λ3,7

f14(x3)

+ f16(x3) = λ6,7 − f15(x3)

− f17(x3) =
λ1,6λ2,7

f16(x3)

Thus, Σx3
(x3) = x3 + f17(x3) = λ1,2.

Assume that f17(x3) is a linear term over a linear term. Thus limx3→∞ Σx3
(x3) =

limx3→∞ x3 + f17(x3) = ∞. Similarly, limx3→−∞ Σx3
(x3) = −∞. Due to the

assumption, a horizontal line can only cross Σx3
(x3) 0, 1, or 2 times throughout
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the whole graph.

Denote the singularity of f17(x3) as y3. Note that y3 is also the singularity
of Σx3

(x3). Since this is the only singularity of Σx3
(x3), by [1], y3 is positive.

Σx3
(x3) is heavily dominated by f17(x3) near y3. Since f17(x3) has a nega-

tive derivative, Σx3
(x3) has a negative slope near y3.

Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ1,2 such that it crosses Σx3

(x3) twice in the same sector. We need
to show that all fj ’s in the third cycle are positive in the sector where both
crossings occur.

f12(x3) is positive in Sector II since y3 is positive. It follows that f13(x3) is
positive in Sector II since λij ’s are always positive.

We can force f14(x3) to be positive in Sector II by choosing λ3,4 = f13(y3)+C3,4

where C3,4 is some positive number. It follows that f15(x3) is positive in Sector
II.

The choice of y3 as singularity forces λ6,7 = f15(y3). Since f16(x3) = λ6,7 −
f15(x3) and λ6,7 = f15(y3) due to the choice of singularity, f16(x3) = f15(y3)−
f15(x3). Since f15(x3) has a negative derivative, f16(x3) is positive in Sector II.
It follows that f17(x3) is positive in Sector II.

Thus, all fj ’s in the third cycle are positive in Sector II.

For the fourth cycle,

Sign of Derivative Equation
+ f18(x4) = x4

− f19(x4) =
λ0,3λ2,5

f18(x4)

+ f20(x4) = λ0,5 − f19(x4)

− f21(x4) =
λ0,4λ1,5

f20(x4)
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+ f22(x4) = λ1,4 − f21(x4)

− f23(x4) =
λ2,4λ1,3

f22(x4)

Thus, Σx4
(x4) = x4 + f23(x4) = λ2,3.

Assume that f23(x4) is a linear term over a linear term. Thus limx4→∞ Σx4
(x4) =

limx4→∞ x4 + f23(x4) = ∞. Similarly, limx4→−∞ Σx4
(x4) = −∞. Due to the

assumption, a horizontal line can only cross Σx4
(x4) 0, 1, or 2 times throughout

the whole graph.

Denote the singularity of f23(x4) as y4. Note that y4 is also the singularity
of Σx4

(x4). Since this is the only singularity of Σx4
(x4), by [1], y4 is positive.

Σx4
(x4) is heavily dominated by f23(x4) near y4. Since f23(x4) has a nega-

tive derivative, Σx4
(x4) has a negative slope near y4.

Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ2,3 such that it crosses Σx4

(x4) twice in the same sector. We need
to show that all fj ’s in the fourth cycle are positive in the sector where both
crossings occur.

f18(x4) is positive in Sector II since y4 is positive. It follows that f19(x4) is
positive in Sector II since λij ’s are always positive.

We can force f20(x4) to be positive in Sector II by choosing λ0,5 = f19(y4)+C0,5

where C0,5 is some positive number. It follows that f21(x4) is positive in Sector
II.

The choice of y4 as the singularity forces λ1,4 = f21(y4). Since f22(x4) =
λ1,4 − f21(x4) and λ1,4 = f21(y4) due to the choice of singularity, f22(x4) =
f21(y4)− f21(x4). Since f21(x4) has a negative derivative, f22(x4) is positive in
Sector II. It follows that f23(x4) is positive in Sector II.

Thus, all fj ’s in the fourth cycle are positive in Sector II.
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For the fifth cycle,

Sign of Derivative Equation
+ f24(x5) = x5

− f25(x5) =
λ5,6λ3,8

f24(x5)

+ f26(x5) = λ5,8 − f25(x5)

− f27(x5) =
λ4,8λ5,7

f26(x5)

+ f28(x5) = λ4,7 − f27(x5)

− f29(x5) =
λ4,6λ3,7

f28(x5)

Thus, Σx5
(x5) = x5 + f29(x5) = λ3,6.

Assume that f29(x5) is a linear term over a linear term. Thus limx5→∞ Σx5
(x5) =

limx5→∞ x5 + f29(x5) = ∞. Similarly, limx5→−∞ Σx5
(x5) = −∞. Due to the

assumption, a horizontal line can only cross Σx5
(x5) 0, 1, or 2 times throughout

the whole graph.

Denote the singularity of f29(x5) as y5. Note that y5 is also the singularity
of Σx5

(x5). Since this is the only singularity of Σx5
(x5), by [1], y5 is positive.

Σx5
(x5) is heavily dominated by f29(x5) near y5. Since f29(x5) has a nega-

tive derivative, Σx5
(x5) has a negative slope near y5.

Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ3,6 such that it crosses Σx5

(x5) twice in the same sector. We need
to show that all fj ’s in the fifth cycle are positive in the sector where both
crossings occur.

f24(x5) is positive in Sector II since y5 is positive. It follows that f25(x5) is
positive in Sector II since λij ’s are always positive.

We can force f26(x5) to be positive in Sector II by choosing λ5,8 = f25(y5)+C5,8
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where C5,8 is some positive number. It follows that f27(x5) is positive in Sector
II.

The choice of y5 as the singularity forces λ4,7 = f27(y5). Since f28(x5) =
λ4,7 − f27(x5) and λ4,7 = f27(y5) due to the choice of singularity, f28(x5) =
f27(y5)− f27(x5). Since f27(x5) has a negative derivative, f28(x5) is positive in
Sector II. It follows that f29(x5) is positive in Sector II.

Thus, all fj ’s in the fifth cycle are positive in Sector II.

For the sixth cycle,

Sign of Derivative Equation
+ f30(x6) = x6

− f31(x6) =
λ0,6λ2,8

f30(x6)

+ f32(x6) = λ0,8 − f31(x6)

− f33(x6) =
λ1,8λ0,7

f32(x6)

+ f34(x6) = λ1,7 − f33(x6)

− f35(x6) =
λ2,7λ1,6

f34(x6)

Thus, Σx6
(x6) = x6 + f35(x6) = λ2,6.

Assume that f35(x6) is a linear term over a linear term. Thus limx6→∞ Σx6
(x6) =

limx6→∞ x6 + f35(x6) = ∞. Similarly, limx6→−∞ Σx6
(x6) = −∞. Due to the

assumption, a horizontal line can only cross Σx6
(x6) 0, 1, or 2 times throughout

the whole graph.

Denote the singularity of f35(x6) as y6. Note that y6 is also the singularity
of Σx6

(x6). Since this is the only singularity of Σx6
(x6), by [1], y6 is positive.

Σx6
(x6) is heavily dominated by f35(x6) near y6. Since f35(x6) has a nega-

tive derivative, Σx6
(x6) has a negative slope near y6.
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Denote the area to the right of the singularity as Sector II and the area to the
left as Sector I.

From observation of the graph, it is possible to draw a positive horizontal line
representing λ2,6 such that it crosses Σx6

(x6) twice in the same sector. We need
to show that all fj ’s in the sixth cycle are positive in the sector where both
crossings occur.

f30(x6) is positive in Sector II since y6 is positive. It follows that f31(x6) is
positive in Sector II since λij ’s are always positive.

We can force f32(x6) to be positive in Sector II by choosing λ0,8 = f31(y6)+C0,8

where C0,8 is some positive number. It follows that f33(x6) is positive in Sector
II.

The choice of y6 as the singularity forces λ1,7 = f33(y6). Since f34(x6) =
λ1,7 − f33(x6) and λ1,7 = f33(y6) due to the choice of singularity, f34(x6) =
f33(y6)− f33(x6). Since f33(x6) has a negative derivative, f34(x6) is positive in
Sector II. It follows that f35(x6) is positive in Sector II.

Thus, all fj ’s in the sixth cycle are positive in Sector II.

As can be seen from the equations, the cycles are independent of one another
due to the presence of independent connectors (see [6]). Since each cycle has 2
sets of valid, positive conductivities, and there are 6 cycles, there are 26 = 64 to-
tal sets of valid positive conductivities for the (3,3)-torus. Thus, the (3,3)-torus
is 64 to 1.
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Let’s attempt to create a 64 to 1 graph by choosing appropriate λij ’s using the
(3,3)-torus.

Step 1: Pick the singularities for the Σ’s of each cycle.

Let y1 = 2, y2 = 5, y3 = 8, y4 = 1, y5 = 3, and y6 = 7.

Step 2: Choose values of the λij ’s in the quadrilateral to uphold the quadrilat-
eral rule. After substitution, obtain a new set of the equations for the fj ’s.

By the quadrilateral rule,

f0(x1)f1(x1) = f18(x4)f19(x4) = λ2,5λ0,3

Choose λ2,5 = 2 and λ0,3 = 4.

By the quadrilateral rule,

f2(x1)f3(x1) = f24(x5)f25(x5) = λ3,8λ5,6

Choose λ3,8 = 1 and λ5,6 = 3.

By the quadrilateral rule,

f4(x1)f5(x1) = f30(x6)f31(x6) = λ0,6λ2,8

Choose λ0,6 = 7 and λ2,8 = 6.

By the quadrilateral rule,

f6(x2)f7(x2) = f20(x4)f21(x4) = λ0,4λ1,5

Choose λ0,4 = 11 and λ1,5 = 14.

By the quadrilateral rule,

f8(x2)f9(x2) = f26(x5)f27(x5) = λ5,7λ4,8

Choose λ5,7 = 13 and λ4,8 = 7.

By the quadrilateral rule,

f10(x2)f11(x2) = f32(x6)f33(x6) = λ1,8λ0,7

Choose λ1,8 = 2 and λ0,7 = 6.

By the quadrilateral rule,

f12(x3)f13(x13) = f22(x4)f23(x4) = λ1,3λ2,4
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Choose λ1,3 = 17 and λ2,4 = 8.

By the quadrilateral rule,

f14(x3)f15(x3) = f28(x5)f29(x5) = λ4,6λ3,7

Choose λ4,6 = 9 and λ3,7 = 1.

By the quadrilateral rule,

f16(x3)f17(x3) = f34(x6)f35(x6) = λ2,7λ1,6

Choose λ2,7 = 3 and λ1,6 = 5.

Now we can substitute and obtain a new set of equations for our fj ’s.

For the first cycle,

Sign of Derivative Equation
+ f0(x1) = x1

− f1(x1) =
8

f0(x1)

+ f2(x1) = λ3,5 − f1(x1)
− f3(x1) =

3
f2(x1)

+ f4(x1) = λ6,8 − f3(x1)
− f5(x1) =

42
f4(x1)

For the second cycle,

Sign of Derivative Equation
+ f6(x2) = x2

− f7(x2) =
154

f6(x2)

+ f8(x2) = λ4,5 − f7(x2)
− f9(x2) =

91
f8(x2)

+ f10(x2) = λ7,8 − f9(x2)
− f11(x2) =

12
f10(x2)

For the third cycle,

Sign of Derivative Equation
+ f12(x3) = x3

− f13(x3) =
136

f12(x3)

+ f14(x3) = λ3,4 − f13(x3)
− f15(x3) =

9
f14(x3)

+ f16(x3) = λ6,7 − f15(x3)
− f17(x3) =

15
f16(x3)
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For the fourth cycle,

Sign of Derivative Equation
+ f18(x4) = x4

− f19(x4) =
8

f18(x4)

+ f20(x4) = λ0,5 − f19(x4)
− f21(x4) =

154
f20(x4)

+ f22(x4) = λ1,4 − f21(x4)
− f23(x4) =

136
f22(x4)

For the fifth cycle,

Sign of Derivative Equation
+ f24(x5) = x5

− f25(x5) =
3

f24(x5)

+ f26(x5) = λ5,8 − f25(x5)
− f27(x5) =

91
f26(x5)

+ f28(x5) = λ4,7 − f27(x5)
− f29(x5) =

9
f28(x5)

For the sixth cycle,

Sign of Derivative Equation
+ f30(x6) = x6

− f31(x6) =
42

f30(x6)

+ f32(x6) = λ0,8 − f31(x6)
− f33(x6) =

12
f32(x6)

+ f34(x6) = λ1,7 − f33(x6)
− f35(x6) =

15
f34(x6)

Step 3: Obtain the other λij values that were determined by our choice of
singularities for the Σ’s and by keeping the fj ’s positive. After substitution,
obtain a new set of the equations for the fj ’s.

We have established that in order for f2(x1) to be positive, we need λ3,5 =
f1(y1) + C3,5 where C3,5 is some positive number. Let C3,5 = 1. Since y1 = 2,
λ3,5 = f1(2) + 1 = 4 + 1 = 5.

In order for y1 to be the singularity of Σx1
(x1), λ6,8 = f3(y1). Since y1 = 2,

λ6,8 = f3(2) = 3.

Thus the equations for the first cycle are

Sign of Derivative Equation
+ f0(x1) = x1
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− f1(x1) =
8
x1

+ f2(x1) =
5x1−8

x1

− f3(x1) =
3x1

5x1−8

+ f4(x1) =
12x1−24
5x1−8

− f5(x1) =
210x1−336
12x1−24

We have established that in order for f8(x2) to be positive, we need λ4,5 =
f7(y2) + C4,5 where C4,5 is some positive number. Let C4,5 = 1. Since y2 = 5,
λ4,5 = f7(5) + 1 = 154

5 + 1 = 159
5 .

In order for y2 to be the singularity of Σx2
(x2), λ7,8 = f9(y2). Since y2 = 5,

λ7,8 = f9(5) = 91.

Thus the equations for the second cycle are

Sign of Derivative Equation
+ f6(x2) = x2

− f7(x2) =
154
x2

+ f8(x2) =
159x2−770

5x2

− f9(x2) =
455x2

159x2−770

+ f10(x2) =
14014x2−70070

159x2−770

− f11(x2) =
1908x2−9240

14014x2−70070

We have established that in order for f14(x3) to be positive, we need λ3,4 =
f13(y3) + C3,4 where C3,4 is some positive number. Let C3,4 = 1. Since y3 = 8,
λ3,4 = f13(8) + 1 = 136

8 + 1 = 18.

In order for y3 to be the singularity of Σx3
(x3), λ6,7 = f15(y3). Since y3 = 8,

λ6,7 = f15(8) = 9.

Thus, the equations for the third cycle are

Sign of Derivative Equation
+ f12(x3) = x3

− f13(x3) =
136
x3
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+ f14(x3) =
18x3−136

x3

− f15(x3) =
9x3

18x3−136

+ f16(x3) =
153x3−1224
18x3−136

− f17(x3) =
270x3−2040
153x3−1224

We have established that in order for f20(x4) to be positive, we need λ0,5 =
f19(y4) + C0,5 where C0,5 is some positive number. Let C0,5 = 1. Since y4 = 1,
λ0,5 = f19(1) + 1 = 8

1 + 1 = 9.

In order for y4 to be the singularity of Σx4
(x4), λ1,4 = f21(y4). Since y4 = 1,

λ1,4 = f21(1) = 154.

Thus, the equations for the fourth cycle are

Sign of Derivative Equation
+ f18(x4) = x4

− f19(x4) =
8
x4

+ f20(x4) =
9x4−8

x4

− f21(x4) =
154x4

9x4−8

+ f22(x4) =
1232x4−1232

9x4−8

− f23(x4) =
1224x4−1088
1232x4−1232

We have established that in order for f26(x5) to be positive, we need λ5,8 =
f25(y5) + C5,8 where C5,8 is some positive number. Let C5,8 = 1. Since y5 = 3,
λ5,8 = f25(3) + 1 = 3

3 + 1 = 2.

In order for y5 to be the singularity of Σx5
(x5), λ4,7 = f27(y5). Since y5 = 3,

λ4,7 = f27(3) = 91.

Thus, the equations for the fifth cycle are

Sign of Derivative Equation
+ f24(x5) = x5

− f25(x5) =
3
x5

+ f26(x5) =
2x5−3

x5
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− f27(x5) =
91x5

2x5−3

+ f28(x5) =
91x5−273
2x5−3

− f29(x5) =
18x5−27
91x5−273

We have established that in order for f32(x6) to be positive, we need λ0,8 =
f31(y6) + C0,8 where C0,8 is some positive number. Let C0,8 = 1. Since y6 = 7,
λ0,8 = f31(7) + 1 = 42

7 + 1 = 7.

In order for y6 to be the singularity of Σx6
(x6), λ1,7 = f33(y6). Since y6 = 7,

λ1,7 = f33(7) = 12.

Thus, the equations for the sixth cycle are

Sign of Derivative Equation
+ f30(x6) = x6

− f31(x6) =
42
x6

+ f32(x6) =
7x6−42

x6

− f33(x6) =
12x6

7x6−42

+ f34(x6) =
72x6−504
7x6−42

− f35(x6) =
105x6−630
72x6−504

Step 4: Choose the x-coordinates of one of the two crossings for each cycle
to obtain more λij ’s. Check if any fj ’s are negative with this x. Create the
response matrix.

In cycle one, let x1 = 3 be the x-coordinate for one of the two crossings to
the right of the singularity, y1 = 2. No fj ’s are negative by this choice.

f0(3) = 3

f1(3) =
8
3

f2(3) =
7
3

f3(3) =
9
7

f4(3) =
12
7
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f5(3) =
49
2

Thus, Σx1
(3) = 3 + 49

2 = 55
2 = λ0,2.

In cycle two, let x2 = 7 be the x-coordinate for one of the two crossings to
the right of the singularity, y2 = 5. No fj ’s are negative by this choice.

f6(7) = 7

f7(7) = 22

f8(7) =
49
5

f9(7) =
65
7

f10(7) =
572
7

f11(7) =
21
143

Thus, Σx2
(7) = 7 + 21

143 = 1022
143 = λ0,1.

In cycle three, let x3 = 12 be the x-coordinate for one of the two crossings
to the right of the singularity, y3 = 8. No fj ’s are negative by this choice.

f12(12) = 12

f13(12) =
34
3

f14(12) =
20
3

f15(12) =
27
20

f16(12) =
153
20

f17(12) =
100
51

Thus, Σx3
(12) = 12 + 100

51 = 712
51 = λ1,2.

In cycle four, let x4 = 2 be the x-coordinate for one of the two crossings to
the right of the singularity, y4 = 1. No fj ’s are negative by this choice.

f18(2) = 2

f19(2) = 4

f20(2) = 5
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f21(2) =
154
5

f22(2) =
616
5

f23(x) =
85
77

Thus, Σx4
(2) = 2 + 85

77 = 239
77 = λ2,3.

In cycle five, let x5 = 10 be the x-coordinate for one of the two crossings
to the right of the singularity, y5 = 3. No fj ’s are negative by this choice.

f24(10) = 10

f25(10) =
3
10

f26(10) =
17
10

f27(10) =
910
17

f28(10) =
637
17

f29(10) =
153
637

Thus, Σx5
(10) = 10 + 153

637 = 6523
637 = λ3,6.

In cycle six, let x6 = 20 be the x-coordinate for one of the two crossings to
the right of the singularity, y6 = 7. No fj ’s are negative by this choice.

f30(20) = 20

f31(20) =
21
10

f32(20) =
49
10

f33(20) =
120
49

f34(20) =
468
49

f35(20) =
245
156

Thus, Σx6
(20) = 20 + 245

156 = 3365
156 = λ2,6.

Now we have all the λij ’s that we need, and using the fact that row sums
are 0 and response matrices are symmetrical along the diagonal, we can create
the response matrix. Note that λij = 0 if there doesn’t exist a direct edge
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between vertices i and j in the R-Multigraph.

Λ =





























































−22493
286

1022
143

55
2 4 11 9 7 6 7

1022
143

−1641710
7293

712
51 17 154 14 5 12 2

55
2

712
51

−17384947
204204

239
77 8 2 3365

156 3 6

4 17 239
77

−415824
7007 18 5 6523

637 1 1

11 154 8 18 −1649
5

159
5 9 91 7

9 14 2 5 159
5

−399
5 3 13 2

7 5 3365
156

6523
637 9 3 −518345

7644 9 3

6 12 3 1 91 13 9 −226 91

7 2 6 1 7 2 3 91 −119





























































The response matrix of the (3,3)-torus

Step 5: Determine the x-coordinate for the other crossing in each cycle. Check
if any fj ’s are negative with this x.

When is Σx1
(x1) = λ0,2 = 55

2 ? Solving for x1 in Σx1
(x1) = x1 +

210x1−336
12x1−24 = 55

2
reveals two solutions: 3, as expected, and 9.

Plugging 9 into the fj ’s in the first cycle shows that all the fj ’s in the first
cycle are positive at this 2nd crossing.

f0(9) = 9

f1(9) =
8
9

f2(9) =
37
9

f3(9) =
27
37

f4(9) =
84
37

f5(9) =
37
2

When is Σx2
(x2) = λ0,1 = 1022

143 ? Solving for x2 in Σx2
(x2) = x2+

1908x2−9240
14014x2−70070 =

1022
143 reveals two solutions: 7, as expected, and 35110

7007 .
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Plugging 35110
7007 into the fj ’s in the second cycle shows that all the fj ’s in the

second cycle are positive at this 2nd crossing.

f6(
35110
7007 ) = 35110

7007

f7(
35110
7007 ) = 539539

17555

f8(
35110
7007 ) = 3742

3511

f9(
35110
7007 ) = 319501

3742

f10(
35110
7007 ) = 99951

9355

f11(
35110
7007 ) = 14968

7007

When is Σx3
(x3) = λ1,2 = 712

51 ? Solving for x3 in Σx3
(x3) = x3 +

270x3−2040
153x3−1224 =

712
51 reveals two solutions: 12, as expected, and 418

51 .

Plugging 418
51 into the fj ’s in the third cycle shows that all the fj ’s in the

third cycle are positive at this 2nd crossing.

f12(
418
51 ) = 418

51

f13(
418
51 ) = 3468

209

f14(
418
51 ) = 294

209

f15(
418
51 ) = 627

98

f16(
418
51 ) = 255

98

f17(
418
51 ) = 98

17

When is Σx4
(x4) and λ2,3 = 239

77 ? Solving for x4 in Σx4
(x4) = x4+

1224x4−1088
1232x4−1232 =

239
77 reveals two solutions: 2, as expected, and 171

154 .

Plugging 171
154 into the fj ’s in the fourth cycle shows that all the fj ’s in the

fourth cycle are positive at this 2nd crossing.

f18(
171
154 ) =

171
154

f19(
171
154 ) =

1232
171

f20(
171
154 ) =

307
171
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f21(
171
154 ) =

26334
307

f22(
171
154 ) =

20944
307

f23(
171
154 ) =

307
154

When is Σx5
(x5) and λ3,6 = 6523

637 ? Solving for x5 in Σx5
(x5) = x5 +

18x5−27
91x5−273 =

6523
637 reveals two solutions: 10, as expected, and 1938

637 .

Plugging 1938
637 into the fj ’s in the fifth cycle shows that all the fj ’s in the

fifth cycle are positive at this 2nd crossing.

f24(
1938
637 ) = 1938

637

f25(
1938
637 ) = 637

646

f26(
1938
637 ) = 655

646

f27(
1938
637 ) = 58786

655

f28(
1938
637 ) = 819

655

f29(
1938
637 ) = 655

91

When is Σx6
(x6) and λ2,6 = 3365

156 ? Solving for x6 in Σx6
(x6) = x6+

105x6−630
72x6−504 =

3365
156 reveals two solutions: 20, as expected, and 2219

312 .

Plugging 2219
312 into the fj ’s in the sixth cycle shows that all the fj ’s in the

sixth cycle are positive at this 2nd crossing.

f30(
2219
312 ) = 2219

312

f31(
2219
312 ) = 1872

317

f32(
2219
312 ) = 347

317

f33(
2219
312 ) = 3804

347

f34(
2219
312 ) = 360

347

f35(
2219
312 ) = 347

24

Since there are 2 solutions for each cycle and each cycle is independent, there
are 26 = 64 solutions. For a single response matrix, we can obtain 64 sets of
positive conductivities.
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