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Abstract

We will look at the eigenvectors and eigenvalues of the response ma-
trices of different layered electrical networks.
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1 Introduction

Let G=(V,E) be a graph, where V is the set of vertices and E is the set of edges.
The set V can be broken down into two sets: intV and ∂V, where intV is the
set of interior vertices and ∂V is the set of boundary vertices. All of the graphs
that we will look at are connected circular planar graphs. A graph G is circular
planar if G can be embedded in a disk so that the boundary vertices lie on the
curve C which bounds the disk.

1.1 Resistor Networks

Given a graph G and a function γ(e), which gives the conductance of an edge e,
the resistor network is denoted Γ(G, γ(e)). For a voltage function u defined on
every node of Γ, the current c(e) for an edge e with endpoints j and k is given
by Ohm’s Law

c(e) = γ(e)[u(j)− u(k)].

At a node j where the function u is not γ-harmonic, then the current φ(j)
into the network at j must equal the current from j to its neighboring nodes,
which is given by Kirchhoff’s Law∑

k∼j

γ(j, k)[u(j)− u(k)] = φ(j).

If u is a γ-harmonic function then Kirchhoff’s Law states that φ(j)=0 at all
interior nodes. For our purposes, we will only look at γ-harmonic functions.

1.2 Kirchhoff and Response Matrices of a Network

The Kirchhoff matrix of a network, denoted K=[κjk], is the m×m matrix which
is denoted by

K =

{
−γjk, if j 6= k,∑
j 6=k γjk if j = k

For Kjk where j 6∼ k then the entry in κjk is zero. This makes the row sums
of K to be equal to zero, as σjk = σkj . K is a positive semi-definite matrix.

K can be partitioned into four submatrices by ordering and distinguishing
between the interior and boundary vertices of the network. This allows the
Kirchhoff matrix to be written as

K =

[
A B
BT C

]
where the first n rows and columns are indexed by ∂V and the last p rows and
columns are indexed by intV and n + p = m.
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The response matrix, denoted Λ, is the matrix maps boundary voltages to
boundary currents. The γ-harmonic function u is defined on all of the nodes
of G and defines a current φ at the boundary. Given a voltage function, f, the
response matrix maps f to φ. That is,

Λf = φ.

The entries of Λ, given by λjk represent the current at node j due to voltage
1 at node k and voltage 0 everywhere else on the boundary. By repeating this
process for every j,k on the graph, we can create the response matrix. But this
would be a long and tedious process for all but the most simple networks. There
is a much more elegant way of representing Λ in terms of the conductivities on
the graph.

Λ is the Schur Complement of the Kirchhoff matrix in terms of the submatrix
C. We can write Λ as

Λ = A−BC−1BT

This formula for Λ can also be gotten by using the Kirchhoff matrix and the
vector [f,g ] where f is the vector of voltage imposed at the boundary and g is
the vector of resulting voltages at the interior nodes. Because we are working
with γ-harmonic functions, Kirchhoff’s current law says the net current at the
interior nodes of the graph is zero. This gives us

Af +Bg = φ

BT f + Cg = 0

By solving for g and then φ, we get that

φ = (A−BC−1BT )f

Using this notation for Λ, we can clearly see that Λ is an n×n matrix that
maps boundary voltages to boundary currents. Like K, Λ is symmetric, posi-
tive semi-definite, and has row sums zero. The fact that Λ is a symmetric n×n
matrix implies that there exist n linearly independent, orthogonal eigenvectors
of Λ that form a basis for Rn.

1.3 Some Useful Definitions

It might be helpful to define some terms that will be used frequently, as well as
the definitions for the types of graphs that will be looked at in this paper. The
exact specifications for each graph will be given in more detail later.

Definition 1.1. The depth of the graph is the least number of edges needed
to connect the boundary to the center of the graph.
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Definition 1.2. An electrical network with layered conductances is a net-
work in which all edges that are a given distance from the root have the same
conductance. We will denote the conductance of an edge jk by σjk.

Definition 1.3. A boundary antenna consists of two boundary nodes which
are neighbors of the same interior vertex. For layered networks, the two edges
that make up the boundary antenna will have the same conductance.

Definition 1.4. The degree of the root is the number, r, of edges which have
the root as an endpoint. We will also refer to r as the number of root branches,
or edges which extend from the root.

Definition 1.5. For any vertex v, the degree of a vertex, given by deg(v),
is the number vertices which are connected by an edge to v.

1.4 Eigenvalues and Eigenvectors of Λ

Because Λ is a map from boundary voltages to boundary currents, it is often
interesting to look at cases where the boundary currents are a multiple of the
boundary voltages. Eigenvectors and eigenvalues of Λ allow us to do that. If λk
is an eigenvalue of Λ, then for some vector, v, of voltages on the boundary,

Λv = λv.

The vector, v, is the eigenvector that corresponds to λ.
If Λ is an n×n matrix, then there exists n linearly independent orthogo-

nal eigenvectors and at most n eigenvalues. There may be eigenvalues with
multiplicity greater than one.

Lemma 1.1. λ=0 is an eigenvalue for all response matrices with multiplicity
1.

Proof. Let v be a constant vector, that is, v assigns the same voltage to all
boundary nodes on the network. Then because row sums of Λ are zero, Λv =
0. So λv = 0, and λ = 0.

�

Lemma 1.2. All eigenvalues of the response matrix are greater than or equal
to zero.

Proof. As shown above, if v is a constant eigenvector, then λ=0. If v is not a
constant eigenvector we can normalize v so that ||v||∞=1. Let j be a boundary
point where v(j)=1. If j is connected to k other nodes, then∑

j∼k

(1− vk)γjk = λ ∗ vj = λ

where vk is the voltage at node k and γjk is the conductivity on the edge between
j and k. Because v is normalized, -1 ≤ v ≤ 1, so (1-vk) ≥ 0. So λ ≥ 0.
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Corrolary 1.3. λ = σ1 is the largest eigenvalue for networks with at least one
boundary antenna.

A proof of the general case is given in [*reference*]. Because we are only
looking at networks with layered conductances, am=σ1 and λ ≤ σ1.

2 Layered Square Lattice Networks

A layered square lattice network Γ with depth n has a grid-like structure with n
boundary nodes on each edge. A layered square lattice network has no bound-
ary to boundary edges. The conductances are layered such that the edges, ij,
which connect a boundary node, i, to an interior node, j, have conductance σ1,
the edges connecting the interior nodes j have conductance σ2 and so forth as
shown below.

σ1
σ1

σ2

σ2

σ3

Figure 1.

2.1 The Smallest Non-Trivial Case: n=2

The n=2 case consists of two lines laid over two lines such that they form a
2×2 grid, similar to a tic-tac-toe board. If we layer the conductivities such that
σ1 is on the outermost layer and σ2 is on the innermost layer, and number the
boundary vertices as shown in figure 2, we get a graph that looks like this:

σ1

σ2

σ2 σ1
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Figure 2.

We are able to use the symmetries and the fact that the conductances are
constant on layers to find the eigenvectors for this square lattice network.

We exploited the fact that the square lattice network has rotational symme-
try to find our eigenvalues. By using the permutation matrix, P, for a rotation
by 90 ◦, we can get eight orthogonal eigenvectors for the 2×2 case.

The vertices are numbered such that 1 maps to 2, 2 to 3, and so on after
each rotation of 90 ◦. We can then use P=C4 ⊕ C4. The vectors

V1 =


1
1
1
1

 , V2 =


1
0
−1
0

 , V3 =


0
1
0
−1

 , V4 =


1
−1
1
−1


can be used to form the eigenvectors for Λ. V1 and V4 are eigenvectors of C4,
while V2 and V3 are the real and imaginary parts, respectively, of eigenvectors
of C4 (V3 + iV2 and V3 − iV2 are eigenvectors of C4).

Using these four orthogonal vectors, we can build the orthogonal eigenvectors
for Λ.

In order for these vectors to be eigenvectors, they must satisfy Λx = λx,
where λ is the corresponding eigenvalue. Λ maps voltages to currents, so the ∂
- current will be a scalar multiple of the ∂ - voltage.

To verify that these vectors are in fact eigenvectors, we will use Kirchhoff’s
Law and Ohm’s Law. As an example, we will use V4 ⊕ −V4, but this process
can be repeated to prove the validity of the seven other eigenvectors.

Given the voltages on the boundary correspond to V4 ⊕−V4, it is clear that
if we let the voltage at nodes 9 and 11 will be v, then the voltage at nodes 10
and 12 will be -v.

σ1
σ2

1-1

-1

1

1 -1

-1

1
v-v

v -v

Using Kirchhoff’s Law at an interior vertex with voltage v, we get∑
k∼j

Ijk = 0 = 2(v − 1)σ1 + 2(v + v)σ2

Solving for v yields v = σ1

σ1+2σ2
. To determine the current at the boundary,

we use Ohm’s Law which gives the current at node 1,

I1 = (1− v)σ1 = (1− σ1
σ1 + 2σ2

)σ1 =
2σ1σ2
σ1 + 2σ2
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This value I1 is a multiple of the voltage at node 1, specifically 1 * 2σ1σ2

σ1+2σ2
.

So V4 ⊕ V4 is an eigenvector with eigenvalue λ = 2σ1σ2

σ1+2σ2
.

This process can be repeated for the seven other ∂-vertices. This table gives
the eigenvectors for the 2×2 square lattice network first in terms of V1, V2, V3, V4
using the rotational ordering, and second in the traditional circular ordering,
with the first entry corresponding to same vertex 1 used in the rotational or-
dering with the rest following in a counterclockwise orientation.

Eigenvector Eigenvector Eigenvalue

V1 ⊕ V1 (1,1,1,1,1,1,1,1) λ0 = 0

V1 ⊕−V1 (1,-1,1,-1,1,-1,1,-1) λ1 = σ1

V2 ⊕ V3 (1,0,0,1,-1,0,0,-1)

V3 ⊕ V2 (0,1,1,0,0,-1,-1,0)

V4 ⊕ V4 (1,1,-1,-1,1,1,-1,-1)

V2 ⊕−V3 (1,0,0,-1,-1,0,0,1) λ2 = σ1σ2

σ1+σ2

V3 ⊕ V2 (0,1,1,0,0,-1,-1,0)

V4 ⊕−V4 (1,-1,-1,1,1,-1,-1,1) λ3 = 2σ1σ2

σ1+2σ2

2.2 Example: n=3 Case

We can use a similar method to find the eigenvectors for the n=3 case. Using
P = C4 ⊕C4 ⊕C4, we can get twelve orthogonal eigenvectors. These can all be
shown to be eigenvectors of Λ through the same process given for the n=2 case.

159

2

6

10

3 7 11

4

8

12

σ1
σ1

σ2

σ2

σ3

Figure 3.

For this case, we can get eight farily simple eigenvectors, some of which
resemble the eigenvectors for the n=2 case. Because all twelve eigenvectors
have to be orthogonal, the last four are a little harder to find.
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Eigenvector Eigenvector Eigenvalue

V1 ⊕ V1 ⊕ V1 (1,1,1,1,1,1,1,1,1,1,1,1) λ0 = 0

V2 ⊕ 0⊕ V3 (1,0,0,0,0,1,-1,0,0,0,0,-1) λ1 = σ1

V3 ⊕ 0⊕−V2 (0,0,-1,1,0,0,0,0,1,-1,0,0)

V4 ⊕ 0⊕ V4 (1,0,1,-1,0,-1,1,0,1,-1,0,-1)

V1 ⊕ 0⊕−V1 (1,0,-1,1,0,-1,1,0,-1,1,0,-1)

V4 ⊕ 0⊕−V4 (1,0,-1,-1,0,1,1,0,-1,-1,0,1) λ2 = σ1σ2
σ1+σ2

V1 ⊕−2V1 ⊕ V1 (1,-2,1,1,-2,1,1,-2,1,1,-2,1) λ3 = 2σ1σ2
σ1+2σ2

0⊕ V4 ⊕ V4 (0,1,0,0,-1,0,0,1,0,0,-1,0) λ4 = 2σ1σ2+σ1σ3
σ1+2σ2+σ3

V2 + V3 ⊕ a+V2 ⊕ V2 − V3 (1,a+,1,1,0,-1,-1,−a+,-1,-1,0,1) λ5 =
σ3+3σ2∓

√
σ2
3+5σ2

2+2σ2σ3

σ3+3σ2+2σ1±
√
σ2
3+5σ2

2+2σ2σ3

V2 + V3 ⊕ a−V2 ⊕ V2 − V3 (1,a−,1,1,0,-1,-1,−a−,-1,-1,0,1)

V3 − V2 ⊕ a+V2 ⊕ V2 + V3 (-1,0,1,1,a+,1,1,0,-1,-1,−a+,-1)

V3 − V2 ⊕ a−V3 ⊕ V2 + V3 (-1,0,1,1,a−,1,1,0,-1,-1,−a−,-1)

For the eigenvectors of λ5, a± = −σ2+σ3±
√
σ2
3+5σ2

2+2σ2σ3

σ2
. As the network

grows, the eigenvectors begin to depend more heavily on the values of the con-
ductivities.

Although there are many symmetries of the layered square lattice network,
as n grows, the number of symmetries stays the same. The eigenvalue λ1 =
σ1 will always have multiplicity 4, no matter how large n gets. That means
that the eigenvectors corresponding to λ1 = σ1 cover less of the eigenspace as n
grows, which causes eigenvalues and eigenvectors to become increasingly more
complicated as n gets larger.

In networks with more symmetries, we find that the eigenvalues and eigen-
vectors grow in multiplicity with the size of the graph, which prevents the com-
plicated eigenvectors seen in the layered square lattice network.

3 Layered Tree Networks

A rooted layered tree network Γ with depth n and root degree r has r subtrees
that are binomial trees. The boundary nodes are all at a depth n from the
root, and there are no boundary to boundary edges. For our examples we will
use r=3 for simplicity. The layered tree network has a much more symmetric
structure than the layered square lattice network because the number of sym-
metries grows with the size of the graph. We will number the vertices in a
counter-clockwise manner, with nodes 1 and 2 on the same boundary antenna,
and the conductances will be layered as shown below.
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σ1

σ2

σ3

σ4

12
3

. .
.

Figure 4.

3.1 The Smallest Non-Trivial Case: n=2, r=3

σ1

σ2

Figure 5.

Eigenvector Eigenvalue

(1,1,1,1,1,1) λ0 = 0

(1,-1,0,0,0,0) λ1 = σ1

(0,0,1,-1,0,0)

(0,0,0,0,1,-1)

(1,1,-1,-1,0,0) λ2 = σ1σ2

2σ1+σ2

(0,0,1,1,-1,-1)
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3.2 Example: n=3, r=3

σ1

σ2

σ3

Figure 6.

Eigenvector Eigenvalue

(1,1,1,1,1,1,1,1,1,1,1,1) λ0 = 0

(1,-1,0,0,0,0,0,0,0,0,0,0) λ1 = σ1

(0,0,1,-1,0,0,0,0,0,0,0,0)

(0,0,0,0,1,-1,0,0,0,0,0,0)

(0,0,0,0,0,0,1,-1,0,0,0,0)

(0,0,0,0,0,0,0,0,1,-1,0,0)

(0,0,0,0,0,0,0,0,0,0,1,-1)

(1,1,-1,-1,0,0,0,0,0,0,0,0) λ2 = σ1σ2

2σ1+σ1

(0,0,0,0,1,1,-1,-1,0,0,0,0)

(0,0,0,0,0,0,0,0,1,1,-1,-1)

(1,1,1,1,-1,-1,-1,-1,0,0,0,0) λ3 = σ1σ2σ3

4σ1σ2+2σ1σ3+σ2σ3

(0,0,0,0,1,1,1,1,-1,-1,-1,-1)

3.3 Expanding to Larger Cases of n and r

In the larger cases, as is evident in the smaller cases, the number of boundary
vertices grows with the values of n and r. The number of boundary vertices is
given by 2n−1r. The number of boundary vertices is also the number of linearly
independent orthogonal eigenvectors of the network.

For layered tree networks, there are a small number of eigenvalues compared
to the number of eigenvectors. This results in eigenvalues with large multiplic-
ities.

After looking at cases with larger n and r, a pattern for the eigenvalues
and their multiplicities begins to emerge. Given that the graph is a tree graph
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with layered conductances as described above, all eigenvalues, as well as their
multiplicities, can be found.

Given a rooted tree graph, let p∼r, where r is the root vertex. Every ∂-vertex
has a unique path to r. An arm through p is the set of all edges and vertices
for which this unique path includes p. We will denote an arm of a rooted tree
graph by G.

· · ·

An Arm, G, of a Rooted Tree Graph with Depth n

If we take an arm, G, of a rooted tree graph, we can construct a new graph,
G̃n, where we identify all ∂-vertices. If we let the root vertex, r, be viewed as a
∂-vertex, then we have a graph which looks like this

· · ·

Graph G̃n

These two graphs, G and G̃n, are electrically equivalent, when r has voltage
0 and all the other ∂-vertices have voltage 1. The effective conductance of
G̃n, denoted by µn, is the inverse of the sum of the resistances of each edge in
the series.

Theorem 3.1. The effective conductance of an arm of a rooted tree graph is

µn =
1

1
σn

+ 1
2σn−1

+ · · ·+ 1
2n−1σ1

where n is the depth of G̃n.

Proof. We can prove this by induction.Given an arm G̃1 with depth n=1, the
effective conductance is trivial.

σ1r
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µ1 = 1
1
σ1

= σ1.

A better example is an arm G̃2 with depth n=2.

σ1 σ2r

µ2 = 1
1
σ2

+ 1
2σ1

.

Assume µk = 1
1
σk

+ 1
2σk−1

+···+ 1

2k−1σ1

, where k≥n. The graph G̃k with depth

k looks like

· · ·
σ1σk−2

σk−1

σk

We need to show that µk+1 = 1
1

σk+1
+ 1

2σk
+···+ 1

2kσ1

. The graph G̃k+1 with

depth n=k+1 looks like

· · ·r p

σ1σk−1

σk
σk+1

The graph G̃k+1 consists of two arms, G̃k, whose roots are glued together
at a point p and an edge connecting the new root, r, to p. From this, we can
see that the effective conductance of G̃k+1 is

µ =
1

1
σk+1

+ 1
2µk

=
1

1
σk+1

+ 1
2 [ 1
σk

+ 1
2σk−1

+ · · ·+ 1
2k−1σ1

]

=
1

1
σk+1

+ 1
2σk

+ · · ·+ 1
2kσ1

= µk+1

�
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Theorem 3.2. Given an eigenvector with voltage 1 on one arm of a graph of
depth n, voltage -1 on an adjacent arm and voltage 0 elsewhere, the eigenvalue
will be λk = 1∑n

j=1
2j−1

σj

, where λ0 = 0.

Proof. A graph of depth n has 2n−1r ∂-vertices, where r is the degree of
the root vertex, so there are 2n−1 ∂-vertices on each arm. We know the ef-
fective conductance of an arm G̃n, with voltage 1 on the boundary is µn =

1
1
σn

+ 1
2σn−1

+···+ 1

2n−1σ1

. So the current on the boundary of G̃n will be (1−0)µn =

µn. The original graph G has 2n−1 ∂-vertices, so we have to divide the current,
µn by 2n−1 to get the current at each ∂-vertex in G.

µn
2n−1

=
1

2n−1
1

1
σn

+ 1
2σn−1

+ · · ·+ 1
2n−1σ1

=
1

2n−1[ 1
σn

+ 1
2σn−1

+ · · ·+ 1
2n−1σ1

]

=
1

2n−1

σn
+ 2n−2

σn−1
+ · · ·+ 2

σ2
+ 1

σ1

=
1∑n

j=1
2j−1

σj

= λn

�

Corrolary 3.3. The multiplicity, m, of any eigenvalue λk of a rooted tree graph
is

m =


r · 2n−1−k when 1 ≤ k ≤ n− 1

r − 1 when k = n,

1 when k = 0

where n is the depth of the graph, r is the degree of the root, and k is the
subscript of λ.

Proof. The number of linearly independent eigenvectors of a tree graph with
depth n and root degree r is equal to the number of ∂-vertices, and —∂V—=r·2n−1.
We can create a table of the eigenvalues, λk, and their dimension.
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Eigenvalue Dimension

λ0 = 0 1

λ1 = σ1 r·2n−2

λ2 = 1
1
σ1

+ 2
σ2

r·2n−3

...
...

λk = 1
1
σ1

+ 2
sigma2

+···+ 2k−1

σk

r·2n−1−k

...
...

λn−2 = 1
1
σ1

+ 2
sigma2

+···+ 2n−3

σn−2

r·21

λn−1 = 1
1
σ1

+ 2
sigma2

+···+ 2n−2

σn−1

r·20 = r

λn = 1
1
σ1

+ 2
sigma2

+···+ 2n−
σn

r - 1

Totalling these dimensions up tells us the amount of the eigenspace that
these eigenvalues cover. Totalling gives us

1 + r[2n−2 + 2n−3 + · · ·+ 2 + 1] + r − 1

=1 + r[
2n−1 − 1

2− 1
] + r − 1

=r · 2n−1 − r + r

=r · 2n−1.

This total tells us that there are at least r·2n−1 independent eigenvectors.
The number of ∂-vertices, —∂V—=r·2n−1, tells us that there are at most r·2n−1
independent eigenvectors. Therefore, these λn and their corresponding eigen-
vectors form a complete set of independent eigenvectors.

�

4 Layered Ring Networks

A rooted layered ring network Γ with depth n and root degree r is a network
with a specified root and n - 1 conducting rings. The boundary nodes are of
degree 1. We will layer the conductances in a similar manner as with the tree
graphs, with the conductance σ1 on the outermost edges and σn on the edges
connected to the root. Each conducting ring will have a constant conductance
µn, with the conductance of the outermost ring being µ1 and the conductance
of the innermost ring being µn−1. Figure 6 is an example of the type of graph
we will be looking at.
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σ1σ2

σ3
σ4

µ1

µ2

µ3

Figure 7.

Because these networks can get complicated quickly, we will look at two
examples: the graph which we will call the Spider Web graph, where each
interior vertex has degree 5, and the graph which we will call the Compass
graph, where each interior vertex has degree 4.

4.1 Layered Spider Web Graph

The spider web graphs will have the same structure as the tree graphs with the
exception of the conducting rings. There will be n-1 conducting rings, which
have constant conductivity, µ, at a given depth, as shown in Figure 7. Every
interior vertex, excluding the root, will have degree 5.

n=2, r=3

σ1

σ2

Figure 8.
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Eigenvector Eigenvalue

(1,1,1,1,1,1) λ0 = 0

(1,-1,0,0,0,0) λ1 = σ1

(0,0,1,-1,0,0)

(0,0,0,0,1,-1)

(1,1,-1,-1,0,0) λ2 = σ1σ2+3σ1µ1

2σ1+σ2+3µ1

(0,0,1,1,-1,-1)

The eigenvectors for this network are the same as the eigenvectors for the
layered tree graph without conducting rings. The eigenvalues are the same with
the exception of λ2, which is nearly the same.

The eigenvectors and eigenvalues are fairly simple to find for small n, but as
n grows, they become much more complicated to find.

n=3, r=3

σ1

σ2

σ3

µ1

µ2

Figure 9.
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Eigenvector Eigenvalue

(1,1,1,1,1,1,1,1,1,1,1,1) λ0 = 0

(1,-1,0,0,0,0,0,0,0,0,0,0) λ1 = σ1

(0,0,1,-1,0,0,0,0,0,0,0,0)

(0,0,0,0,1,-1,0,0,0,0,0,0)

(0,0,0,0,0,0,1,-1,0,0,0,0)

(0,0,0,0,0,0,0,0,1,-1,0,0)

(0,0,0,0,0,0,0,0,0,0,1,-1)

(1,1,-1,-1,1,1,-1,-1,1,1,-1,-1) λ2 = σ1σ2+4µ1σ1

2σ1+σ2+4µ1

(1,1,b,b,a+, a+, a+, a+,b,b,1,1) λ3

(1,1,b,b,a−, a−, a−, a−,b,b,1,1)

(b,b,a+, a+, a+, a+,b,b,1,1,1,1)

(b,b,a−, a−, a−, a−,b,b,1,1,1,1)

λ3 is not a simple eigenvalue and yields no useful information. In the four

eigenvectors corresponding to λ3, a± =
−σ2

2±
√
σ4
2+µ1(2σ2+σ3+3µ2)(σ2

2+2σ2µ1+σ3µ1+3µ1µ2)

σ2
2+2σ2µ1+σ3µ1+3µ1µ2

and b = -1−a±.

4.2 Layered Compass Graph

The layered compass graph consists of a root vertex with r branches and n-1
conducting rings, which start at the end of the root branches continue outward,
as seen below. Each of these root branches extends directly to the boundary
without splitting. This forces every interior vertex, excluding the root, to have
degree 4.

n = 3, r = 4

σ1

σ2

σ3

µ1

µ2
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Figure 10.

Eigenvector Eigenvalue

(1,1,1,1) λ0 = 0

(1,0,-1,0) λ1 =
σ1[(σ2+2µ1)(σ2+σ3+2µ2)−σ2

2 ]

(σ1+σ2+2µ1)(σ2+σ3+2µ2)−σ2
2

(0,1,0,-1)

(1,-1,1,-1) λ2 =
σ1[(σ2+4µ1)(σ2+σ3+4µ2)−σ2

2 ]

(σ1+σ2+4µ1)(σ2+4σ3+2µ2)−σ2
2

4.3 General Layered Ring Network

General layered ring networks are much harder to work with because of their
lack of symmetry. For the other cases, there was a systematic way to find the
eigenvectors, but that doesn’t seem to be the case for any general ring network.
Some of the eigenvectors are easily found, while some we were unable to find.

Example: n=3 r=4

σ1

σ2
σ3

1

2

3
. .
.

µ1
µ2

Figure 11.

We can easily get the eigenvectors that correspond to λ0 = 0 and λ1 = σ1,
but we could not see a systematic way of finding the other five eigenvectors.

Eigenvector Eigenvalue

(1,1,1,1,1,1,1,1,1) λ0 = 0

(0,1,-1,0,0,0,0,0,0) λ1 = σ1

(0,0,0,0,1,-1,0,0,0)

(0,0,0,0,0,0,0,1,-1)
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4.4 Some Additional Theorems

These last theorems address the reverse problem of what has been covered in
this paper: Given an eigenvector or an eigenvalue of a network, can we glean
what the network looks like?

Theorem 4.1. If a layered network with at least four boundary vertices has an
eigenvalue λ1 = σ1 then there exists a boundary antenna on the graph.

Proof. The eigenvalue λ1 = σ1 implies that the current at a boundary vertex
is a multiple of the voltage, v, at the vertex. The equation for the current at
the boundary node then becomes

(v − w)σ1 = σ1v.

This forces the voltage, w, at the interior node which connects the boundary
node to the interior of the graph to be zero. The zero voltage at an interior
node, which has zero net current, implies that there exists another edge which
has a negative voltage at its second node. Because the conductances on the
edges are layered, then the current equation for the second node becomes

(0− x)σ1 = σ1v.

So x = -v because λ1 = σ1 is an eigenvalue. So λ1 = σ1 implies there is a
boundary antenna with voltages v and -v.

�

Theorem 4.2. If a layered network with at least four boundary vertices has
an eigenvector with sequential (1,-1) and other entries zero then there exists a
boundary antenna at the nodes corresponding to the (1,-1).

Proof. The voltages of 1 and -1 on sequential vertices cause at least two se-
quential vertices with zero voltages on the boundary. The nodes connecting the
boundary nodes with voltage 1 and -1 to the interior of the graph have voltage
v and -v respectively, because the conductances are layered. Take the node with
voltage v. There is a path from the node with voltage v to a node with voltage
zero, and from there to a node with a negative voltage, w. By the Jordan Curve
Theorem, there is a continuous path with negative voltage, denoted in blue, to
the node with voltage -v. The same reasoning can be used to find a node in the
graph with a positive voltage, x, which must have a continuous positive path,
denoted in red, to the node with voltage v. Because our graphs are circular
planar, these two paths must cross at some point, which would have both pos-
itive and negative voltage, which is a contradiction. Therefore, the nodes with
voltage v and -v must be the same node.
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