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Abstract. A pseudodiagram is a diagram of a knot with some crossing infor-

mation missing. We review and expand the theory of pseudodiagrams intro-
duced by R. Hanaki. We then extend this theory to the realm of virtual knots,

a generalization of knots. In particular, we analyze the trivializing number of

a pseudodiagram, i.e. the minimum number of crossings that must be resolved
to produce the unknot. We consider how much crossing information is needed

in a virtual pseudodiagram to identify a non-trivial knot, a classical knot, or

a non-classical knot. We then apply pseudodiagram theory to develop new
upper bounds on unknotting number, virtual unknotting number, and genus.

1. Introduction

Recently, in [11], Hanaki introduced the concept of a knot pseudodiagram and
the related notions of trivializing number and knotting number.

Definition 1.1. A pseudodiagram P is a knot diagram in which some crossings are
undetermined. Such crossings are called precrossings. A precrossing is represented
as a flat crossing in a drawing. We resolve a precrossing by assigning the local
writhe of that crossing. In other words, a precrossing of a diagram is resolved
by converting it to a traditional crossing. We call a pseudodiagram in which all
crossings are undetermined a shadow and one in which all crossings are determined
a diagram. These definitions are illustrated in Figure 1.

p

(a) (b) (c)

Figure 1. The three drawings above are all pseudodiagrams. Drawing
(A) is a shadow where a precrossing p is marked, and drawing (C) is a
diagram.

This concept is motivated by the study of DNA knotting. In some pictures of
DNA molecules, we are unable to determine which strand is in on top in some
crossings. Pseudodiagram theory investigates what information can be determined
from incomplete data about a knot’s crossings.
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A major concern is determining whether a pseudodiagram is necessarily knotted
or unknotted regardless of how the remaining precrossings are resolved. Hanaki
introduces the following:

Definition 1.2. The trivializing number tr(P ) of a pseudodiagram P is the mini-
mum number of precrossings which must be resolved so that the resulting pseudo-
diagram is necessarily unknotted. If there is no resolution of precrossings such that
the resulting diagram is isotopic to the unknot, then we say that tr(P ) =∞.

Definition 1.3. The knotting number kn(P ) of a pseudodiagram P is the minimum
number of precrossings which must be resolved so that the resulting pseudodiagram
is necessarily knotted, i.e. not the unknot. If every resolution of precrossings of P
results in the unknot, then we say that kn(P ) =∞.

In Section 3, we discuss values of these quantities. We provide prerequisite
background from classical knot theory in Section 2 to aid this discussion.

In Section 4, we define a generalization of knot theory introduced by Kauffman
in [15] called virtual knot theory. We extend the notion of a pseudodiagram to this
broader class of knots in two natural ways. In Sections 5 and 6, we explore results
pertaining to these virtual pseudodiagrams.

Finally, in Section 7, we use pseudodiagram theory to find bounds for the classical
and virtual unknotting numbers as well as the canonical genus for classical knots.

2. Preliminaries

We define a knot to be an embedded copy of the circle in R3 up to ambient
isotopy. A link is an embedded copy of one or more circles in R3. Note that we may
alternatively consider knots and links as sitting inside a thickened 2-sphere. When
we study knots, we typically consider diagrams of knots—projections of knots onto
a two-dimensional plane. These diagrams are pictured generically as curves with no
self-tangencies or triple-points, only crossings given as double-points decorated to
show which strand of the knot passes over and which passes under at the crossing.
Two knot diagrams represent equivalent knots if and only if the diagrams can be
related by a sequence of Reidemeister moves and ambient isotopy in the plane.

Another way of representing oriented knots is using objects called Gauss di-
agrams, which can be associated in a natural way to knot diagrams. A Gauss
diagram is a counter-clockwise oriented circle (the ‘core’ circle) parametrizing the
knot equipped with signed oriented chords. The chords represent crossings in the
knot diagram, while the signs and orientations contain information about under-
and over-strands. To be more precise, a chord is oriented from the preimage of the
over-strand of the associated crossing to the preimage of the under-strand on the
core circle. Each chord is given the sign of the local writhe of its corresponding
crossing in the knot diagram, as illustrated in Figure 2. Figure 3 gives an example
of a knot diagram and its associated Gauss diagram.

A base point for a Gauss diagram is a point on the core circle at which we
begin to traverse the core circle with respect to the orientation. This base point
corresponds to a base point on the knot.

There is a notion of equivalence for Gauss diagrams that corresponds to the
equivalence of knot diagrams. In particular, there are combinatorial Reidemeister-
type moves that relate Gauss diagrams representing the same knot, as described
in [10].
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Figure 2. Local writhes of crossings.
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Figure 3. A trefoil knot and its Gauss diagram.

We will especially make use of two classes of figures related to Gauss diagrams.
An arrow diagram is a Gauss diagram that is missing sign information on its chords.
Furthermore, a chord diagram is an unoriented arrow diagram. Hence, a chord dia-
gram preserves only the core circle and the chords from the original Gauss diagram.
Chord diagrams may also be thought of as free knots. See [19] and [20] for more
on free knots. From an arrow diagram or a chord diagram, it is not possible to
uniquely reconstruct the original knot diagram. More information about Gauss
diagrams, arrow diagrams, and chord diagrams can be found in [18].

Definition 2.1. We call two chords of a Gauss, arrow, or chord diagram parallel
if they can be drawn so that they do not intersect. We say that a Gauss, arrow or
chord diagram is parallel if all the chords are pairwise parallel.

3. Results for Pseudodiagrams

In the introduction, we discussed the notion of a pseudodiagram as well as the
notions of trivializing and knotting number. Here, we present what is known about
values of these numbers.

Theorem 3.1 (Hanaki, [11]). The trivializing number of any shadow is even.

In the section below, we modify Hanaki’s proof and prove Theorem 3.3, a gen-
eralization of Theorem 3.1.

Definition 3.2. A set T of precrossings of a pseudodiagram P that can be resolved
so that P is necessarily the unknot is called a trivializing set of P .

We can further define two types of trivializing sets:

basic: If there exists no proper subset U ( T such that U is a trivializing
set of P , then T is a basic trivializing set of P .

minimum: If T is a trivializing set such that |T | ≤ |U | for all trivializing
sets U , then T is a minimum trivializing set of P .
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Observe that tr(P ) = |T | where T is a minimum trivializing set, and also that
not every basic trivializing set of crossings is minimum.

Theorem 3.3. The cardinality of every basic trivializing set of a shadow is even.

In order to prove this theorem, we require the following additional lemmas.

Lemma 3.4. A chord diagram with only parallel chords is trivial.

Proof. Triviality is shown by applying Reidemeister move I (for chord diagrams),
once for each chord of the chord diagram. �

Lemma 3.5. If the (classical) pseudodiagram P contains exactly two precrossings
and the corresponding chords intersect in the chord diagram of P , then P can be
resolved nontrivially.

Proof. We first interpret the second degree Vassiliev invariant ν2 in terms of Gauss
diagrams with our precrossings a and b as singular crossings. For an introduction
to Vassiliev invariants and singular knots, see [9] and [24].

As was illustrated by Polyak and Viro in [23], and Chmutov, Khoury and Rossi in
[5], the second degree Vassiliev invariant ν2 is defined on realizable Gauss diagrams
as

ν2(K) =
∑

(x,y)∈C

wxwy,

where wx is the local writhe at crossing x. Given an arbitrary base point on the
core circle of the Gauss diagram of P , we include an ordered pair of chords (x, y) in
C if, on one counterclockwise circuit around the core circle of the Gauss diagram
of P , we encounter x and y chord endpoints in the order xH , yT , xT , yH , where xH
denotes the head of the x chord arrow, and yT denotes the tail of the y chord arrow.
Possible relations of chord pairs (x, y) are illustrated in Figure 4. Only the chord
pair labeled (a) in Figure 4 is in C. Although the set C depends on the base point,
ν2 is independent of the choice of base point.

It should be noted that ν2 evaluated on the unknot is 0.

Figure 4. The crossing pair (x, y) can be related in the chord diagram
as shown in the figure above: there are four crossing relations, and four
parallel relations. Only the chord relation (a) is in C, and therefore is
counted for ν2.

Consider the two precrossings a and b as singular crossings. Let the base point
for defining C directly follow an endpoint of b (as in Figure 5), and consider all
chords relative to the quadrants pictured in Figure 5. We define PHT to be the
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Figure 5. The chords
a and b correspond to
precrossings in P , and
divide the chord diagram
into four quadrants.

diagram obtained from P by resolving a so that we meet the head of a first when
traversing the core circle, and by resolving b so that we meet its tail first. We define
PHH , PTH , and PTT similarly. Then, applying the second derivative of Vassiliev
invariants on singular knots,

ν2(P ) = ν2(PHH) + ν2(PTT )− ν2(PHT )− ν2(PTT ).

We wish to show that there are an odd number of chord pairs (x, y) which
contribute to ν2(P ). This will guarantee that ν2(P ) 6= 0, as every chord pair in C
contributes either +1 or −1. Since 0 6= ν2(P ) = ν2(PHH) + ν2(PTT )− ν2(PHT )−
ν2(PTT ), it follows that there exists a resolution of the precrossings a and b such
that the resulting knot (PHH , PTT , PTH , or PHT ) has ν2 6= 0, and therefore is
nontrivial.

Observe that the resolution of precrossings a and b does not affect whether a
chord pair (x, y) (where x, y /∈ {a, b}) is in C. Such a chord pair (x, y) is either
counted for computations of all or none of ν2(PHH), ν2(PHT ), ν2(PTT ), ν2(PTH).
Therefore (x, y) appears either 4 or 0 (both even) times in the calculation of ν2(P ).
Thus to calculate ν2(P ) over Z2 it suffices to consider only chord pairs (x, y) ∈ C
where either x or y is a or b.

A chord x intersects a or b if and only if the endpoints of x are in different
quadrants of Figure 5. The statement that (x, b) ∈ C depends on how b is oriented
and which quadrants the heads and tails of c are in. We can classify the number
of times any chord from quadrant A to quadrant B appears in the calculation of
ν2(PHH), ν2(PTT ), ν2(PHT ), and ν2(PTH). We represent this information below as
the matrices HH, TT , HT and TH, where HHij gives the number of times any
chord xi→j with tail in quadrant i and head in quadrant j is counted in a chord
pair with a or b in C for the computation of ν2(PHH).

HH =


0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0

 TT =


0 0 0 0
1 0 0 0
2 1 0 0
1 1 0 0



HT =


0 0 0 0
0 0 0 1
1 1 0 1
1 1 1 0

 TH =


0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0


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Given these matrices, the ij entry of the sum matrix HH + TT +HT + TH gives
the total number of times any chord xi→j appears in the calculation of ν2(P ).

HH + TT +HT + TH =


0 0 0 0
2 0 0 2
4 2 0 2
2 2 2 0


From this it is clear that every chord pair (x, a), (a, x), (x, b), or (b, x) appears an
even number of times when we calculate ν2(P ). We have considered every chord
pair except for (a, b) and (b, a), therefore the parity of the number of wxwy terms
summed is precisely the parity of chord pair terms (a, b) and (b, a) in our four
resolutions of a and b. Observe that (b, a) /∈ C for any resolutions of b and a, and
(a, b) satisfies the first chord crossing relation if and only if a and b are resolved
as in PHT . Thus the total number of contributing chord pair terms is odd, and
ν2(P ) 6= 0. �

Lemma 3.6. Any pseudodiagram P with a chord diagram containing intersecting
prechords (i.e. prechords correspond to precrossings of P ) can be resolved nontriv-
ially.

Proof. Arbitrarily resolve all but two precrossing a and b of P such that the chords
of a and b intersect in a chord diagram. By Lemma 3.5, the resulting pseudodiagram
has a nontrivial resolution. Thus P has a nontrivial resolution. �

Lemma 3.7. The trivializing number of a shadow S is equal to the minimum
number of chords that can be deleted from the chord diagram such that all remaining
chords are parallel.

Proof. Let T be a trivializing set of precrossings for S. By Lemma 3.6, since T
is a trivializing set, deleting the corresponding chords in the chord diagram of S
must leave only parallel chords. Therefore, the trivializing number is at least the
minimum number of chords that can be deleted to leave only parallel chords.

We will call a chord c an exterior chord if it cuts off an arc with only endpoints of
chords in T . Consider the strand a of S corresponding to this arc. Any precrossings
along a must be in T . By resolving the precrossings on a so that a lies over all
other strands of S, we may contract a so as to remove all crossings on it. This
allows us to perform a Reidemeister I move that eliminates the crossing c.

This produces a new shadow with fewer crossings that can be trivialized by the
remaining elements of T . Hence, we may iterate this process on an exterior chord
of the resulting shadow until all crossings and precrossings of S are eliminated,
resulting in a diagram of the unknot. This process can be performed with any
trivializing set—in particular with a minimum trivializing set. Thus, the trivializing
number is equal to the minimum number of chords that can be deleted to leave only
parallel chords. �

Proof of Theorem 3.3. Let S be a shadow, and T a basic trivializing set of pre-
crossings for S. We wish to show that |T | is even. This theorem is a corollary of
Lemma 3.7.

It is well-known that every knot diagram is evenly intersticed (see for example
[15]).1 In terms of chord diagrams, this means the arc cut off by every exterior

1This fact does not extend to virtual knot diagrams, a concept we will discuss in Section 4.
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chord, as described in the proof of Lemma 3.7, contains an even number of chord
endpoints. All of these endpoints are from chords in T . Because T is basic, each
chord in T contributes at most one of these endpoints.

Thus, in the proof of Lemma 3.7, to contract a, we resolved and then eliminated
an even number of crossings in T . Therefore, |T | is even. �

Remark 3.8. We note here that it may be possible to strengthen these results
regarding trivializing numbers using Manturov’s work on free knots and links. We
hope this will be a topic of future study.

In [11], Hanaki proved that kn(S) ≥ 3 for any shadow S. We offer an alternative
proof of this fact.

Proposition 3.9. For any shadow S, kn(S) ≥ 3.

Proof. Suppose that we resolve only the precrossing c1. We traverse S from a base
point b such that we first encounter c1 as an overpass, resolving all precrossings as
overpasses at the first encounter. It is well known (see, for example, [1]) that this
resolution is the unknot.

Now suppose we resolve the precrossings c1 and c2. The base point b is arbitrary,

and there exists a base point b̂ and an oriented traversal such that we first encounter
both c1 and c2 as overpasses. Again, resolving all precrossings along this traversal
as overpasses at the first encounter produces the unknot. �

4. Virtual Pseudodiagrams

In this section, we extend Hanaki’s notion of a pseudodiagram into the domain of
virtual knots, a generalization of knots. Virtual knots can be interpreted as knots
on surfaces of various genera, so they serve as a model to examine the knottedness of
biological polymers wrapped around cellular structures. Before introducing virtual
pseudodiagrams, we review certain pertinent definitions from virtual knot theory.
Additional introductory material on virtual knots may be found in [15].

Definition 4.1. A virtual knot is an equivalence class of knot diagrams with an
additional crossing type. Instead of requiring all crossings to be either positive
or negative, we introduce a third possibility, which we call a virtual crossing and
denote by drawing a small circle around the crossing. Two such knot diagrams are
considered equivalent if one can be transformed into the other by a sequence of
classical and/or virtual Reidemeister moves (shown in Figure 6).

The virtual Reidemeister moves are equivalent to the virtual detour move, which
states that any strand with fixed endpoints and no classical crossings can be re-
placed with any other strand with the same endpoints and no classical crossings.

Definition 4.2. The minimum number of virtual crossings over all diagrams of
the knot K is the virtual crossing number cv(K).

If cv(K) = 0, we call K a classical knot. If cv(K) ≥ 1, we say K is non-classical.
See [6] or [2] for more on the virtual crossing number.

It is important to note that the two Reidemeister-like moves shown in Figure 7
are forbidden. As shown in [13] and [22], allowing one of these forbidden moves
leads to the theory of welded knots, and allowing both forbidden moves trivializes
the theory: all knots become equivalent to the unknot.
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Figure 6. The Reidemeister moves for virtual knots. Two virtual
diagrams are equivalent if and only if one can be obtained from the other
by a sequence of these moves and the classical Reidemeister moves.

Figure 7. These Reidemeister-like moves are forbidden. Allowing
these two moves would render all virtual knots equivalent.

The motivations behind virtual knot theory are more fully explained in [15].
Here, we merely note two equivalent definitions. Recall that classical knots may
be represented as Gauss diagrams. However, not every Gauss diagram is realizable
as a diagram of a classical knot. On the other hand, every Gauss diagram has
a realization as a virtual knot. (Virtual crossings are not recorded on the Gauss
diagram.) Therefore, we may equivalently regard a virtual knot as an equivalence
class of Gauss diagrams under appropriate Gauss diagram formulations of the Rei-
demeister moves.

Another formulation of virtual knot theory, proven to be equivalent in [4], [17], is
to regard virtual knots as equivalence classes of embeddings of a circle into a thick-
ened surface M . In this formulation, classical knots are precisely the equivalence
classes of embeddings of circles into the thickened sphere. Non-classical virtual
knots are the equivalence classes of embeddings of circles on thickened surfaces of
strictly higher topological genus. Thinking geometrically, virtual crossings are ar-
tifacts of projections. Strands may not cross on M , but may cross in a projection
of M onto a plane. For every virtual knot K, there is a minimum topological genus
of surfaces on which K can be drawn.

There are two meaningful ways to extend the concept of pseudodiagrams to
virtual knots.

Definition 4.3. A virtual pseudodiagram is a diagram of a virtual knot in which
some classical crossings are undetermined (however, all virtual crossings are given).
These precrossings can be resolved as positive or negative classical crossings, but
not as virtual crossings. A virtual shadow is a virtual pseudodiagram in which all
classical crossings are undetermined.
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Definition 4.4. An über-virtual pseudodiagram is a diagram of a virtual knot in
which some crossings are undetermined precrossings. (Crossings in such a dia-
gram may be virtual, positive classical, negative classical or precrossings.) These
precrossings can be resolved as virtual, or positive/negative classical crossings.

Definition 4.5. A virtual shadow is either a virtual pseudodiagram or an über-
virtual pseudodiagram, in which no classical crossing information is given.

In classical pseudodiagrams, we considered the trivializing and knotting numbers.
These notions extend naturally to virtual and über-virtual pseudodiagrams. In
addition, two further numbers are significant:

Definition 4.6. The classicalizing number cl(V ) of a virtual pseudodiagram V
is the minimum number of undetermined crossings which must be (classically) re-
solved such that the resulting virtual pseudodiagram is necessarily classical re-
gardless of how the remaining undetermined crossings are resolved. If there is no
resolution of undetermined crossings such that the resulting diagram is isotopic to
a classical knot, then we say that cl(V ) =∞.

Definition 4.7. The virtualizing number vir(V ) of a virtual pseudodiagram V is
the minimum number of undetermined crossings which must be (classically) re-
solved such that the resulting pseudodiagram is necessarily non-classical regardless
of how the remaining undetermined crossings are resolved. If there is no resolution
of undetermined crossings such that the resulting diagram is not isotopic to any
classical knot, then we say that vir(V ) =∞.

We also consider variations on the classical trivializing number.

Definition 4.8. The virtual trivializing number trv(Ü) of an über-virtual pseudo-

diagram Ü is the minimum number of precrossings which need to be determined as
virtual so that the resulting über-virtual pseudodiagram is necessarily unknotted.

Definition 4.9. The über trivializing number trü(P ) of an über-virtual pseudo-
diagram P is the minimum number of precrossings which must be determined as
either classical (positive or negative) or virtual so that the resulting über-virtual
pseudodiagram is necessarily unknotted.

5. Results on Characteristic Values of Pseudodiagrams

As a trivial knot is always classical and a non-classical knot is always knotted,
the following fact is immediate.

Fact 5.1. For any virtual pseudodiagram P ,

cl(P ) ≤ tr(P ) and kn(P ) ≤ vir(P ).

We will show that the inequalities in Fact 5.1 are, in fact, sharp. We will also
illustrate that classicalizing, trivializing, knotting and virtualizing numbers can be
distinct, even for a prime knot’s shadow. An example of such a prime shadow is
found in Figure 9.

Definition 5.2. The virtual shadow linking number of two oriented components
L1 and L2 in a shadow of a virtual link is the sum of the signs of precrossings
between L1 and L2, where the sign of such a precrossing is defined as in Figure 8.
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Figure 8. Definition of crossing signs for the virtual shadow link-
ing number.

Definition 5.3. The intersection index ind(c) of a crossing or precrossing c in
an oriented virtual pseudodiagram is the virtual shadow linking number of the
components L1 and L2 created by smoothing at c with the orientation.

We denote as Cm the set of precrossings and crossings c with intersection index
m:

Cm = {c : ind(c) = m}.

Definition 5.4 (Henrich, [12]). The intersection index polynomial of a virtual knot
K is

pt(K) =
∑
c∈C

wc

(
t|ind(c)| − 1

)
,

where C is the set of all crossings in K and wc is the local writhe of crossing c.

As described in [12], the intersection index polynomial is an invariant of virtual
knots with the property that pt(K) = 0 for every classical knot K. We now use
this polynomial to bound classicalizing and virtualizing numbers.

Proposition 5.5. For any virtual shadow S,

cl(S) ≥
∑
m 6=0

|Cm|

Proof. Suppose we resolve fewer than
∑
m 6=0 |Cm| precrossings. Then, there exists

some precrossing ĉ of S such that ĉ ∈ Cm for some m 6= 0. Resolve all other
precrossings arbitrarily as classical crossings to obtain S′. The precrossing ĉ can
be resolved as a positive or negative classical crossing to obtain the knots S′+ and
S′− respectively. We find

pt(S
′
+) = t|ind(ĉ)| − 1 +

∑
c∈C\{ĉ}

wc

(
t|ind(c)| − 1

)
and

pt(S
′
−) = 1− t|ind(ĉ)| +

∑
c∈C\{ĉ}

wc

(
t|ind(c)| − 1

)
.

Since pt(S
′
+) − pt(S

′
−) = 2(t|ind(ĉ)| − 1), and t|ind(ĉ)| − 1 6= 0, it follows that at

least one of pt(S
′
+), pt(S

′
−) is nonzero. Thus, our initial resolution of fewer than∑

m 6=0 |Cm| precrossings did not guarantee that the resulting diagram was classical.
�

Lemma 5.6. For all virtual shadows that have a resolution as a classical knot and
for all m 6= 0, |Cm| is even.
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Proof. Let S be a virtual shadow with the classical resolution K. Then,

pt(K) =
∑
c∈C

wc

(
t|ind(c)| − 1

)
= 0.

In particular, the coefficient of tm is 0 for all m 6= 0. As the coefficient of tm where
m 6= 0 is

∑
c∈Cm

wc, this implies that |Cm| is even for m 6= 0.

Now observe that ind(c) is independent of how S is resolved (when precrossings
of S can only be resolved classically). So for every precrossing ĉ, |ind(ĉ)| is constant
over every resolution of S. Hence, if S has a classical resolution, then every nonzero
|ind(c)| appears an even number of times. �

Proposition 5.7. For any virtual shadow S where some precrossing has nonzero
intersection index,

vir(S) ≤ min
m

{
|Cm|

2
+ 1

}
,

where m ranges over all positive integers such that there exists a precrossing ĉ with
|ind(ĉ)| = m.

Proof. Take any positive integer m such that there exists a precrossing ĉ ∈ Cm.

It suffices to show that vir(S) ≤ |Cm|
2 + 1 for this particular m. By Lemma 5.6,

|Cm|
2 ∈ Z. Designate |Cm|

2 + 1 of the precrossings c ∈ Cm so that they all have local
writhe +1. Then, however the other precrossings are resolved, we certainly have

that pt 6= 0. Therefore, resolving these |Cm|
2 + 1 precrossings guarantees that any

further resolution is non-classical. �

We can now show that the virtual shadow Y shown in Figure 9 has distinct
values for trivializing, classicalizing, virtualizing, and knotting numbers. Note that
Y is a prime shadow.

� � � � � � � �

�

����

��

(a)

tr(Y ) 10
cl(Y ) 8
vir(Y ) 5
kn(Y ) 4

(b)

��

����

�

�

�

�
�

�
�

�

�

(c)

Figure 9. Subfigure (a) shows the virtual shadow Y with classical
precrossings labelled. The chord diagram of Y is illustrated in (c), and
the the trivializing, classicalizing, virtualizing, and knotting numbers of
Y are listed in (b).

• cl(Y ) = 8.
There are eight precrossings, 1–8, with intersection index 2. All other

precrossings have intersection index 0. By Proposition 5.5, cl(Y ) ≥ 8.
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It is clear that if we resolve the precrossings 1, 3, 5, 7 as positive classical
crossings and the precrossings 2, 4, 6, 8 as negative classical crossings, then
the resulting pseudodiagram is necessarily classical. Thus, cl(Y ) = 8.
• tr(Y ) = 10.

We see that crossings 1–8 must be resolved to guarantee that Y is clas-
sical. Removing these resolved crossings (as specified above) as well as
the two flanking virtual crossings using repeated type 2 moves results in a
classical knot shadow that has trivializing number 2. Thus, tr(Y ) = 10.
• vir(Y ) = 5.

By Proposition 5.7, vir(Y ) ≤ 8
2 + 1 = 5. Suppose only four precross-

ings are resolved. Then we can resolve the remaining precrossings from
{1, 2, 3, 4, 5, 6, 7, 8} in a way that allows us to eliminate the virtual cross-
ings through a sequence of Reidemeister II moves. Thus vir(Y ) = 5.
• kn(Y ) = 4.

If we resolve precrossings 9, 10, 11, 12 as positive classical crossings, then
the resulting pseudodiagram is necessarily knotted.

It is clear that resolving any 3 precrossings does not guarantee a knotted
resolution. Thus kn(Y ) = 4.

Theorem 5.8. The inequalities in Fact 5.1 are sharp.

Proof. Consider the virtual shadow of the virtual trefoil shown in Figure 11. It is
clear by inspection that kn(P ) = vir(P ) = cl(P ) = tr(P ) = 2. �

Theorem 5.9. The differences between cl(P ) and tr(P ), and between kn(P ) and
vir(P ) can be arbitrarily large.

Proof. Consider a composition of a shadow of a classical trefoil and a 2-braid with
one virtual crossing and 2n ≥ 4 classical precrossings, as illustrated in Figure 10.

������������

Figure 10. The shadow of a 2-braid with one virtual crossing com-
posed with a classical trefoil. This shadow has kn(S) = 3, vir(S) = n+1.

In [14], it is shown that the composition of a trefoil with any virtual knot is
non-trivial. Thus, it is clear that kn(S) ≤ 3 by resolving the crossings in the trefoil
shadow. By Theorem 3.9, kn(S) ≥ 3. Hence, kn(S) = 3.

By Proposition 5.7, vir(S) ≤ n+ 1, as all of the 2-braid precrossings have inter-
section index 1, while the trefoil precrossings have intersection index 0.

Suppose that we resolve fewer than n + 1 precrossings in the knot. Then in
particular, at most n of the 2n 2-braid crossings are resolved, and we may resolve
the remaining 2-braid precrossings so that the braid unwinds through a sequence
of Reidemeister II moves. This yields a classical knot.



PSEUDODIAGRAM THEORY 13

Thus, the composition has kn(S) = 3, vir(S) = n + 1, and limn→∞ vir(P ) −
kn(P ) =∞.

The virtual shadow in Figure 11 shows arbitrarily large differences between cl(S)
and tr(S).

(a) A

virtual

shadow of
a virtual

trefoil.

(b) A shadow composition

of an arbitrary number of

trefoils with a virtual tre-
foil shadow.

Figure 11. The shadow in (A) has kn(P ) = vir(P ) = cl(P ) = tr(P ) =
2, while the composition shown in (B) shows the distance between cl(P )
and tr(P ) may be arbitrarily large.

The shadow is resolved nontrivially if the virtual trefoil shadow or any one of
the n classical trefoil shadows are resolved nontrivially. Therefore tr(S) = 2n+ 2.

In order to guarantee that S resolves as a classical knot, it suffices to trivialize
the virtual trefoil shadow, so cl(S) = 2. Hence, limn→∞ tr(S)− cl(S) =∞. �

Composition is not well-defined for virtual knots. Indeed, there are an infinite
number of non-equivalent ways to compose any two knots. In the virtual realm,
composing two unknots may yield a non-trivial and indeed non-classical result,
such as the Kishino knot shown in Figure 12. Here we provide an infinite family of
distinct compositions of two unknots. Distinctness can be shown using Kauffman
and Dye’s arrow polynomial, as defined in [6].

The Kishino knot

Figure 12. The first four members of an infinite family of distinct
compositions of two unknots.

Proposition 5.10. For any pair of classical knots K1 and K2, there is a shadow S
of a composition K1#K2 of two virtual diagrams of K1 and K2 such that cl(S) =∞.
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Proof. Consider classical diagrams D1 and D2 of K1 and K2 respectively. Perform
Reidemeister moves as shown in Figure 13 (A) to obtain diagrams D′1 and D′2. The
composition of D′1 and D′2 as illustrated in Figure 13 (B) yields a diagram that is
also a composition of the Kishino knot with the diagrams D1 and D2. It is clear

��

(a) The
diagram

D′
1 of K1

��

��
(b) D′

1#D′
2

Figure 13. Two stages in the construction of Proposition 5.10.

from the chord diagrams that, for any two virtual pseudodiagrams P1, P2,

vir(P1#P2) = min{vir(P1), vir(P2)}.

Consider the shadow S of this diagram. As S is the shadow of the composition of the
Kishino knot with two other knots, vir(S) ≤ vir(Kishino) = 0. Thus cl(S) =∞. �

We now consider relations between the various trivializing numbers defined in
Definitions 1.2, 4.8, and 4.9.

Lemma 5.11. For any classical shadow S, trv(S) ≤ tr(S).

Proof. We know that tr(S) is the least number of chords that must be removed
from the chord diagram of S so that the resulting diagram is parallel. Turning
the precrossings associated to this deleted set of intersecting chords into virtual
crossings will result in a parallel chord diagram. As in the proof of Lemma 3.7,
we may unknot any such pseudodiagram. In this case, however, we use a sequence
of virtual Reidemeister moves to virtually untangle loops before removing each
precrossing, in turn, with a classical type I move.

�

Lemma 5.12. For any über-virtual shadow S,

trü(S) ≤ trv(S) and trü(S) ≤ tr(S).

Proof. If we can trivialize S by designating the crossings in a crossing set T as
virtual or by designating the crossings in T as classical, then we can certainly
trivialize S by setting the crossings of T as virtual or classical.

�

Theorem 5.13. For any über-virtual shadow S, trü(S) = tr(S). Hence,

trü(S) = trv(S) = tr(S).
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Proof. In Section 6, we will see that any pseudodiagram with a chord diagram that
has intersecting precrossings can be resolved non-classically. Hence, trü(S) = tr(S).
The second equality is immediate from the previous lemmas. �

Proposition 5.14. For any virtual shadow S, tr(S) 6= 1.

Proof. Let S be a virtual shadow with tr(S) ≤ 1. Then, there is a trivial virtual
pseudodiagram T obtained from S by a classical resolution of some precrossing p.
Without loss of generality, assume p was resolved as a positive classical crossing.

Now, let T ′ be the mirror image of T , where we assume the mirror image of
a precrossing is still a precrossing, and the mirror image of a virtual crossing is
a virtual crossing. Since T is trivial, we have by symmetry that T ′ is also trivial.
However, T ′ is precisely S with p resolved as a negative classical crossing. Therefore,
S is trivial regardless of how we resolve p classically, and so tr(S) = 0. �

6. Kauffman’s J-invariant

In this section we will make use of Kauffman’s J-invariant for virtual knots,
defined in [16]. Kauffman’s J-invariant for a virtual knot K is defined as

J(K) =
∑

c∈Odd(K)

wc,

where wc is the local writhe of crossing c, which corresponds to a chord in Odd(K).
We say that c ∈ Odd(K) if an arc of K with both endpoints at c passes through

an odd number of classical crossings. Equivalently, the chord corresponding to c in
the chord diagram of K intersects an odd number of chords.

For all classical diagrams D, Odd(D) = ∅, and therefore J(D) = 0. Hence, if
J(D) 6= 0, then D is necessarily non-classical.

Proposition 6.1. For any virtual pseudodiagram P containing a precrossing in
Odd(P ), P can be resolved non-classically (and therefore, non-trivially). Moreover,
cl(P ) ≥ |Odd(P ) ∩ Cp|, where Cp is the set of precrossings in P .

Proof. Let

W =
∑

c∈Odd(P )∩Cp

wc.

We can resolve all precrossings in Odd(P ) with local writhe +1 such that J(P ) =
W + |Odd(P )∩Cp|, or with local writhe −1 such that J(P ) = W − |Odd(P )∩Cp|.
If there exists a precrossing in Odd(P ), then at least one of these resolutions has
nontrivial J , and therefore is non-classical. �

Lemma 6.2. For any virtual pseudodiagram P , |Odd(P )| is even.

Proof. This result is a straightforward consequence of graph theory. �

Theorem 6.3. For any virtual pseudodiagram P with |Odd(P )| 6= 0,

vir(P ) ≤ |Odd(P )|
2

+ 1.

Proof. In order to make sure that any further resolution of P is necessarily non-
classical, it suffices to resolve some precrossings of P such that any further resolution

to a diagram D has J(D) 6= 0. Thus, it suffices to resolve |Odd(P )|
2 + 1 chords from
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Odd(P ) to have local writhe +1 to obtain P ′. Regardless of how the other chords
are resolved,

∑
c∈Odd(P ′) wc > 0, and P ′ is necessarily non-classical. �

To more generally analyze the trivializing number of a virtual pseudodiagram,
we might begin by asking whether the proof of Lemma 3.5 holds for virtual pseudo-
diagrams. In general, the answer is negative for compact virtual pseudodiagrams,
that is, for the sorts of virtual pseudodiagrams we’ve been discussing thus far. This
is because the Vassiliev invariant used in the proof is no longer base-point indepen-
dent, and hence is not an invariant for virtual knots. If we were to consider long
virtual psudodiagrams, or based virtual pseudodiagrams, the result would extend
readily. Fortunately, we may repair the damage by using Kauffman’s J-invariant
and several recent results due to Manturov.

Lemma 6.4. Any virtual pseudodiagram P with a chord diagram containing inter-
secting prechords can be resolved nontrivially.

Proof. If every crossing in a virtual pseudodiagram is even, then the Vassiliev in-
variant used in Lemma 3.5 is invariant mod 2. This relies on the following result
from [19]. If two equivalent virtual knot diagrams have even crossings, then the vir-
tual knot diagrams are related by a sequence of Reidemeister–type moves involving
only even crossings. Thus, Lemma 3.5 holds for virtual pseudodiagrams containing
only even crossings.

Now, let us first resolve all precrossings in P so that exactly two precrossings
corresponding to intersecting prechords in the chord diagram remain. Assume that
at least one of these precrossings is odd. Then, by Proposition 6.1, we can choose
crossing information for the odd precrossing(s) so that the resulting virtual knot is
non-classical. So let us turn to the remaining case where our virtual pseudodiagram
contains odd crossings, but the two precrossings are even.

In [19], Manturov introduces a functorial mapping, f , on the set of virtual knots
that sends a virtual knot diagram K to the virtual knot diagram f(K) where all odd
classical crossings are made virtual. We note that if K is trivial, then so is f(K). So
let us examine f(P ) where P is a virtual pseudodiagram with two even precrossings
that intersect as chords in the chord diagram of P . Since our precrossings are both
even in P , they persist in f(P ). They may, however, be odd in f(P ). If at least
one of the precrossings becomes odd, then we find (as above) that f(P ) can be
resolved nontrivially, so P can be resolved nontrivially. On the other hand, if both
precrossings remain even, we repeat the process of applying the functor f until we
have a virtual pseudodiagram with all even crossings and our precrossings persist.
In this case, we showed above that the pseudodiagram f(f(· · · f(P ) · · · )) can be
resolved nontrivially. Hence, P can be resolved nontrivially. �

Lemma 6.5. Let P be an über-virtual pseudodiagram with exactly two precrossings
a and b such that the chords a and b cross in the chord diagram of P . Then P has
a resolution which is non-classical.

Proof. Recall that J(K) =
∑
c∈Odd(K) wc for any knot K, and J = 0 for all classical

knots.
Suppose that either a or b is in Odd(α) for the chord diagram α containing all

classical and precrossings of P . Without loss of generality, assume a ∈ Odd(P ).



PSEUDODIAGRAM THEORY 17

Then for any knot K which is resolved from P with a and b resolved classically,

J(K) = wa +
∑

c∈Odd(α)\{a}

wc.

Therefore, we may resolve a and b as classical crossings with the appropriate local
writhes, obtaining a diagram K with J(K) 6= 0. Hence, K is non-classical.

Suppose now that both a and b are not in Odd(α). Resolve b virtually. Then, a
is in Odd(α′) for the new chord diagram α′. Again,

J(K) = wa +
∑

c∈Odd(α′)\{a}

wc

where K is a resolution of P with b resolved as a virtual crossing and a is resolved
as a classical crossing. We may resolve a with the appropriate local writhe such
that J(K) 6= 0. Hence, K is a non-classical resolution of P .

In either case there is a resolution of P which is non-classical. Therefore any
über-virtual pseudodiagram with exactly two precrossings that cross in the chord
diagram can be resolved non-classically. �

Corollary 6.6. If an über-virtual pseudodiagram has precrossings that intersect
in the chord diagram, then that über-virtual pseudodiagram can be resolved non-
classically.

Corollary 6.7. For any über-virtual shadow S, clv(S) = trv(S).

7. Unknotting Numbers and Genus

Definition 7.1. The unknotting number u(D) of a diagram is the minimum number
of classical crossings whose local writhes must be switched so that the resulting
diagram is a diagram of the unknot.

The unknotting number u(K) of a knot K is minD u(D), where D ranges over
all diagrams of K.

More information about the unknotting number can be found in [1]. We define
the trivializing number of a knot K to be minSK

tr(SK), where SK ranges over all
shadows of conformations of K.

It is known that the unknotting number cannot always be realized in a minimum
crossing projection of a knot. The following is a related open question.

Question 7.2. Is the trivializing number of every knot K realized in a minimum
crossing projection of K?

Theoretical lower bounds on unknotting number are known. However, upper
bounds are generally determined by trial and error. We believe that the following
theorem is the first non-trivial upper bound to be developed.

Theorem 7.3. For any knot K,

u(K) ≤ tr(K)

2
.

Proof. Let S be an oriented shadow of a diagram D of K which realizes the un-

knotting number. It suffices to show that u(K) ≤ tr(S)
2 . Let C be a list of tr(S)

precrossings c1, c2, . . . , ctr(S) that can be resolved to trivialize S. We denote the
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trivializing resolutions of C as w1, w2, . . . , wtr(S), where wi ∈ {+1,−1} is the re-
solved local writhe of ci. As a knot is nontrivial if and only if its mirror image is
nontrivial, C also trivializes S when every ci is resolved with writhe −wi.

Look at the set C in D. In order to unknot D it suffices to change cross-
ings of C such that c1, c2, . . . , ctr(S) either have local writhes w1, w2, . . . , wtr(S)

or −w1,−w2, . . . ,−wtr(S). Observe that at most half of the crossings in C must
be changed to effect this, as if it requires changing n crossings to obtain local
writhes w1, w2, . . . , wtr(S), then it takes tr(S) − n changes to obtain local writhes

−w1,−w2, . . . ,−wtr(S). Thus, u(K) ≤ tr(S)
2 . �

The following invariant related to the unknotting number was introduced by
Goussarov, Polyak and Viro in [10] and Fleming and Mellor in [8].

Definition 7.4. The virtual unknotting number uv(D) of a diagram is the mini-
mum number of classical crossings that must be made virtual so that the resulting
diagram is a diagram of the unknot.

The virtual unknotting number uv(K) of a knot K is

min
D

uv(D),

where D ranges over all diagrams of K.

Theorem 7.5. For any knot K,

uv(K) ≤ tr(K).

Proof. Let S be any shadow of any conformation of K. By Theorem 5.11, tr(S) =
trv(S), so it suffices to show that uv(K) ≤ trv(S).

The virtual unknotting number ofK is the minimum over all diagrams ofK of the
minimum number of crossings which must be made virtual so that K becomes the
unknot. The virtual trivializing number of S is the minimum number of precrossings
in S that must be resolved as virtual to guarantee that any diagram obtained by
resolving the remaining precrossings is the unknot. The result follows. �

The similarity of virtual and classical bounds prompts us to consider the rela-
tionship between virtual unknotting and unknotting number, a relationship first
considered by Fleming and Mellor in [8].

Theorem 7.6. For any virtual (or classical) knot, K, uv(K) ≤ 2u(K).

Proof. Let D be a diagram of K that realizes the classical unknotting number. At
every crossing c whose writhe must be switched to unknot D, we first perform a
classical Reidemeister II move, then designate two adjacent crossings as virtual to
enable a virtual Reidemeister II move, leaving a single crossing with opposite writhe
of c. This sequence of moves is illustrated in Figure 14.

Figure 14. This sequence of Reidemeister moves and virtual crossing
designations switches the sign of a crossing.
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After performing a virtual Reidemeister II move, we obtain the same diagram
as would have been obtained by merely switching crossing c in D. Carrying out
this process at every crossing that needs to be changed to unknot D results in
the same diagram as would be obtained by switching all those crossings. Thus,
uv(K) ≤ 2u(K). �

Conjecture 7.7. For all classical knots K, uv(K) = 2u(K).

There are examples of minimum crossing classical projections that do not realize
the unknotting number for a given knot. See for example, [3] and [21] . Similarly,
there are minimum crossing projections that do not realize the virtual unknotting
number. In Figure 15, we exhibit a minimum crossing projection that realizes the
unknotting number, but not the virtual unknotting number. Currently there are no
examples of diagrams that realize the virtual unknotting number but do not also
realize the unknotting number.

Diagram of K            Classically Unknotted       Virtually Unknotted

1

2

Figure 15. Row 1 shows a minimum crossing diagram, with realiza-
tions of minimum unknotting and virtual unknotting crossing changes
for this diagram. Row 2 shows a non-minimum crossing projection of
the same knot that realizes both the unknotting and virtual unknotting
number for the knot.

Resolving Conjecture 7.7 positively would be extremely useful. In particular,
the following theorem would not be conditional.

Theorem 7.8. Assuming either that the unknot is the only classical knot with
trivial Jones polynomial, or that no classical knot has virtual unknotting number
1, it follows that the trivializing number for any virtual shadow with precisely one
virtual crossing is even.

Proof. Let Sv be a virtual shadow with precisely one virtual crossing v, and S be the
corresponding shadow with v as a precrossing. Let T = {c1, . . . , cn} be a minimum
trivializing set of precrossings for Sv. We show that T is a basic trivializing set for
S, and therefore, by Theorem 3.3, |T | is even.

Let T ? denote a resolution of the precrossings of T such that Sv is trivialized.
Suppose by way of contradiction that resolving T as T ? does not trivialize S.
Then there is a knotted resolution K of S where T is resolved as T ?.
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If Conjecture 7.7 is true, then since u(K) ≥ 1, it follows that uv(K) ≥ 2.
However, uv(K) = 1, as changing v to a virtual crossing necessarily produces the
unknot. This would be our desired contradiction.

Alternatively, suppose that K has nontrivial Jones polynomial. Fleming and
Mellor proved in [7] that for diagrams of classical knots with nontrivial Jones poly-
nomial, if one crossing is made virtual, then the Jones polynomial is still nontrivial.
Therefore, for any classical knot with nontrivial Jones polynomial, if one crossing
is made virtual, the result is a nontrivial knot.

Hence, if v is made virtual, K must remain knotted. However, this contradicts
the fact that Sv is trivial when T is resolved as T ?. Therefore, assuming that
either of the conjectures holds, we conclude that T trivializes S.

Figure 16. The chord diagram of a shadow, with a trivializing set T
in bold, and the crossing v with a dashed line. By our claim, T is not
basic, so there exists a chord c ∈ T that intersects only elements of the
trivializing set T . Thus c separates the core circle into the black (a)
and grey (b) arcs. Only a crossing in T may have chord endpoints in
both arcs.

Now we show that T is a basic trivializing set of precrossings for S. Suppose by
way of contradiction that a proper subset of T trivializes S. (We will show that
T cannot be a basic trivializing set of Sv.) By assumption, there is some c ∈ T
which need not be resolved in S in order to guarantee triviality. The chord for c in
the chord diagram of S does not cross any chords from S\T . It follows that the
chord for c describes two arcs in the core circle where each precrossing chord has
both endpoints on a single arc. In particular, as the precrossing v is not an element
of T , the endpoints of the chord for v both lie on a single one of these arcs. We
call the arc containing these endpoints a, and the other arc b. This configuration
is illustrated in Figure 16.

We claim that there is a resolution of the precrossings T \{c} so that Sv is trivial.
The arcs a and b define two loops A and B based at c that intersect only at crossings
in T . As no endpoint of the chord for v appears along arc b, the crossing v does
not appear on the corresponding loop B. We say that a point p lies exterior to B
if there is a path from p to a point p′ arbitrarily far away from the shadow, where
this path does not intersect B.

Suppose that v lies exterior to B. Then we resolve all crossing between B and
A such that B lies completely above A. Because v lies exterior to B, it is then
possible to perform a sequence of classical Reidemeister moves so that the only
crossing between B and A is c. It is then clear that resolving c does not affect the
triviality of S.
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Figure 17. Banana peeling:(a) shows a diagram before peeling. The
tangle T contains the unique virtual crossing v. The diagram has already
been manipulated so that all kinks are concentric. Figures (b) and (c)
show the diagram after virtual detour moves on the outermost kink
strand. In the resulting diagram (c), the virtual crossing lies exterior to
the strand B and B lies completely on top of the other strand.

Suppose instead that v does not lie exterior to B. We will reduce this case to
the previous one. The chords not in T and with both endpoints on b are parallel.
It follows that we can resolve crossings in T along B so that, by a a sequence of
classical Reidemeister moves, B is a collection of concentric kinks as shown in (a)
of Figure 17.

Starting with the outermost kink, we consecutively perform a virtual detour
move on each kink that lies exterior to v, as illustrated in (b) and (c) of Figure
17. In the resulting diagram (depicted in (c) of Figure 17, v is exterior to B, and
crossings between A and B are unchanged. By the previous case, the resolution of
c does not affect the triviality of S. �

As an extension of this result, we propose the following conjecture.

Conjecture 7.9. For every virtual shadow S, tr(S) is even.

We now turn our attention from unknotting numbers of knots and properties
of the trivializing number to the topological notion of genus of a classical knot.
In addition to bounding the unknotting number of a knot, the trivializing number
provides an upper bound on genus.

Lemma 7.10. A (classical) n-component link has at least n Seifert circles.

Proof. This may be shown by induction on n. However, we will find it more en-
lightening to give the following braid theoretic proof.

In [25], Yamada showed that, for any link L, the braid index β(L) is equal
to the minimum number of Seifert circles in any diagram of L. Since a braid
form representation of an n component link must have at least one strand for each
component, β(L) ≥ n, and the lemma follows. �

Theorem 7.11. For any classical knot K, let DK be any diagram of K and let
SK be the shadow of DK . Then

tr(SK)

2
≥ g(K),
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where g(K) is the genus of K.

Proof. It suffices to show that

tr(D)

2
≥ g(D),

for every diagram D of K, since g(K) ≤ gc(K) ≤ minD g(D) where gc(K) is the
canonical genus of K.

For every diagram D, it is well-known (see, for example, [1]) that g(D) = c−s+1
2 ,

where c is the number of crossings in D and s is the number of Seifert circles.

Therefore, to prove that tr(D)
2 ≥ g(D), it suffices to show that c− tr(D) + 1 ≤ s.

By Lemma 3.7, we know that tr(D) is precisely the minimum number of chords
that must be deleted from the chord diagram of D in order to leave only parallel
chords. Hence, c − tr(D) is the cardinality of the maximum set of parallel chords
in the chord diagram of D. These c − tr(D) chords divide the chord diagram into
c− tr(D) + 1 planar regions.

Smoothing at these c− tr(D) crossings then produces a c− tr(D) + 1 component
link. Then, by Lemma 7.10, D has at least c−tr(D)+1 Seifert circles, as desired. �

In the future, we hope to resolve some of the open questions proposed in this
paper. We also plan to extend this theory to include links and spatial graphs, both
classical and virtual. Furthermore, it would be interesting to continue to relate
concepts from pseudodiagram theory to more established knot invariants, as was
begun in this final section.
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