
1. Basic Definitions and Conventions

When refering to a graph, we mean an undirected graph G with vertex set V broken down into interior
vertices (Vint) and boundary vertices (∂V ) where

(1) X is connected, finite, and has no loops
(2) There exists disjoint subsets, ∂V and Vint, of V where ∂V is nonempty and V = ∂V ∪ Vint
(3) When identifying vertices, all ∂V labels come before Vint.

When drawing such graphs, boundary nodes are represented by a solid black dot and interior nodes by a
open dot. Due to the inability to project three dimensional graphs onto paper, we will often draw the same
node more than once. If a node is drawn multiple times, it will be denoted by the same number. The
following graph in Figure 1 has multiple labelled vertices.

 0  2  4  0

#6 #7 #8

 1  3  5  1

Figure 1. Blah for now

A conductivity on a graph G is a function γ which assigns to each edge e a positive real number γ(e).
Thus, a resistor network, Γ(G, γ), is a graph G with a conductivity function γ [5]. The term resistor network
is standard for a graph with resistors as edges. The conductance of a resistor is defined as the reciprocal of
the resistance.

Suppose Γ = (G, γ) is a resistor network with n vertices (v1, . . . , vn). Let

γij =
∑

all edges e
joining vi to vj

γ(e)

and γij = 0 if there is no edge between vi and vj . If n is the number of nodes in the network (G, γ). then
Kirchhoff Matrix is defined as

Kij =

{
γij i 6= j

−
∑
j 6=i γij i = j

We often write the Kirchhoff Matrix in its block form. Let’s assume that G has m boundary vertices, then

K =

[
A B
BT C

]
where A is an m×m matrix and C is an n−m×n−m matrix. From [5], it is shown that C is an invertible
matrix. The definition of the Kirchhoff matrix leads to the following characteristics:

(1) The off-diagonal entries are positive or 0 (γij ≥ 0 for all i 6= j
(2) The row sums equal 0.
(3) K is symmetric.

Because of the symmetry of the Kirchhoff matrix, only the γij ’s in the upper triangle need to be found in
order to define the entire K matrix. Moreove, there is a 1-to-1 correspondence between any matrix that
satisfies the above characteristics and a Kirchhoff matrix of a network. (This will especially be useful later
on in the paper.)

We now define Λ (m×m) to be the response matrix (G, γ):

Λ = A−BC−1BT = K/C.
1



Λ can be interpreted as the Schur complement of C in K. This new matrix, Λ, has the same characteristics
as the Kirchhoff matrix:

(1) The off-diagonals are greater than or equal to 0 (λij ≥ 0 for i 6= 0)
(2) The row sums are 0
(3) Λ is symmetric

Hence, Λ is a Kirchhoff matrix for another resistor network. This is easily shown.
The inverse problem associated with resistor networks is given a response matrix, Λ, and graph, G, find the

conductivities (i.e. the entries in the Kirchhoff matrix). This simple definition of the inverse problem leads
to the term recoverability. The idea is that with any response matrix there exist unique conductivities on G
that generated Λ. Prior research shows that given certain characteristics of the graph, there is recoverability.
Hence, we can find theoretically find the conductivities with the response matrix. When there are non-unique
conductivities corresponding to the response matrix, we say that the graph is n to 1 (The phrase coined
in [2]) where n > 1. In this sense with a given Λ there exists n different conductivities that created the
response matrix. The simpliest example of such graphs is the ”series” connection (View Figure 2). In this
case, we can show that Λ is a 2× 2 matrix. Then λ1,2 =

γ1,3γ2,3
γ1,3+γ2,3

. Because we can not break λ1,2 down into

two components, γ1,3 and γ2,3 can be any value such that this ratio holds. Thus, there is ∞ to 1 different
conductivities that produce the response matrix. The more interesting cases occur when n is a finite number
greater than one.

Figure 2. The graphs of the Kirchhoff and response matrices for series configurations
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2. Motivation

The concept of n to 1 graphs where n is a finite number has been of great interest. In [3], the 2-to-1
graphs were explored thoroughly (and 2n) using n-gon in n-gon graphs. They established the existance of
at least 2n-to-1 graphs. It wasn’t until the work by [1] and [2], who showed the existance of 3-to-1 graphs,
that n-to-1 graphs were possible (n is finite). However, the creation of these graphs and their underlying
structure remains relatively limited. In this paper, we explore the construction of n-to-1 graphs (when n
does not equal a power of 2) and certain properties that arise.

3. Preliminary Notions

3.1. Star-K Transformation. The concept of Star-K Transformation and the enforcement of the quadri-
lateral rule are essential to constructing n-to-1 graphs. We define a star as a graph in which there exists no
interior to interior edges and no boundary to boundary edges. An n-star (for n > 1) is defined as n boundary
vertices connected to a single interior vertex. The K transformation takes the star and creates a complete
graph with the interior vertex removed. We will denote Kn as a complete graph with n boundary vertices
(This is not to be confused with the Kirchhoff matrix K). Thus the Star-K Transformation takes a n-star
to a Kn.

The importance of this Transformation lies in understanding what it does to the Kirchhoff matrix. By
eliminating interior vertices, we are doing row reductions to reduce B to the 0 matrix. Once all interior
vertices have been “row reduced”, the upper left-hand matrix is A − BC−1BT , which is defined as the
response matrix, Λ.

Knowing this response matrix, we understand the relationship between γi and µij . It is shown that

γ0γ1
σ

= µ0,1

where σ =
∑
i γi. Similarly, µ1,3 = γ1γ3

σ .
2
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Figure 3. 4-star transformed to a K4

3.2. Quadrilateral Rule. The quadrilateral rule derives from the 4-star and K4 (Figure 3) and the Deter-
minant Connection Theorem found in [5]. The basic idea is that in the 4-star there exists no 2-connection
between any 4 boundary vertices. Because of this and the Determinant Connection Theorem, we know that
the determinant of any 2× 2 off-diagonal sub-matrix (γii is not an entry in the sub-matrix) of the Kirchhoff
matrix is 0. In the K4 graph, it is equvialent to det[2× 2] = 0 or

µ0,1µ2,3 = µ1,3µ0,2 = µ0,3µ1,2

In more generality for larger stars, the quadrilateral rule is stated as

(1) µijµkl = µikµjl for all i 6= j 6= k 6= l.

The quadrilateral rule leads to an important theorem developed in [4] regarding computation of the γ from
the response matrix.

Theorem 3.1. A network on a complete graph (Kn) is response-equivalent to a star if and only if its
conductivities satisfy Equation 1.

In particular, [4] discovered a method of recovering the γ’s given all sides of the quadrilateral. Define

αi =

√
µijµik
µjk

.

Then we can formally compute γi’s by

(2) γi = αi
∑
j

αj .

We must be careful when applying this. The µij’s needed for the calculation do not necessarily
come directly from the response matrix. In some cases, the response matrix has the sum of multiple
edges in the quadrilateral. Hence in order to compute the γi we must be able to calculate each edge in the
quadrilateral separately.

3.3. Parameterizing the Response Matrix. This remarkable formula allows us to parameterize the re-
sponse matrix so that it preserves the quadrilateral rule. A closer examination of Figure 3 reveals how we
can choose λij and create a valid graph with conductivities. Assume that the µ’s for µ0,1 and µ2,3 are fixed.
We are now able to select any positive values for µ0,2 and make µ1,3 =

µ0,1µ2,3

µ0,2
satisfy the quadrilateral rule.

Moreover, we can choose a positive value for µ0,3 (independent of µ0,2) and make µ1,2 =
µ0,1µ2,3

µ0,3
. By doing

this, we can recover the corresponding γ’s by Equation 2. Thus, we can construct a “response matrix” which
corresponds to real conductivities on a 4-star.

To avoid confusion with the response matrix and the Kirchhoff matrix, we will defined new terminology.

Definition 3.1. R-MultiGraph and R Matrix
The R-MultiGraph is the graph of the star after performing the Star-K Transformation. In Figure 3, the
complete graph is the R-MultiGraph. We use the term multi-graph to describe R because as we will see later
multiple edges will be allowed in the R-MultiGraph. The R-Matrix is a matrix that stores the values of the µ’s
or the “conductivities” on the R-MultiGraph. Because multiple edges are allowed in the R-MultiGraph, the
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entries in the R-Matrix often will be sets containing the µ’s. If a multiple edge occurs in the R-MultiGraph,
the R-Matrix separates the multiple edges storing both values as the entry in the matrix. This slightly differs
from the response matrix since a multiple edge in the R-MultiGraph results is a sum of the µ’s in the response
matrix between any two vertices. When there is only a single edge in the R-MultiGraph, the response matrix
and the R-Matrix will contain the same values. All off-diagonal entries in the R-Matrix must be positive
and the diagonal entries are the same as the response matrix. In addition, the R-Matrix like the response is
symmetric.

The R-Matrix is a useful tool because in order to recover the conductivities we must know all the sides
on the quadrilateral. In order to better understand this terminology, we will provide some examples in the
next section.

3.4. Connecting Multiple Stars. Although we can connect different n-stars to each other, we will focus
on 4-stars. The following figures illustrate different connections of multiple 4-stars and their corresponding
R-MultiGraphs.

 0  1  4

#6 #7

 2  3  5

 0

µ0,2

µ0,1

µ1,2

 1

µ0,3 µ3,4
µ
(1)
1,3 µ

(2)
1,3

 4

µ1,5

µ4,5

µ1,4

 2 µ2,3
 3 µ3,5

 5

Figure 4. Connection of Multiple 4-Stars by Parallel Sides

The response matrix in Figure 4 would be the following:

Λ =



−
∑
µi µ0,1 µ0,2 µ0,3 0 0

µ0,1 −
∑
µi µ1,2 µ

(1)
1,3 + µ

(2)
1,3 µ1,4 µ1,5

µ0,2 µ1,2 −
∑
µi µ2,3 0 0

µ0,3 µ
(1)
1,3 + µ

(2)
1,3 µ2,3 −

∑
i µi µ3,4 µ3,5

0 µ1,4 0 µ3,4 −
∑
µi µ4,5

0 µ1,5 0 µ3,5 µ4,5 −
∑
µi

 ,

whereas the R-Matrix is

−
∑
µi µ0,1 µ0,2 µ0,3 0 0

µ0,1 −
∑
µi µ1,2 {µ(1)

1,3, µ
(2)
1,3} µ1,4 µ1,5

µ0,2 µ1,2 −
∑
µi µ2,3 0 0

µ0,3 {µ(1)
1,3, µ

(2)
1,3} µ2,3 −

∑
i µi µ3,4 µ3,5

0 µ1,4 0 µ3,4 −
∑
µi µ4,5

0 µ1,5 0 µ3,5 µ4,5 −
∑
µi

 ,

Note the distinction between the two. In row 1 column 4, the response matrix has the sum of the µ’s whereas
the R-Matrix has in entry 1,4 two values of µ. We can see that in the R-MultiGraph we get two edges from
vertices 1 and 3, so the R-Matrix and Λ will only differ by this entry.

Figure 3.4 will often be used in creating n-to-1 graphs. Later we will refer to this type of connection of
multiple stars as a switch. Note that when you see an R-MultiGraph like Figure 3.4 it comes from that
resistor network graph and is simply a quadrilateral.

4. Gaining Intuition about R-MultiGraphs

The Triangle-in-Triangle graph has been thoroughly scrutinized by prior REU students [3]. They have
determined that most of the time it is a 2-to-1 graph with one exception that corresponds to a root of
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Figure 5. Connection of Multiple 4-Stars by Diagonal Side

multiplicity 2 in a quadratic equation. We will use this graph to understand the driving forces behind its
2-to-1 behavior and in turn use our intuition to create n-to-1 graphs.

 0  2  4  0
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 1  3  5  1
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Figure 6. Triangle within Triangle Resistor Network Graph and R-MultiGraph

In order to demonstrate Figure 4’s 2-to-1-ness, let’s assume that we know what the R-Graph looks like, but
don’t know the values in Λ. We will force Λ to be certain values such that the graph is 2-to-1. However, we
do know the edges that are equivalent in Λ and R-Matrix. Next, if we can find that two distinct R-Matrices
exist such that quadrilateral rule holds and the Λ relationships hold then we calculate the conductivities
by equation 2. With two distinct R-Matrices, some fj ’s will vary and hence equation 2 will produce two
unique conductivities. Thus for a given response matrix there are two different conductivities that produce
the same Λ.

In order to use equation 2 to recover the conductivies, quadrilateral rule must be preserved. Because of
this, there are some relationships that must be satisfied between the entries in the response matrix. Note
that in Figure 4 the fi are values in the R-Matrix that correspond to multiple edges. They are the entries
that differ from the response matrix and must be found using the quadrilateral rule and other response
matrix conditions.
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To start assume we know that f0 = x and write down the quadrilateral and response matrix conditions.

Equation Sign of the Derivative
f0(x) = x +

f1(x) =
λ0,2λ1,3

f0
−

f2(x) = λ2,3 − f1 +

f3(x) =
λ2,4λ3,5

f2
−

f4(x) = λ4,5 − f3 +

f5(x) =
λ0,4λ1,5

f4
−

Σ(x) = f5 + x = λ0,1

We must show that there exists two distinct values of x that satisfy these equations. Moreover because
the R-Matrix must have all positive entries, every fj must be positive for those two values. We
can do this by finding appropriate λ’s that ensure the fj ’s are positive (e.g. λ2,3 > f1(x) for the two roots).
The question is How do we choose appropriate λ’s to guarantee that this graph is 2-to-1?

The system of equations produces specific characteristics:

(1) The fj ’s are a continued fractions. (f5(x) is equal to a linear term over linear term.)
(2) f5 has a singularity at a point y0 if and only if f4(y0) = 0 if and only if f3(y0) = λ4,5.
(3) The sign of the derivative for all fj is constant and alternates.
(4) Σ can have at most 2 roots.

4.1. Singularities and Σ. Let’s denote the singularity in f5 as y0. Due to the singularity, Σ blows up at
y0. Because the sign of f5’s derivative is negative, then for an interval around y0 the derivative of Σ is also
negative. Moreover, f5 is a linear term over linear term; thus as x goes to ±∞, Σ goes to ±∞ respectively.
Therefore, the behavior of Σ can be seen in Figure 7.

x

Σ y0

Figure 7. Behavior of Σ

If we set Σ to any positive value, we can see it would cross the graph either 0, 1, or 2 times at positive
values for x, but some fj < 0. Denote the two roots as x1 and x2 where x1 < x2. Although x1 and x2
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are positive, we have not shown that the other fj ’s are positive. In particular, examine f4 positivity. The
singularity of f5 is constructed at y0 if and only if λ4,5 = f3(y0). Replacing this, f4(x) = f3(y0) − f3(x).
Designate z < y0, f4(z) = f3(y0) − f3(z). The sign of f3(x) derivative is negative, so f3(y0) − f3(z) < 0,
which makes f4 < 0 if z < y0. Hence if the roots x1 and x2, lie on the left side of the singularity point, f4
will always be negative and thus not a valid entry in R-Matrix. This forces our x1 and x2 to lie on the right
side of the singularity to even hope for all the fj ’s to be positive Let z > y0 then f4 = f3(y0) − f3(z) and
because f3(x) is a decreasing function, f4 > 0. The singularity can be thought of as defining a half-plane,
where on one side an fj will be negative and on the other side positive. We will designate the side of the
singularity on which the value is positive by an arrow (Figure 8). Thus, the roots of a 2-to-1 will lie to the
right of a singularity point.

x

Σ y0

Figure 8. Location of Roots Based Only On f4’s Positivity

4.2. Choosing Appropriate λ’s. There are four steps to producing two distinct R-Matrices:

(1) Pick a positive value, y0, to be the singularity of f5 and hence Σ
(2) Parameterize the λ’s to uphold the quadrilateral rule
(3) Ensure that all fj ’s are positive. In particular, f2
(4) Choose λ4,5 to create the singularity at y0 for f5

In [3], the singularity value, y0, is always positive. This was based on a determinant criterion which stated
that there existed a 2-connection. In fact, we can choose y0 with the condition that it is positive.

Recall, the parameterization of Λ via the quadrilateral rule. Start by working the way down the fj .
The edge with the value f1 is in the quadrilateral formed by the vertices (0,1,2,3). Since no values of the
quadrilateral are yet determined, we can chose λ0,2 and λ1,3 to be any positive values. When we do this,
the equation for f1 forces the quadrilateral rule to hold for λ0,2λ1,3 = f0f1. However, there is another
quadrilateral rule than needs to be satisfied, but we have not chosen those values so pick a value for λ0,3 and

make it so that λ1,2 =
λ0,2λ1,3

λ0,3
. Thus the following is true

f0f1 = λ0,2λ1,3 = λ0,3λ1,2

and hence all quadrilateral rules are satisfied. This scheme will work for all edges that are perpendicular
to each other. For instance, we can do the same parameterization for the quadrilateral whose vertices are
(2,3,4,5).

This scheme guarantees that the quadrilateral rule holds. However, we must still show that all the fj ’s
are positive. We can see that if f0 is positive then f1 is positive. Similarly, f3 will be positive if f2 is positive
and f5 and Σ will be positive if f4 is positive. Because we know that the roots x1 and x2 are positive then
f0 > 0. We only need to ensure that f2, f4 > 0. First focus on f2 which will be positive if λ2,3 is sufficiently
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large. But, how large? To determine the magnitude of λ2,3, we note that f2 will be at its smallest when x
is at its smallest. The smallest value for x is y0 for we have already determined that f4 > 0 only if x > y0.

Therefore, we set λ2,3 =
λ0,2λ1,3

y0
+ C2,3 where C2,3 is any value greater than zero. This ensures that f2 will

be positive for any value to the right of y0.
In order to ensure that f4 is positive, we will utilize the information we found in Singularities and Σ

Section. f4 will only be positive to the right of y0. Thus, all we have to do is set the value of the singularity
to occur at y0. We accomplish this by letting λ4,5 = f3(y0). By doing this, f4(y0) = 0 and hence f5 and Σ
have a singularity at y0.

Now we have guaranteed that all the fj ’s and λ’s are positive in the sector to the right of the singularity
y0. Thus because the derivative sign is constant, there exist an λ0,1 such that there are two distinct values
of x and all intermediate fj ’s are positive at those two roots.

4.3. Plugging in Numbers. Let’s attempt to create a 2-to-1 graph by choosing appropriate λ’s.
Step 1 : Pick a positive value to be the singularity of f5. Let y0 = 1.

Step 2 : Choose values of the λ’s in the quadrilateral to uphold the quadrilateral rule. For instance, set
λ0,2, λ1,3, λ0,3 = 1 and hence λ1,2 = 1 by the quadrilateral rule. Now do the same for all other quadrilaterals
(i.e. λ2,4, λ3,5, λ2,5 = 1 and by the rule λ3,4 = 1). When we do this, we get a new set of equations for our
fj ’s:

Equation Sign of the Derivative
f0(x) = x +

f1(x) = 1
f0

−

f2(x) = λ2,3 − f1 +

f3(x) = 1
f2

−

f4(x) = λ4,5 − f3 +

f5(x) = 1
f4

−

Σ(x) = f5 + x = λ0,1

Step 3 Ensure that all the fj ’s are positive in some interval. First, let’s consider f2. By the scheme
established above, set λ2,3 = f1(y0) + C2,3. Since f1(1) = 1, λ2,3 = 1 + C2,3 where C2,3 can be any positive
value. For simplicity sake, set C2,3 = 1 so that λ2,3 = 2. Now, we have ensured that all the fj ’s up until f4
will be positive.

Step 4 Set the singularity to be the value y0. We see that Σ has a singularity at 1 if and only if f5 has a
singularity at 1 if and only if f4 is zero at y0 if and only if λ4,5 = f3(y0). Thus, we set λ4,5 = f3(1). If we
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write out the string of continued fractions, we get:

f0(x) = x

f1(x) =
1

x

f2(x) = 2− 1

x
=

2x− 1

x

f3(x) =
x

2x− 1

f4(x) =
x− 1

2x− 1

f5(x) =
2x− 1

x− 1

Σ(x) = x+
2x− 1

x− 1

Plugging in 1 into f3, λ4,5 = 1. By doing this, we have forced the singularity of f5 to occur at 1.

Step 5 For fun, let 3 be a root of Σ. In order to do this, plug 3 into Σ and calculate the value of λ0,1.
With λ4,5 = 1, f4 = x−1

2x−1 and f5 = 2x−1
x−1 . Thus, f5(3) = 5

2 and Σ(3) = 11
2 = λ0,1. Now, we have all the λ’s.

In summary,

Λ =



−19
2

11
2 1 1 1 1

11
2

−19
2 1 1 1 1

1 1 −6 2 1 1
1 1 2 −6 1 1
1 1 1 1 −5 1
1 1 1 1 1 −5


Let’s now solve Σ in terms of x, knowing that one of the roots of the quadratic is 3:

Σ = x+
2x− 1

x− 1
=

11

2

x2 − 9

2
x+

9

2
= 0

Using the quadratic formula, x = 3 and x = 3
2 . Leaving this to the reader, you can go back and verify that

all the fj ’s are positive at these values (Remember we have guaranteed that the fjs are all positive and
uphold the quadrilateral rule for any x > 1). With the same Λ, we get two different R-Matrices.

For x = 3
2 ,

R−Matrix =



−19
2 { 32 , 4} 1 1 1 1

{ 32 , 4}
−19
2 1 1 1 1

1 1 −6 { 23 ,
4
3} 1 1

1 1 { 23 ,
4
3} −6 1 1

1 1 1 1 −5 { 34 ,
1
4}

1 1 1 1 { 34 ,
1
4} −5


For x = 3,

R−Matrix =



−19
2 {3, 52} 1 1 1 1

{3, 52}
−19
2 1 1 1 1

1 1 −6 { 13 ,
5
3} 1 1

1 1 { 13 ,
5
3} −6 1 1

1 1 1 1 −5 { 35 ,
2
5}

1 1 1 1 { 35 ,
2
5} −5


Left to the reader, you can verify that all the quadrilateral rules hold. Now, we have produced two distinct
R-Matrices deriving from the same Λ and hence will two different sets of conductivities.
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Figure 9. Conductivities corresponding to x = 3
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Figure 10. Conductivities corresponding to x = 3
2

In summary, we have seen that

(1) Because of the quadrilateral rule, the fj ’s have constant sign derivatives
(2) There is a multitude of different choices for the λ’s as long as we preserve quadrilateral rule and

response conditions.
(3) The singularities in Σ act like half-planes: on one side one of the fj ’s is positive and on the other it

is negative.
(4) We can choose the value of the singularity, y0, as long as it is positive

Goal: Knowing the above, can we construct backwards a R-MultiGraph and Λ so that it produces n distinct
conductivities?

5. The Process

When using the quadrilateral rule and response conditions, there are three different forms the fj ’s can
take. Assume fj−1 is on the left most side of the quadrilateral. If fj is adjacent or along the diagonal edge
with all the other edges known, then fj = Cfj−1 where C is a constant formed by the other edges in the

quadrilateral. If fj is a parallel edge, then fj = C
fj−1

. The third type occurs when multiple edges are formed

in R-MultiGraph and thus fj = C − fj−1. In summary, the three different ways for fj are

(1) fj(x) = Cfj−1(x)

(2) fj(x) = C
fj−1(x)

(3) fj(x) = C − fj−1(x)

Because of the computation from multiple quadrilaterals strung together, the fj(x) will alternate between
(1) or (2) then (3) back to (1) or (2) and always terminating at a (1) or (2). Assume that f0 = x then at
each stage fj(x) will be a linear term over linear term.

Proposition 5.1. Each fj(x) has a constant sign derivative

Proof. Because the fj(x) are linear term over linear term,

fj(x) =
ax+ b

cx+ d
,
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where a, b, c, d ∈ R. Then

f ′j(x) =
ad− bc

(cx+ d)2
,

and hence since (cx+ d)2 ≥ 0, the sign of f ′j(x) is determined by the constants a, d, b, c, which don’t depend
on x. Thus, f ′j(x) is constant sign. �

5.1. Constructing the Graph of Σ(x). The central idea behind constructing n-to-1 graphs is to generate
“arms” that correspond to n edges between the same pair of vertices. For instance, the 2-to-1 case had a pair
of vertices {0, 1} that were repeated twice on the R-MultiGraph. For a 3-to-1 graph and keeping notation,
the pair {0, 1} would be repeated 3 times. If starting with an edge between {0, 1}, then there would be
two different computation paths that end with an edge between the vertices {0, 1} to generate the 3-to-1
graph. For an n-to-1 graph, there would be n−1 different computation paths that end with an edge between
vertices {0, 1}. Let gj(x) indicate the last linear term over linear term in the computational path which ends
at {0, 1}. Moreover, order the gj(x) such that g0(x) has the smallest singularity (y0) in Σ(x) and gn−1(x)
has the largest singularity (yn−2) in Σ Hence,

(3) Σ(x) = x+ g0(x) + g1(x) + g2(x) + · · ·+ gn−2(x)︸ ︷︷ ︸
n−1

where gj(x) are the continued fraction that end with the edge between vertices {0, 1} (e.g. In the 2-to-1,
g0(x) = f5(x) and all the others would be not exist). All prior linear term over linear term function are
designated by fj(x)

Because every gj(x) in Σ is a linear term over linear term results in equation 3 having n− 1 singularities
for an n-to-1 graph. When equation 3 is set equal to a constant value, Σ has at most n roots. This result
follows by clearing the denominator of Σ(x) which generates a monic polynomial of degree n.
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Figure 11. Diagram of Constructing 3-to-1 Graph

Definition 5.1 (Sector). A sector is a section of the graph Σ that lies between 2 singularities with no other
singularities in between or to the left or right of all singularities. In essence, sections of the graph of Σ where
it is a continuous function.

In equation 3, there are n− 1 gj(x) equations. Because each gj(x) is a linear term over linear term, there
are n− 1 singularities (different), resulting in n sectors of the graph of Σ(x).

Lemma 5.1. All singularities in the fk(x) and gl(x) are created from another fj(x)’s root where (j < k)
and fj(x) is a term in the computational path of fk(x) or gl(x).
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Figure 12. Example of Sectors

Proof. Let fj(x) denote a prior term used in the creation of fk(x). If fk(x) has a singularity, then either

fk(x) looks like C
fj

where C is a constant or there exists an fj+1(x) that looks like the above with j + 1 < k

and fj+1(x) is in fk(x)’s computational path. The singularity of fk(x) is created when fj(x) = 0. Hence,
the singularity of fk(x) is generated from the root of a prior term in its computational path. �

Lemma 5.2 (Key). Every singularity for fk(x) and gl(x) defines a half space where on one side a fj(x)
(j < k) is negative and on the other side positive.

Proof. From Lemma 5.1, every singularity comes from the root of fj(x), which is in the form C − fj−1(x).

The quadrilateral rule dictates that fj(x)′s alternate between Cfj−1(x) or C
fj−1(x)

and C − fj−1(x). Hence,

fj−1(x) = Cj−1fj−2(x) or
Cj−1
fj−2(x)

fj(x) = Cj − fj−1(x)

If the singularity comes from the root of fj(x) then Cj = fj−1(y) where y is the singularity. Replacing this
yields,

fj(x) = fj−1(y)− fj−1(x).

Since fj−1(x) has constant sign derivative,

fj(x) > 0

{
if fj−1(x) is a decreasing function and x > y

if fj−1(x) is an increasing function and x < y

Hence, fj(x) will only be greater than 0 for either x > y or x < y, which will define the half-space. �

The singularities determine half spaces where on one side the fj(x) > 0 and on the other fj(x) < 0.
Pointing arrows along the singularity y indicate the half plane in which fj(x) > 0.

Lemma 5.3. Positivity of all fj(x)’s occurs in at most one sector of the graph of Σ.
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Proof. Applying Lemma 5.2 to one gk(x), we know that at least one fj(x) > 0 for either x < yk or x > yk
where yk is the singularity of gk(x). Repeat the process for another k. When Lemma 5.2 is applied to all
k, we get a series of inequalities that if non-empty define a region in which some of the fj(x) are positive.
Since the inequalities depend on the singularities of gk(x), the region of positivity for the fj(x)’s will occur
within a sector of the graph. If the inequalities formed an empty interval, then at least one fj(x) will be
negative for any root of Σ. �

This is not to say that by ensuring all the roots of Σ lie within one sector guarantees n-to-1, but it is
necessary condition.

If we want a graph of conductivities to be n-to-1 with n different computational paths to {0, 1}, then all
n roots must lie within one sector of the graph of Σ. If a root lies outside of a feasible sector, it violates the
positivity of at least one fj(x) even if the root is positive.

Proposition 5.2. Positivity of all fj(x)’s occurs only in sectors that define intervals with at least one strictly
positive x value.

Proof. Assume we have a strictly negative sector and all fj(x) are positive. For all x in that sector, x < 0.
However, f0(x) = x, which can not be greater than 0 for any x in this sector. Thus, we have reached a
contradiction. �

This statement leads to the idea that there must be at least one singularity of Σ that defines the boundary
of the feasible sector, which is greater than 0. Moreover, the roots of Σ must be positive. For the rest of this
paper, we will chose the singularities of Σ to all be greater than 0 to ensure that the real roots of Σ that lie
in the feasible sector will always be positive.

As noted before, Σ = x + g0(x) + g1(x) + · · · + gn−2(x) has exactly n roots. Hence when Σ = C, where
C is a constant, then the horizontal line at C can cross at most n times of the graph of Σ. Combined with
the dominating sign of the derivative (which are constant) near the singularities of each gk(x), limits the
construction of the graphs of Σ.

5.2. Drawing the R-MultiGraph. If we know the graph of Σ, we can draw a R-MultiGraph that has the
features of the Σ graph around the singularity points of each gk. The features we will utilize are the sign of
the derivative and the arrow direction or the values of x for which the gg(x) > 0. Note that there are only
four possibilities for the direction of the arrow and the sign of the derivative. The sign of the derivative,
(+ for positive and − for negative) is located at the top next to the singularity point. Figure 5.2 shows the
different possibilities.

To construct R-MultiGraphs that generate graphs of Σ that look like Figure 5.2, we discovered some
R-MultiGraphs that follow the Σ conventions.

Definition 5.2 (Arm). An arm is a R-MultiGraph constructed from connecting two 4-stars that contain the
vertices of {0, 1} in the right most quadrilateral. There are 4 distinct types corresponding to the 4 different
possibilities in Figure 5.2. Each of these arms produces the correct derivative sign and half-plane defining
features. The arms will be the building blocks for constructing the R-MultiGraphs. For an n-to-1 graph, there
are n− 1 arms. The last occurance of vertices {0, 1} is in the R-MultiGraph is designated as the head.

We indicate the different arms by Type (I or II) and derivative sign (+ or −) of gk. In addition, it is
necessary to understand the feature that connects all the arms together. We designate the signs of the
derivatives of each edge in the R-MultiGraph with a (+) for positive and a (−) for negative. The most
significant derivative sign is the left most, which will be utilized later. Also note the location of 0 and 1.
The edge between the vertices {0, 1} is the gk and hence the sign of its derivative is a component of the Σ
function.

In Figure 14, the left most derivative sign of the 4 types alternates between positive and negative. Denote
the quadrilateral left most edge as fi. We need a way to string these arms together such that the sign of fi
is correct. We can then hook up the arms to this graph so that they produce the correct derivative sign for
fk1 . In [1], the tool used to generate the correct derivative sign for fi was called a inversion, but we refer to
it as a switch.

Definition 5.3 (Switch). A switch is a R-MultiGraph that enters with a positive (negative) derivative and
leaves with a negative (positive) derivative. Thus, switching the sign of the derivative.
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Figure 13. The Four Possible Half Planes and Derivative Combinations for a Singularity
in the graph of Σ

Figure 15 is a quadrilateral in disguise. The sign of the derivatives is the result of the quadrilateral
rule applied to non-parallel edges to the entry edge. In Figure 3 assume that µ0,2, µ2,3 are known and
µ0,1 = f0,1(x) with a positive derivative, then

f1,3(x) = µ1,3 =
µ2,3f0(x)

µ0,2
.

Because µ2,3, µ0,2 are positive constants, the derivative of f1,3(x)’s derivative is the same as f0,1(x). Applying
the quadrilateral rule like this to the diagonal edges produces the same positivity in derivatives. If we have
multiple stars connected together, we will always go through two vertices that have a multiple edge. To
proceed through the multiple edge as shown in Figure 4

Note that we can match up the fi’s in Figure 14 with the fi in Figure 15 and chose the appropriate
entering sign of the derivative.

Let’s assume the entry edge of the switch is always positive. To produce fi’s that have positive
derivative, we can string together switches. Now if we enter the first switch with a positive derivative, we
will exit with a negative derivative, which starts the next switch with a negative derivative so it ends with
a positive derivative. Thus, we can attach the fi of Type I (+) and Type II (+) at the end of the second
switch. If we continue this, we conclude that

(1) Every odd number of switches, exits with a negative derivative
(2) Every even number of switches, exits with a positive derivative

A switch always has two exit sides. When strung together, only one of the exit edges is used and the other
exit edge can be utilized to attach various arm types so that the derivative of {0, 1} edge is whatsoever
desired. We call multiple switches strung together a Switch Yard. The switch yard forms the body of the
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R-MultiGraph. The number of switches necessary depends entirely on the types of arms needed to produce
the Σ graph.

Figure 11 is almost complete with the exception of the head.

Definition 5.4 (Head). A single quadrilateral graph that contains an edge between the vertices {0, 1} and
connects directly to the entering edge of the switch.

The tools (a head, a switch, and the arms) are the three gadgets that construct n-to-1 graphs. By using
these tools, we guarantee certain conditions that are necessary for the existance of n-to-1 graphs. However,
we haven’t concluded that there are appropriate λ choices that ensure n-to-1 behavior.

5.3. Process for Choosing the λ’s to Create n-to-1.
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Figure 14. Arm Types
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Figure 15. Drawing of a Switch
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