
Rotation Systems and Cellular Imbeddings

Alex Waldrop∗

August 11, 2011

Abstract

This paper is broken up into two seperate parts. The first of which
serves as an introduction to general rotation systems and imbedding graphs
in 2-manifolds. It also discusses the various properties of the distrubution
of the genus of these surfaces as well as some potential avenues for further
research. The second part demonstrates a program written in Matlab that
takes a graph and finds the distribution of the cellular imbeddings. Also
included is the code adapted from a previous paper.

Part I

1 Introduction to Rotation Systems

First we begin with several definitions of rotation systems when dealing with a
finte graph G.

Definition 1.1 A graph G(V,E) is composed both by a vertex set V and and
edge set E such that each edge ∈ E is associated with a pair of verticies (vi, vj)
which denotes the endpoints of each edge and a 0 or 1 telling if the edge is
untwisted and twisted respectfully.

Following from this definition we can see that in some cases vi = vj making
the edge a loop, beginning and ending at the same vertex. Also it is possible
for two distinct edges ei and ej to be associated with the same pair of vertices.
In this case we call these multiple edges. A simple graph is a graph G(V,E)
s.t. there are no loops or multiple edges.

Now for a simple graph we can denote a rotation at a vertex vi ∈ V which
is an ordered list unique up to a cyclic permutation of all the edges associated
with that vertex (i.e. all the edges with an endpoint at vi). For a simple graph
each of these edges has another distinct endpoint different from vi, thus we can
instead use the vertex form of a rotation and make the rotation the ordered list
of the verticies connected to vi through an edge. From this point on we will

∗University of Washington REU 2011

1

use this vertex form of a rotation. Let the degree di of a vertex vi to be the
number of edges connected to the vertex. If all of the edges are of type 0 then
the number of rotations at vi is equal to (di − 1)!.

Definition 1.2 A pure rotation system PG(V,C) of a graph G(V,E) is the
combined ordered lists ci ∈ C as defined above for each vertex vi ∈ V where all
ei ∈ E are untwisted.

By this definition we find that the number of pure rotation systems

|PG| =
∏
vi∈V

(di − 1)!

Definition 1.3 A general rotation system RG(V, C) of a graph G(V,E) is the
combined ordered lists ci ∈ C as defined above for each vertex vi ∈ V ∃ atleast
one ei ∈ E that is twisted.

Since each edge could be either twisted or untwisted

|RG| = 2|V ||PG|

Example 1.4 If we have the complete graph K4 as shown above we can choose
a rotation system such that all of the verticies adjacent are in a clockwise order
in the lists. Then the rotation system will look like:

1 : 204030

2 : 403010

3 : 102040

4 : 301020

If the edge between 3 and 4 was twisted the rotation system would look like:

1 : 204030

2 : 403010

3 : 102041

4 : 311020

2

Figure 1: K4 graph

3

A projection of a rotation system is a drawing of the graph G(V,E) such
that all of the edges connected to each vertex are in a clockwise order based on
the ordered list for each vertex. For example Figure 1 is the projection of the
first rotation system by our construction of this system.

A projection with fixed verticies is unique for each rotation system. We will
use this fact later on when discussing the overlap matrix.

2 Cellular Embedding

In an effort to reproduce the Cut Point Lemma from [1] for non-circular planar
graphs we will now look at circular embeddings of graphs in 2-manifolds.

An imbedding of a graph G in an oriantable surface S is a continuos one-
to-one function ρ : G → from a topological representation of the graph G into
the surface S [4]. (In all imbeddings, the edges of the graph G do not intersect
except at the verticies)

The imbedding is cellular if the interior of each face produced by the imbed-
ding is homeomorphic to the 2-dimensional open disk. From this point on this
will be our definition of imbedding.

There are two types of srfaces, orientable and non-orientable. The orientable
surfaces are the sphere, torus and etc and are defined by their genus, in lay-
man’s terms, the number of holes.The higher genus orientable surfaces can be
constructed by adding a handle to a surface to increase the genus by 1. The
non-orientable surfaces that most people know are the mobius strip, the projec-
tive plane and the Klein bottle. These will be defined in terms of thier crosscap
number similar to the genus of orientable sufaces.

Instead of thinking about these surfaces in 3-space we will now introduce
a tool that will allow us to draw the imbeddings in the plane without edge
crossing. The fundamental polygons are the polygons with paired directed
edges that are pasted together to produce the genus n surface.

If we denote the direction of the edges in terms of a clockwise direction we
can write the fundamental polygon in a succinct form. An orientable closed
surface of genus n has the following standard fundamental polygon:

A1B1A
−1
1 B−11 A2B1A

−1
2 B−12 · · ·AnB1A

−1
n B−1n

The torus is represented by A1B1A
−1
1 B−11 so orientable sufaces can be viewed

as the glueing of tori together. This is analagous to pasting a handle to an
existing surface.

A non-orientable surface of crosscap number n has the following standard
fundamental polygon:

A1A1A2A2 · · ·AnAn

Alternately, the non-orientable surfaces can be given in one of two forms,
as n Klein bottles glued together (this may be called the n-fold Klein bottle,
with non-orientable genus 2n), or as n glued real projective planes (the n-fold

4

crosscap, with non-orientable genus n). The n-fold Klein bottle is given by the
4n-sided polygon

A1B1A
−1
1 B−11 A2B1A

−1
2 B−12 · · ·AnB1A

−1
n Bn

(note the final Bn is missing the superscript 1; this flip, as compared to the ori-
entable case, being the source of the non-orientability). The 2n+1-fold crosscap
is given by the 4n+2-sided polygon

A1B1A
−1
1 B−11 A2B1A

−1
2 B−12 · · ·AnB1A

−1
n B−1n C2

[5]

The 2-Sphere, Projective Plane, Torus, and Klein Bottle.

By combining the two concepts of rotation systems and cellular imbeddings we
introduce a theorem.

Theorem 2.1 Every pure rotation system for a graph G induces (up to a
orientation-preserving equivalence of imbeddings) a unique imbedding of G into
an oriented surface. Conversely, every imbedding of a graph G into an oriented
surface induces a unique pure rotation system for G.

Theorem 2.1 is ascribed to Heffter (1891) and Edmonds(1960).

Theorem 2.2 Every rotation system on a graph G defines (up to equivalence of
imbeddings) a unique locally orienred graph imbedding G→S. Conversely every
locally oriented graph imbedding G→S defines a rotation system for G.

Proof given in [2]
The basic question is that given a rotation system how do we imbed the graph

into the surface Sn. The following algorithm will allow us to imbed graphs into
both orientable and non-orientable surfaces (depending on the rotation system).

Face Tracing Algorithm Assume that the given graph G has no 2-valent
vertices. Choose an intial vertex v0 of G and a first edge e1 incident on v0. Let
v1 be the other endpoint of e1. The second edge e2 in the boundary walk is the
edge after (resp., before) e1 at v1 if e1 is type 0 (resp., type 1). If the edge e1
is a loop, then e2 is the edge after (resp., before) the other occurence of e1 at
v1. In general, if the walk traced so far ends the edge ei at vertex vi, then the
next edge ei+1 is the edge after (resp., before) ei at vi if the walk so far is type

5

0 (resp., type 1). The boundary walk is finished at edge en if the next two edges
in the walk would be e1 and e2 again. To start a different boundary walk, begin
at the second edge of any corner that does not appear in any previously traced
faces. If there are no unused corners, then all faces have been traced. By pasting
the edges together in the created polygons we create a surface in which the graph
is imbedded.

Example 2.3 Using the rotation system from 1.4 we will construct the bound-
ary walks (polygons) that will be pasted together to form the surface.

We begin at vertex 1 and choose to go to vertex 2 next. For now we have
the boundary walk 1 → 2. Then we look at the ordered list for vertex 2 and
determine the next vertex as the one to the left of the previous vertex. Thus the
next vertex is 3. Now our boundary walk is 1→ 2→ 3. Continuing the process
we get the boundary walk 1 → 2 → 3 → 1 → 4 → 3 → 2 → 4 → 1. We notice
that every edge has not been travelled twice (once each way) so we choose an
edge that hasn’t been travelled twice, for example the 2 → 1 edge and continue
the algorith. By doing this we get another boundary walk, 2→ 1→ 3→ 4→ 2.
After this walk all edges have been traversed twice thus the algorithm has finished
and produced two polygons, one octogon and one square as shown below. In this
example, the genus of the surface S produced by the pasting of the polygons is
1, so the surface in which the complete graph K4 for this particular rotation
system is the torus.

Remark: When dealing with rotation systems with twisted edges one must
take care to switch from always going left to going right when crossing a twisted
edge and switching back when crossing another twisted edge. To determine
whether the rotation system produces a non-orientable imbedding, count the
number of twisted edges in each polygon and if there is atleast one with an odd
number of twisted edges then the surface is non-orientable.

To determine the genus of an embedding we introduce the ”Euler charac-
teristic of a cellular imbedding” of a connected graph as the value of the Euler
formula |V | − |E|+ |F | = χ(G→ S).

Theorem 2.4 For each orientable surface Sg (g=0,1,2,. . .) there exists a con-
nected graph G and a cellular imbedding G → Sg whose Euler characteristic
satisfies the equation χ(G→ S) = 2− 2g.

6

Theorem 2.5 For each non-orientable surface Nk (k=0,1,2,. . .) there exists a
connected graph G and a cellular imbedding G→ Nk whose Euler characteristic
satisfies the equation χ(G→ S) = 2− k.

Proof: Proofs of these two theorems are found in [2]

Theorem 2.6 (The Invariance of Euler Characteristic of Orientable
Surfaces)
Let G → Sg be a cellular imbedding, for any g=0,1,2,. . . . Then χ(G → Sg) =
2− 2g.

Proof: Proof by induction: First we must show that this is true for all imbed-
dings into the 2-sphere (g=0). We prove this by induction on the number of
faces in the cellular imbedding.

If G is a tree then the number of faces equals 1 since there are no cycles
and by the Jorder curve theorem the 2-sphere can not be split into more than
1 face homoemorphic to the unit disc. Thus for |FG| = 1, χ(G→ S0) = 2 since
for every tree |VG| − |EG| = 1. Now assume that the characteristic holds for a
graph with |F | = n. Suppose that there is a graph G such that |FG| = n + 1.
Then there is some edge e that lies on the boundary between two distinct faces.
Since they are distinct, the subgraph G’ obtained by removing e is connected.
Then |FG′ | = |FG| − 1 = n. Also |VG′ | = |VG| and |EG′ | = |EG| − 1, then
by induction |VG′ | − |EG′ | + |FG′ | = 2. But the relations above show that
|VG| − |EG|+ |FG| = 2. In conclusion the formula holds for the spher S0.

As an inductive hypothesis, assume that it holds for the surface Sg , and
suppose that a graph G is cellularly imbedded in Sg+1.

First draw a circle along one of the meridians of Sg+1 such that it crosses
the graph G at finitely many points and does not intersect any verticies and
does not meet an edge more than once. Next thicken the circle to an annular
region R. By excising the region R and capping of the two holes with discs we
can obtain Sg. Now construct a cellular imbedding G′ → Sg. The vertex set of
G’ is the union of the vertex set of G and the intersection set of G with the two
boundary circles of R. Suppose the graph G intersects the region R in p places
then |VG′ | = |VG|+ 2p.

The edge set of G’ contains all of the edges of G - p edges (the ones that
intersect with R). Furthermore it contains the edges from the p intersection
vertices to the graph outside of the region R so there are an additional 2p edges
(a set for each side of R). In addition the edges that make up the circles that
cap off the excised portion contribute another 2p edges (p for each circle). Thus
|EG′ | = |EG|+ 3p.

Each face of the imbedding G→ Sg+1 is cellular. It follows from the Jordan
curve theorem that excising the surface doubles the number of faces in between
the region R and the rest of the graph G and that there were p faces in this
region. Thus an additional p faces are created, along with the 2 circular faces
that close of the open holes. Therefore, |FG′ | = |FG|+ p+ 2.

7

Computing:
χ(G→ Sg) = |VG′ | − |EG′ |+ |FG′ |

= (|VG|+ 2p)− (|EG|+ 3p) + (|FG|+ p+ 2)

= |VG| − |EG|+ |FG|+ 2

= χ(G→ Sg+1) + 2

By the induction hypothesis: χ(G′ → Sg) = 2− 2g
Implying that χ(G→ Sg+1) = −2g = 2− 2(g + 1)
Proof done.

Theorem 2.7 The Invariance of Euler Characteristic of Non-Orientable
Surfaces)

Let G → Nk be a cellular imbedding, for any k = 0, 1, 2, Then
χ(G→ Nk) = 2− k.

The proof of this theorem is very similar to proof of the previous proof. The
only difference is instead of excising an annular region, one excises a mobius
strip and does the same computations. For a full proof see Theorem 3.3.4 of [2].

3 Minimum and Maximum Genus

The study of the minimum genus γ(G) of the imbedding of a graph has been
studied extensively for a long period of time, but recently there has been interest
in the maximum genus γM (G) and the range of crosscap numbers γ̄(G).

From the previous section’s results, several facts follow immediately that
allows us to draw some conclusions. First of which is that by Eulers formula for
orientable surfaces |V |−|E|+ |F | = 2−2g that for a given Graph G, the genus g
is maximized by the cellular imbedding (G→ Sg) when |FG| is at its minimum.
Likewise, the genus g is minimized by the cellular imbedding (G → Sg) when
|FG| is at its maximum.

The number |E| − |V |+ 1 is called the cycle rank (or the Betti number
for a 2-manifold) of a graph G, denoted β(G). Conceptually this is the number
of edges in the cotree G - T of G (deleting the edges in tree T). |FG| ≥ 1 so by
Eulers formula γ(G) ≤ β/2.

Definition 3.1 The deficiency ξ(G) of a graph G is the minimum number of
odd components contained in the cotree G - T for each tree T of the graph G.

8

Computation by exhaustion is not an efficient way to calculate ξ(G) as the
number of spanning trees grows exponentially as shown by the calculations using
the Kirchoff matrix-tree theorem.

Theorem 3.1 Maximum Genus of a Graph

γM (G) =
1

2
(β(G)− ξ(G)) (1)

Proof found in [6]

Definition 3.2 The girth of a graph G is the minimum length of a cycle in
the graph.

By our imbedding algorithm the minimum size of the polygon faces is equal
to the girth of the graph and each edge is traced twice during the production
of the polygons. Let |Fn| be the number of faces with n sides. Then 2|E| =∑n

i=1 i ∗ |Fi|. Combining this fact and that i ≥ girth(G) we see that 2|E| ≥
girth(G) ∗ |F | or |F | ≤ 2|E|/girth(G). If equal then |FG| is maximized, thus
γ is mimimized. By pluggin in the inequality for |F | in Euler’s formula we get
the equation:

γ(G) ≥ (girth(G)− 2) ∗ |EG|
2 ∗ girth(G)

− |VG|
2

+ 1 (2)

Similarly with non-orientable embeddings we get the equation:

γ̄(G) ≥ 2− |VG|+ frac(girth(G)− 2) ∗ |EG|girth(G) (3)

Example 3.3 Show that the complete graph K5 is not planar.

This is equivalent in saying that γ(K5) ≥ 1. For K5, |E| = 10 and |V | = 5.
The girth of any complete graph is 3 since every vertex is connected to every
other vertex. Then by equation 2:

γ ≥ (3− 2) ∗ 10

2 ∗ 3
− 5

2
+ 1 =

10

6
− 5

2
+ 1 =

1

6
> 0

Thus K5 can not be planar, which means for all rotation systems of K5 the
genus γ of the imbedding (K5 → Sg) is greater than 0.

Although this gives an idea of the value of the minimum genus of a graph,
it generally does not give very useful input. For many graphs, using equation 2
results in γ(G) ≥ k where k < 0.

Theorem 3.4 (Additivity of Minimum Genus)
Let {B1, B2, · · · , Bk} be the set of 2-connected components of a graph G.

Then

γmin(G) =

k∑
i=1

γmin(Bi)

Proof. [7]

9

Theorem 3.5 (Additivity of Maximum Genus)
Let {B1, B2, · · · , Bk} be the set of 2-edge-connected components of a graph

G. Then

γmax(G) =

k∑
i=1

γmax(Bi)

Proof. [8]

Theorem 3.6 (Kuratowski’s theorem)
A graph is planar if and only if it contains no subgraph homeomorphic to

either K5 or K3,3.
Proof. [9]

Theorem 3.7 .
A graph is planar if and only if it has neither K5 nor K3,3 as a minor.
Proof. [10]

Ideally there would be an analog for forbidden minors for the higher genus
graphs, but even for the torus there are over a thousand forbidden minors. Not
even all of the forbidden minors are known for the higher genera so this avenue
of study has not been fruitful for determing the minimum genus.

4 Genus Distribution

Definition 4.1 Two rotation systems R1(G) and R2(G) are call adjacent sys-
tems if and only if by the deletion of a single edge the new rotation systems
(keeping all other things the same) R∗1(G′) and R∗2(G′) are equivalent.

Remark: Two rotation systems are equivalent if the imbeddings are equivalent
up to an orientation-preserving equivalence of imbedding.

Theorem 4.2 Let (G→ S) be a cellular graph imbedding, and let e be an edge
of the graph G. Let F be the set of faces for (G → S), and let F’ be the set of
faces of the imbedding obtained by edge-deletion surgery at e. There are three
cases:

1. The edge e is between two distinct faces in the imbedding. Then |F ′| =
|F | − 1

2. The face f is pasted to itself along edge e without a twist. Then |F ′| =
|F |+ 1

3. The face f is pasted to itself along edge e with a twist. Then |F ′| = |F |

This theorem implies that the numbers of the faces in imbeddings of adjacent
rotation systems both differ by at most one from the common number of faces
in the imbeddings of G - e. Thus the imbeddings of R1 and R2 must differ by
at most 2. This also implies an absence of gaps in the genus range.

10

In a similar manner there is an absence of gaps in the crosscap range. For
the argument see [2].

From this absence of gaps we can draw the following two conclusions:
∃ rotation system R(G) such that γ(R(G)) = g, for g such that

γmin(G) ≤ g ≤ γM (G)

and
∃ rotation system R(G) such that γ̄(R(G)) = k, for k such that

γ̄min(G) ≤ k ≤ γ̄M (G)

Since we know that for a graph there exists rotation systems that produce
imbeddings for each genus between the minimum genus up to the maximum
genus, we may ask the question of how this are distributed over the genus
(crosscap) range. There are several approaches to this problem. The first of
which is to calculate the genus of all rotation systems of the graph and find the
distribution explicitly. Another tool that was constructed is called the overlap
matrix by B. Mohar [11].

Definition 4.3 Overlap Matrix M
Let T be a spanning tree of a graph G, with edge sets ET and EG, respectively,

and let {e1, e2, ..., ep} be the complete set of cotree edges, where β is the cycle
rank of G. Let R be a general rotation system for G in which all edges in ET

are untwisted. The overlap matrix of R with respect to the spanning tree T is
the βxβ matrix M = [mi,j] over GF(2) such that mi,j = 1 if and only if either
i 6= j and the restriction of the underlying Pure rotation system to T + ei + ej
is nonplanar, or i = j and ei is twisted. If you draw a rotation projection in the
plane for R so that the spanning tree T has no edge-crossings, then two different
edges ei and ej overlap if and only if either they cross each other or one or both
of them cross an edge of T. A twisted edge is defined to overlap itself.

[12]

Theorem 4.4 Let R be a general rotation system for a graph, and let M be the
overlap matrix. Then the rank of M equals twice the genus, if the corresponding
imbedding surface is orientable, and it equals the crosscap number otherwise. It
is independent of the choice of a spanning tree.

Proof in [11].

Example 4.5 We start with the projection of the rotation system of the com-
plete graph K5 and the tree T (shown in bold) and label the edges in the cotree
as shown below.

11

Following by the definition we can find the overlap matrix M(G, R, T).
Notice that the tree T does not cross any edges so the only non-zero entries are
when the edges in the cotree cross. From our projection we see that this only
occurs when i=5 and j=6 or i=6 and j=5. The complete matrix M is:

M =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Rank(M) = 2 and since there are no twisted edges in this graph then the

imbedding must be into an orientable surface. Thus by Theorem 4.4 the genus
of this rotation system is 1 (i.e. R:(G→ S1)).

Remark: All known distributions of graphs are unimodal. A sequence {am}
is unimodal if there exists and integer P such that

am−1 ≤ am ∀m ≤ P ∧ am ≥ am+1 ∀m ≥ P.

or equivalently
a2m ≥ am+1am−1 ∀m

So if the sequence {gm} represents the number of rotation systems that produce
an imbedding in genus m, {gm} is unimodal. This is an open problem as it is
not known to be true in the general case of all graphs.

5 Miscellaneous and Research Ideas

In this section I will be discussing some ideas that I have not been able to fully
flesh out and could be potential avenues in research for anybody working in the
REU or otherwise.

One area of thought was the effect of the Star-K transformation on the
distribution of the genus. Since this technique is used in attempting to solve the
inverse problem, I was looking for a correllation between the two distributions.

12

FACT: There exists a graph G such that a Star-K transformation changes
the minimum (maximum) genus of the cellular embedding. By looking at equa-
tion 1, specifically the cycle rank, one can construct graphs that only change
the deficiency by 1 and the cycle rank by a significant amount (ie more than 2).

One issue is that often the Star-K transformation produces graphs with
multiple edges. If we merge the multiple edges we decrease the maximum genus.
This was slightly dissapointing but I believe there might be more to this.

Another very interesting topic is generalizing the Cut Point Lemma from [1]
to higher genus. Two papers that would be good reference are [13] and [14].
I will not go into detail here on the discussion on medial graphs and circular
planar graphs as they are covered very explicitly in [1]. However, one thing that
is important is the for electrical network graphs there are boundary nodes and
interior nodes. The embeddings that we want to discuss should be such that
all of the boundary nodes can be fit along a 2-cell homeomorphic to a unit disc
with no edges in the interior of the disc. To acheive this using rotation systems,
we add a vertex v to the vertex set of G and add edges e1, e2, . . . , en that have
endpoints from the new vertex to the n boundary nodes. Then all imbeddings
resulting from the rotation systems of G∗ will be circular imbeddings in a 2-
manifold. [14] gives examples of where the cut point lemma fails for annular
graphs, but instead of looking at them in this way, I have considered putting
the boundary verticies on the boundary of the disc and having the fundamental
polygon inverted by a 1/z transformation as shown below. This might provide
further insight and it bears a similar look to the circular planar medial graphs.

The annular graph G(3,2): torus polygon and 1/z transformation version.

This might be the most interesting and also difficult problem to tackle. To
develop a similar lemma, even just for the case of graphs imbedded in the torus,
would be great progess. This would give insight into the recoverablity of non-
planar graphs, which is a very open question.

The last thing that I will discuss is the development of code to calculate the
imbeddings of rotation systems. The second part of this paper will discuss my

13

adaptation and improvement of Matlab code from [15]. Simply, this code takes
a graph (in Adjacency matrix form) and produces all pure rotation systems
and does the face trace algorithm for each one. In this way it produces the
distribution of the graph across its imbeddable genera.

A potential improvement would be to adapt the program to do the same
for non-orientable surfaces. That is, to include the possibility of twisted edges.
This would increase the run time for even simple graphs by a factor of 2|V | but
it would still be an interesting program. The hardest thing to adapt would be
the face trace algorithm to be able to switch from left to right when going over a
twisted edge and how to represent the twisted edges as a number. Also writing
the code in a more formidable language would be an improvement.

Part II

In this part I will discuss the improvements of the code found in [15] and present
an example of the code.

The code that I have adapted can be found in the Appendix. I will not
go into detail in the process of the code since it is covered extensively in [15].
However I will take the opportunity to show an example of the additions that I
have made.

First consider the Triangle in Triangle graph as shown below. To produce
a circular imbedding it requires the extra vertex (denoted by the star) and the
extra edges from the star to the boundary verticies.

I want to produce an imbedding that preserves the order of the boundary
verticies in a circular order around the new vertex. This is equivalent to the
rotation around the new vertex to be [1 2 3 4 5 6]. [15] discusses this problem
but does not provide the code to actually accomplish this. I have rewritten the
program to calculate all rotation systems from the array of all rotations for each

14

vertex (as a matrix). The function crunch.m produces the array of rotations
for each vertex, but I have added a prompt for the user to change the rotations
at any number of verticies. Not only does this only produce imbeddings that
we desire, it reduces the number of rotation matricies that are computed. The
number of pure rotation systems for the Triangle in Triangle graph without any
restrictions is equal to 1,658,880 and takes about 12 minutes to compute all of
the imbeddings. If we restrict the rotations as described above we reduce the
number of systems to 13,824.

Example 5.1 Taking the above graph in a circular order as described, we will
run it through the program and find the imbedding with the minimum genus and
produce the polygons that would be pasted together.

The adjacency matrix for the triangle in triangle graph is:

K =



0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 1 1
1 1 0 1 1 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0


Now we run the genus2.m file.

genus2(K,’TTcirc’)

Do you want to edit? Y/N

Enter Vector and Array {[10], {[1 2 3 4 5 6]}}

Total Distinct Rotation Systems:

13824

Maximum Genus:

4

Minimum Genus:

2

Possible Ways to Embed in That Genus:

249

This produces a table where the first column is the rotation matrix number,
the second column is the number of rotation matricies that that have the same

15

polygon distribution. The rest are the number of edges in the polygon faces,
where zero implies there isnt any more faces.

facetable=

1 1794 30 6 0 0 0 0
2 954 28 8 0 0 0 0
3 192 12 10 8 6 0 0
4 1095 24 12 0 0 0 0
5 795 22 14 0 0 0 0
7 828 26 10 0 0 0 0
8 801 20 16 0 0 0 0
17 366 22 6 4 4 0 0
18 348 20 8 4 4 0 0
19 240 18 8 6 4 0 0
20 2418 32 4 0 0 0 0
21 132 14 14 4 4 0 0
31 363 18 18 0 0 0 0
34 18 12 8 8 8 0 0
49 414 24 4 4 4 0 0
50 15 8 8 8 4 4 4
201 288 16 10 6 4 0 0
203 303 20 6 6 4 0 0
205 204 12 10 10 4 0 0
209 300 14 12 6 4 0 0
210 183 12 12 8 4 0 0
221 348 16 12 4 4 0 0
250 402 18 10 4 4 0 0
385 204 16 8 6 6 0 0
386 129 14 8 8 6 0 0
800 111 14 10 6 6 0 0
818 57 16 8 8 4 0 0
820 108 14 10 8 4 0 0
961 81 18 6 6 6 0 0
1539 18 10 6 6 6 4 4
1547 9 12 6 6 4 4 4
1747 6 8 8 6 6 4 4
2116 90 12 12 6 6 0 0
2695 39 14 6 4 4 4 4
2696 60 10 8 6 4 4 4
2703 27 16 4 4 4 4 4
2719 15 10 10 4 4 4 4
2903 54 12 8 4 4 4 4
3683 9 10 10 10 6 0 0
11386 6 8 6 6 6 6 4

>> load TTcirc

>> readrot11386=read_rot(11386, 10, rotmatrix)

16

readrot11386 =

7 9 10 0 0 0

7 10 8 0 0 0

8 10 9 0 0 0

7 9 10 0 0 0

7 8 10 0 0 0

8 9 10 0 0 0

1 2 4 5 0 0

2 6 5 3 0 0

1 4 3 6 0 0

1 2 3 4 5 6

>> makefaces(readrot11386)

ans =

1 7 2 10 3 9 6 10

1 9 4 10 5 7 0 0

1 10 2 8 6 9 0 0

2 7 4 9 3 8 0 0

3 10 4 7 5 8 0 0

5 10 6 8 0 0 0 0

>> time

time =

30.2286

Readrot.m produces the rotation matrix. For this example I choose the one that
has the minimum genus of 2 (since it has the maximum number of faces).

The makefaces.m produces the polygons with each row being a polygon and
the entries are the vertices.

We see that this only takes 30 seconds to compute the faces for all the rotation
matricies. This is a significant decrease in run time in comparison, but we did
not get an imbedding that is in the torus.

Below are the 6 polygons produced by this rotation matrix.

17

Improving this code to include twisted edges would be a significant acheive-
ment but might require an overhaul of all of the code. However this is a very
nice way to look at the genus distribution and even the polygonal distribution
which is an even harder problem.

The Matlab files in the Appendix should be available through the UW Math
REU webpage.

References

[1] E. B. Curtis and J. A. Morrow, Inverse Problems for Electrical Networks,
Series on Applied Mathematics Vol. 13, World Scienctific Publishing (2000).

[2] J. L. Gross and T. W. Tucker, Topological Graph Theory, New York Dover
(2001).

[3] A. T. White, Graphs, Groups and Surfaces, North-Holland Math. Studies
Volume 8 (1972)

[4] J. L. Gross, Topics in Graph Theory (COMS 6204) Lecture Notes, Spring
2010

[5] Alan F. Beardon, The Geometry of Discrete Groups (1983), Springer-Verlag,
New York

[6] N.H. Xuong , How to determine the maximum genus of a graph. J. Combin.
Theory Ser. B 26 (1979), pp. 216225.

[7] J. Battle, F. Harary, Y. Kodama, J. W. T. Youngs, Additivity of the genus
of a graph, Bull. Amer. Math. Soc. 68 (1962), 565-568

[8] E. Nordhaus, B. Stewart, and A. White, On the maximum genus of a graph,
J. Combin. Theory Ser. B 11 (1971), 258-267

[9] K. Kuratowski, Sur le probleme des courbesgauches en topologie, Fund.
Math. 15 (1930), 271-283

[10] K. Wagner, Uber eine Eigenschaft der ebenen Komplexe, Math. Ann. 114
(1937), 570-590

[11] B. Mohar, An obstruction to embedding graphs in surfaces, Discrete Math.
78 (1989) 135-142

[12] J. Chen et al, Overlap matrices and total imbedding distributions, Discrete
Math. 128 (1994) 73-94

[13] N. Reichert, ”Generalized Circular Medial Graphs”, UW Math REU 2004

[14] Z. Geballe, ”How Extra Connections Ruin the Cut Point Lemma”, UW
Math REU 2006

[15] O. Biesel and J. Eaton, ”Notes on Multiple Embeddings”, UW Math REU
2005

18

6 Appendix

A1 genus2.m

function [facetable, rotmatrix] = genus2(K, filename)

% GENUS2(K) Calculates the minimal genus of a graph with adjacency matrix

%

% K is a symmetric adjaceny matrix with K(i,j) = 1 if there is an edge

% between nodes i and j and K(i,j) = 0 otherwise. If K is not a valid

% adjacency matrix, CRUNCH(rot) will throw an error from faulty

% calculation.

%

% GENUS2(K) outputs the minimum genus of an embedding of a graph with

% adjacency matrix K possible embedding, as well as the total number of

% possible embeddings and the total number of possible embeddings in the

% minimal genus.

% Sets a timer to see how long the it takes to run the program

tic;

maxvalence = 0;

vert = size(K,1);

horiz = size(K,2);

edges = 0;

% Calculates the largest degree of any node.

for i=1:vert

counter = 0;

for j=1: horiz

if K(i,j) ~= 0

counter = counter + 1;

end

end

if counter > maxvalence

maxvalence = counter;

end

end

% Calculates the number of edges in K

for i = 1:vert

for j = 1: horiz

if K(i,j) ~= 0

edges = edges + 1;

end

end

end

edges = edges/2;

19

% Constructs a rotation system L from K.

%Basically puts verticies in numerical order and zeroes if valence less

%then maxvalence.

L = zeros(vert, maxvalence);

for i = 1:vert

counter = 1;

for j = 1:horiz

if K(i,j) ~= 0

L(i, counter) = j;

counter = counter + 1;

end

end

end

% Calls allrots to construct an array of all distinct rotation systems of K.

Y=allrots(L);

%Creates a matrix all rotation systems of K as row entries

rotmatrix=zeros(size(Y,2), size(Y{1,1},1)*size(Y{1,1},2));

for i=1:size(Y,2);

%Uses tocol to convert matrix to column

rotmatrix(i,:)=tocol(Y{1,i})’;

end

% Calls GENUS_FACE to find the genus of each rotation system and records the

% minimal genus and the number of embeddings in that genus.

distinct_rotations = size(rotmatrix,1);

mingenus = genus_face(L);

totalmin = 0;

maxfaces = (edges-vert+2);

allfaces = zeros(0, maxfaces);

face_occur = zeros(0,1);

face_index = zeros(0,1);

for i = 1:distinct_rotations

genface = genus_face(read_rot(i, vert, rotmatrix));

genus = genface(1);

face = genface(2:end);

if genus == mingenus

totalmin = totalmin + 1;

end

if genus < mingenus

mingenus = genus;

totalmin = 1;

end

newface = true;

for j = 1:size(allfaces,1)

20

if face == allfaces(j, 1:size(face,2))

newface = false;

face_occur(j, 1) = face_occur(j, 1) + 1;

break;

end

end

if newface == true

allfaces = [allfaces; zeros(1, maxfaces)];

allfaces(end, 1:size(face, 2)) = face;

face_occur = [face_occur; 1];

face_index = [face_index; i];

end

end

% Prints some useful information.

disp(’Total Distinct Rotation Systems:’)

disp(distinct_rotations);

disp(’Minimum Genus:’)

disp(mingenus);

disp(’Possible Ways to Embed in That Genus:’)

disp(totalmin);

% Constructs an array ?facetable? that encodes in the first column a row

% index corresponding to a rotation system, the second column is the number

% of times the given face system appears, and each remaining non-zero entry

% corresponds to the degree of one face in the embedding.

facetable = [face_index face_occur allfaces(:, 1:end - 2*mingenus)];

% Ends the time counter

time = toc;

% Saves the specified variables to the file specified.

save(filename, ’K’, ’facetable’, ’rotmatrix’, ’time’);

A2 genusface.m

function g = genus_face(rotsyst)

% Returns the genus and degree of the faces of the graph given rotsyst.

faces = 0;

vertices = size(rotsyst,1);

maxvalence = size(rotsyst,2);

edges = 0;

% Counts the number of edges in the graph.

for(i = 1: vertices)

for(j = 1: maxvalence)

if rotsyst(i,j) ~= 0

edges = edges + 1;

end

21

end

end

edges = edges/2;

% Constructs a matrix the same size as the rotation system to track steps.

C = zeros(vertices,maxvalence);

% ?facelist? is a vector that stores the degree of each face as the algorithm

% uses rotation systems to trace them.

facelist = [];

% Uses algorithm described in Beisel and Eaton "Notes on Multiple

% Emebeddings" to trace each face created by the embedding.

for(i = 1: vertices)

for(j = 1: maxvalence)

if rotsyst(i, j) ~=0 && C(i, j) == 0

prev = 0;

faces = faces + 1;

startvertex = i;

C(i, j) = rotsyst(i, j);

t = j - 1;

if t == 0

t = maxvalence;

end

while rotsyst(i, t) == 0

t = t - 1;

end

prev = rotsyst(i, t);

currentvertex = i;

loopvertex = rotsyst(i,j);

edgecounter = 1;

while ~(loopvertex == startvertex && prev == currentvertex)

edgecounter = edgecounter + 1;

counter = 1;

while rotsyst(loopvertex,counter) ~= currentvertex

counter = counter + 1;

end

currentvertex = loopvertex;

counter = mod(counter, maxvalence) + 1;

while rotsyst(currentvertex, counter) == 0

counter = mod(counter, maxvalence) + 1;

end

C(currentvertex, counter) = rotsyst(currentvertex, counter);

loopvertex = rotsyst(currentvertex, counter);

end

facelist = [facelist, edgecounter];

22

end

end

end

% Sorts the facelist in descending order for comparison.

facelist = -sort(-facelist);

% Returns a vector giving the minimum genus as the first entry and the

% facelist as the rest of the vector.

g = [(2 - vertices + edges - faces)/2, facelist];

A3 readrot.m

function G = read_rot(i, num_vert, allperms)

% READ_ROT(i, allperms) converts a row of the allperms array into a

% rotation matrix.

max_degree = size(allperms, 2)/num_vert;

for j = 1:num_vert;

G(j,1:max_degree) = allperms(i, (max_degree*(j-1)+1):max_degree*j);

end

A4 makefaces

function facetrace = makefaces(rotsyst)

% Traces the vertice of each face of embedding given by ?rotsyst?.

%

% Almost identical to GENUS_FACE (refer to that for comments). Instead of

% counting mingenus and face degrees, each row of ?faces? tracks each

% vertex in one face of the embedding given by ?rotsyst?.

facetrace=[];

faces = 0;

vertices = size(rotsyst,1);

maxvalence = size(rotsyst,2);

edges = 0;

for i = 1:vertices

for j = 1:maxvalence

if rotsyst(i,j) ~= 0

edges = edges + 1;

end

end

end

edges = edges/2;

C = zeros(vertices,maxvalence);

row = 0;

column = 1;

for i = 1:vertices

for j = 1: maxvalence

if rotsyst(i, j) ~=0 && C(i, j) == 0

23

prev = 0;

faces = faces + 1;

startvertex = i;

C(i, j) = rotsyst(i, j);

t = j - 1;

if t == 0

t = maxvalence;

end

while rotsyst(i, t) == 0

t = t - 1;

end

prev = rotsyst(i, t);

currentvertex = i;

column = 1;

row = row + 1;

facetrace(row, column) = currentvertex;

loopvertex = rotsyst(i,j);

while ~(loopvertex == startvertex && prev == currentvertex)

counter = 1;

while rotsyst(loopvertex,counter) ~= currentvertex

counter = counter + 1;

end

currentvertex = loopvertex;

column = column + 1;

facetrace(row, column) = currentvertex;

counter = mod(counter, maxvalence) + 1;

while rotsyst(currentvertex, counter) == 0

counter = mod(counter, maxvalence) + 1;

end

C(currentvertex, counter) = rotsyst(currentvertex, counter);

loopvertex = rotsyst(currentvertex, counter);

end

end

end

end

A5 allrots.m

function Y = allrots(rotsys)

%Calls crunch to create all cyclic permutations of the rotations

%at each vertex.

A=crunch(rotsys);

%Creates cell array of all combinations of these rotations.

Y=cell(1,numrotsys(A));

for i=1:size(Y,2)

b=1;

for j=1:size(rotsys,1)

24

b=b*size(A{1,j},1);

h=size(A{1,j},1);

Y{1,i}(j,:)=A{1,j}(mod(ceil((2*i-1)/b),h)+1,:);

end

end

A6 numrotsys.m

function G = numrotsys(carray)

G=1;

for i=1:size(carray,2);

G=G*size(carray{1,i},1);

end

A7 crunch.m

function [C, varargout] = crunch(rotsys)

%Creates array 1 by number of verticies

C = cell(1,nargout);

%Populates array with matrix where each row is a cyclic permutation

%of the rotation about that vertex

%Calls cyclic perms to do this

for i=1:size(rotsys,1);

f = cyclicperms(rotsys(i, :));

C{1,i} = f;

end

%This prompt allows the user to determine certain rotations

%The vector is the vertices and the array is the matrix of rotation

reply1=input(’Do you want to edit? Y/N’, ’s’);

if isempty(reply1);

reply1=’Y’;

reply2=input(’Enter Vector and Array’);

a=reply2{1,1};

b=reply2{1,2};

for i=1:size(a,2);

C(1,a(1,i))=b(1,i);

end

end

A8 cyclicperms.m

function G = cyclicperms(row)

% Calculates all cyclical permuations of non-zero entries in row vector.

%

% CYCLICPERMS(row) reads a row vector of distinct non-zero positive

% integers followed by any number of zeroes and returns a matrix of all

% cyclic permuations of the non-zero integers (leaves zeroes at right of

% matrix).

25

% Creates the subset of the row vector to be permuted

if min(row) ~= 0

permutables = row(2:end);

else

permutables = row(2:min(find(row==0))-1);

end

num_permed = size(permutables,2);

% This reverses the order so the ?perms? function gives a nice looking

% output.

permutables = permutables(num_permed:-1:1);

% Creates a matrix of all cyclic permutations of the argument vector.

G(:,2:num_permed+1) = perms(permutables);

G(:,1)=row(1);

G(:,num_permed+2:size(row,2))=0;

A9 tocol.m

function X = tocol(X)

% TOCOL Converts a vector or a matrix into a column vector.

% If input is already a column vector, it is returned with no change.

% If input is a row vector, it is converted into a column vector and

% returned.

% If input is a matrix, each row is converted into a column, and all

% resulting columns are placed in series into a single column which is

% returned.

% Input:

% X - input vector or matrix

% Output:

% X - column vector

% check if input is a vector

[m, n] = size(X);

if m*n==m

return % input is already a column vector with n rows

elseif m*n==n

X = X’; % input is converted from row vector to column vector

elseif (m*n>n) || (m*n>m)

X = X’;

X = X(:); % input is converted from matrix to column vector by row

else

X = []; % input is unknown and an empty output is returned

end

end

26

