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Abstract. Much work has been done in the classification and enumeration

of standard permutations avoiding various patterns. We wish to find similar
results in pattern avoidance among affine permutations. A few conjectures in

this area are explained, and some progress toward their proofs is given.
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1. Introduction

We begin by defining and describing affine permutations. For a fixed integer
n ≥ 2, let S̃n be the group of all bijections ω : Z→ Z such that for all i ∈ Z,

(1) ω(i+ n) = ω(i) + n

and

(2)

n∑
j=1

ω(j) =

(
n+ 1

2

)
with composition as the group operation. The elements of S̃n are called affine
permutations.

The window notation of an affine permutation ω is the expression [a1, a2, . . . , an],
where ai = ω(i). By (1), a given window notation uniquely determines a corre-
sponding affine permutation if and only if it satisfies (2) and the set of remainders
ri ≡ ai (mod n) equals the set 1, 2, . . . , n. This final requirement ensures that ω is
a bijection onto the integers.

One set of generators of S̃n is {s1, . . . , sn}, defined as follows:
For i = 1, . . . , n-1, let

si = [1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n].
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In addition, define

sn = [0, 2, 3, . . . , n− 1, n+ 1].

Given a standard permutation p ∈ Sm for some integer m ≥ 2, an affine per-
mutation ω is said to contain the “pattern” p = [p1, . . . , pm] if there exists some
subsequence ω(i1), ω(i2), . . . , ω(im) of ω with the same relative order as p. If no such
subsequence exists, ω is said to avoid p. Note that the indices i1 through im need
not be in {1, 2, . . . , n}, which makes permutation avoidance for affine permutations
more difficult than that of regular permutations.

Finally, the graph of an affine permutation ω is the collection of points

{(i, ω(i)) : i ∈ Z}.

Based on (1), each group of n points must be to the lower left of the next n points
for any affine permutation.

Example: [3, 6, 1, 0] 7, 10, 5, 4 is a valid permutation. This permutation
avoids 3412, but it contains 3421 (use the entries 6, 7, 5, 4, for instance).

Our main goal is to enumerate as many classes of affine permutations avoiding
certain patterns as possible. We begin by presenting relevant previous work done
in this area, as well as results conjectured. Next, some useful tools for grouping
affine permutations by similar pattern avoidance are discussed. Further progress
toward proving the conjectures is presented in the final section.

2. Previous Work

Here we present previous results. The following theorem is critical to the theory
of pattern avoidance for affine permutations.

Theorem 2.1. Let p ∈ Sm. For any n ≥ 2 there exist only finitely many ω ∈ Sn
that avoid p if and only if p avoids the pattern 321.

This result was stated and proved in [1].

For any p ∈ Sm, we define S̃n(p) to be the number of affine permutations in S̃n
that avoid p. By Theorem 2.1, this value is infinite if and only if p contains the
pattern 321.

Thus for any p avoiding 321, we define the generating function

S̃p(t) =

∞∑
n=2

S̃n(p)tn.

We will organize these generating functions into Wilf classes.

Definition 2.2. Two permutations p, q ∈ Sm are Wilf-equivalent if both p and q
avoid 321 and S̃p(t) = S̃q(t), or if both p and q contain 321.

For a given m, all permutations in Sm can be organized into equivalence classes
under the relation of Wilf-equivalence for affine permutations. These classes will
be called Wilf classes.

Table 1 shows the known Wilf classes and the corresponding generating functions
for S3.

Similar classes have been nearly completed for permutations in S4. See Table 2.
The following conjectures (based on calculations with Sage) have been marked on
the table in bold:
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Conjecture 2.3.

(3) S̃4123(t) = S̃3412(t) =

( ∞∑
n=2

1

3

n∑
k=0

(
n

k

)2(
2k

k

))
tn

Note that both equalities above are conjectured.

Conjecture 2.4.

(4) S̃3142(t) =

( ∞∑
n=2

n−1∑
k=0

n− k
n

(
n− 1 + k

k

)
2k

)
tn

3. Additional Tools

3.1. Involutions of S̃n. We begin this section by presenting two involutions in S̃n
which preserve pattern avoidance in some sense. Note that because of the nature
of affine permutations, a few involutions that apply to regular permutations are no

Table 1. Affine Wilf Classes in S3

Wilf Class Generating Function

123 0

132, 213

∞∑
n=2

tn

231, 312

∞∑
n=2

(
2n− 1

n

)
tn

Table 2. Affine Wilf Classes in S4

Wilf Class Generating Function

1234 0

1243, 1324, 2134, 2143

∞∑
n=2

tn

1342, 1423, 2314, 3124

∞∑
n=2

(
2n− 1

n

)
tn

3142, 2413

∞∑
n=2

(
n−1∑
k=0

(n− k)

n

(
n− 1 + k

k

)
2k

)
tn

3412, 4123, 2341

∞∑
n=2

(
1

3

n∑
k=0

(
n

k

)2(
2k

k

))
tn
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longer valid. First, we consider the map from an affine permutation ω to its inverse,
which is equivalent to the reflection of the graph of ω about the line y = x. The
following lemma was proved in [1].

Lemma 3.1. For ω ∈ S̃n and p ∈ Sm, ω avoids p if and only if ω−1 avoids p−1.

Proof. Suppose ω(i1), ω(i2), . . . , ω(im) is an instance of p = p(1), . . . , p(m). Fill in
later. �

We also define the reverse complement map, rc : S̃n → S̃n, by

(rc(ω))i = n+ 1− ω(n+ 1− i).

This map essentially takes the graph of ω and rotates it 180 degrees about the
origin. The next result is similar.

Lemma 3.2. For ω ∈ S̃n and p ∈ Sm, ω avoids p if and only if rc(ω) avoids rc(p).

Proof. Suppose ω contains p, that is, ω(i1)ω(i2) · · ·ω(ik) has the same relative order
as p1 · · · pk. We prove that rc(ω)(2n+1−ik)rc(ω)(2n+1−ik−1) · · · rc(ω)(2n+1−i1)
has the same relative order as rc(p).

Suppose rc(ω)(2n+1−ia) < rc(ω)(2n+1−ib) for some a, b ∈ {1, 2, . . . , k}. Then
n+1−ω(ia−n) < n+1−ω(ib−n), hence ω(ib−n) = ω(ib)−n < ω(ia)−n = ω(ia−n)
and ω(ib) < ω(ia). Now ω contains the pattern p, so pib < pia . It then follows that
rc(p)(ia) = n+ 1− pia < n+ 1− pib = rc(p)(ib), as desired. �

Example: [4, 1, 7, -2] 8, 5, 11, 2 contains 2341, so its inverse,
[2, 8, -1, 1] 6, 12, 3, 5, and its reverse complement, [7, -2, 4, 1] 11, 2, 8, 5,
both contain 4123 (the inverse and reverse complement of 2341).

These results allow for the classification of many permutations into Wilf classes
fairly trivially. For example, S̃13245(t) = S̃12435(t) by the reverse complement
involution.

3.2. Inversion Tables. An interesting feature of affine permutations are inversion
tables. For ω ∈ S̃n We define Invi(ω) = #{j ∈ N : i < j, ωi > ωj}.

The inversion table for ω ∈ S̃n is defined as

T (ω) = [Inv1(ω), Inv2(ω), . . . , Invn(ω)].

Thus, the inversion table for the affine permutation with window [−3, 8, 0, 6, 4] is
[0, 6, 0, 3, 1].

Some study of inversion table manipulation has been done. Let σ ∈ S̃n have
window [σ1, σ2, . . . , σn] and corresponding inversion table. Consider σ′ ∈ S̃n with
the relation σ′i = σi−1 + 1. Its window is therefore
[σ0 + 1, σ1 + 1, σ2 + 1, . . . , σn−1 + 1] = [σn − n + 1, σ1 + 1, σ2 + 1, . . . , σn−1 + 1].
The relative order of the terms of σ is preserved in σ′, and Invi(σ

′) = Invi−1(σ).
Effectively, the inversion table of σ′ is the result of “shifting” the inversion table of
σ to the right. Since the relative order is preserved, so is any pattern containment
(or avoidance).

If we let inv(ω) =

n∑
1

Invi(ω) for ω ∈ S̃n, we have the remarkable property that

`(ω) = inv(ω).
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We may combine this result with the proof (by Björner and Brenti, in [2]) that
there is a bijection between affine permutations and inversion tables with at least
one element 0. Because the length of an affine permutation is just the sum over
the elements of the inversion table, we may easily generate all affine permutations
of a given length using the algorithm – an easier feat than simplifying generating
expressions!

The crux of the algorithm depends on manipulations Ei and Di. Ei corresponds
to adding a minimum positive amount to the i-th element of the permutation such
that it is not congruent mod n to any elements of the window to its right, and then
subtracting the same amount from the necessarily unique element to its left with
the same mod n. We also define Di :

Di([b1, . . . , bn]) =

{
[b1, . . . , bi−1, bi+1, bi − 1, bi+2, . . . , bn], if bi > bi+1,
[(b1, . . . , bi−1, bi+1 + 1, bi, bi+2, . . . , bn] , if bi ≤ bi+1.

It can be shown that an unsorted tuple may be sorted using a sequence of Di

moves (one way is to use an Insertion Sort-like algorithm).
Given a sorted inversion table (0, b2, b3, . . . , bn), we write

C([0, b2, b3, . . . , bn]) = Eb22 E
b3
3 · · ·Ebnn [1, 2, . . . , n].

Björner and Brenti prove that if a sequence Di1 · · ·Dim sorts a given inversion table
T (with at least one element 0) into a tuple [0, b2, b3, . . . , bn], then T is the inversion
table of C(0, b2, b3, . . . , bn)siksik−1

· · · si1 .
This algorithm hints at the information encoded in an inversion table. Our

current methods to find and count pattern-avoiding permutations involve generating
all permutations of a given length using the above algorithm, and then works wit
the recovered permutations. However, it might be possible to skip the middle step
and discern pattern avoidance directly from inversion tables.

Currently, the recovery of the indices of the inversions is being analyzed. If im-
plemented correctly, this has implications for pattern avoidance. For example, if
a permutation σ contains the pattern 3142, with indices i3, < i1, < i4, < i2 corre-
sponding to the respective relative positions of the pattern, then the permutation
must have at least two inversions i1 and i2 with i3, with at least one index i4,
i1 < i4 < i2 and i4 not being an inversion of i3. Because of the periodicity of σ, we
may assume that if σ contains 3142, the i3 ∈ [1, n] and need only check the above
properties for the elements of the window.

4. Progress toward Proof of Conjectures

Lemma 4.1. Given a 3412-avoiding affine permutation ω ∈ S̃n, we must have
ω(i)− ω(j) ≤ 2n for all i ∈ {1, 2, . . . , n} and any positive integer j > i.

Proof. If ω(i)− ω(j) > 2n, ω(i− n)ω(i)ω(j)ω(j + n) forms a 3412 pattern. �

Corollary 4.2. Denoting the maximum entry in the window of a permutation ω
by ωα, it follows that n ≤ ωα ≤ 2n+ α− 2 for all ω that avoid 3412.

Proof. If ωα > 2n + α − 2, the smallest entry of the window to the right of ωα,
denoted ωβ must be less than or equal to α − 1, forcing ωα − ωβ > 2n. Note that
the upper bound is actually attained by the following affine permutation: for i < α,
define ω(i) = ωα − 3n+ (α− i); for i > α, let ω(i) = ωα − n− i. �
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We may find the following alternate form of the summation in Conjecture 2.3
more useful.

Proposition 4.3.

1

3

n∑
k=0

(
n

k

)2(
2k

k

)
=

1

3

∑
p+q+r=n

(
n!

p!q!r!

)2

,

where the second sum is taken over non-negative integers p, q, and r.

Proof. By comparing coefficients of xk in the expansions of the left and right hand
sides of (1 + x)2k = (1 + x)k(1 + x)k, we find the identity

k∑
p=0

(
k

p

)2

=

(
2k

k

)
.

Then ∑
p+q+r=n

(
n!

p!q!r!

)2

=

n∑
k=0

∑
p+q=k

(
n!

p!q!(n− k)!

)2

=

n∑
k=0

∑
p+q=k

(
n

k

)2(
k!

p!q!

)2

=

n∑
k=0

(
n

k

)2 ∑
p+q=k

(
k

p

)2

=

n∑
k=0

(
n

k

)2(
2k

k

)
.

�

Other progress is related to the involutions discussed earlier. First, it is not hard
to see that the reverse complement preserves length.

Lemma 4.4. For any a, b ∈ S̃n, rc(ab) = rc(a)rc(b).

Proof. We verify this with direct computation.

rc(ab)(i) = n+ 1− ab(n+ 1− i).
Working from the right hand side,

rc(a)rc(b)(i) = rc(a)(n+ 1− b(n+ 1− i)) = n+ 1− a(b(n+ 1− i)),
thus the expressions are equal. �

Corollary 4.5. The reverse complement operation preserves length.

Proof. For all generators si, rc(si) = sn−i. Given ω ∈ S̃n, we can find a reduced
expression for ω, say si1 · · · sik , where k is the length of ω. Applying the reverse
complement and Lemma 4.4, rc(ω) = rc(si1 · · · sik) = sn−i1 · · · sn−ik . Thus the
length of rc(ω) is at most the length of ω. Applying this argument again beginning
with rc(ω) shows that the length of ω is at most the length of rc(ω). Thus these
lengths are equal. �

Because 3412 is both its own inverse and its own reverse complement, Lemmas
3.1 and 3.2 imply that ω avoids 3412 if and only if all three of ω−1, rc(ω), and
rc(ω−1) avoid 3412. Note that Corollary 4.2 implies rc(ω)−1 = rc(ω−1). By then
shifting the inversion table of these four permutations, up to 4n distinct affine
permutations which avoid 3412 could be generated based on one affine permutation
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that avoids 3412. Because both taking the inverse and reverse complement of an
affine permutation are involutions, no further information can be gleaned. These
operations could still prove to be useful, however.

5. Conclusion

We have made some progress toward proving the difficult conjectures mentioned.
Hopefully more results will follow.
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