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Abstract. A pseudo diagram of a spatial graph is a spatial graph
projection on the 2-sphere with over/under information at some of
the double points. We introduce the trivializing (resp. knotting)
number of a spatial graph projection by using its pseudo diagrams
as the minimum number of the crossings whose over/under infor-
mation lead the triviality (resp. nontriviality) of the spatial graph.
We determine the set of non-negative integers which can be real-
ized by the trivializing (resp. knotting) numbers of knot and link
projections, and characterize the projections which have a specific
value of the trivializing (resp. knotting) number.

1. Introduction

Throughout this paper we work in the piecewise linear category. Let
G be a finite graph which does not have degree zero or one vertices.
We consider G as a topological space in the usual way. Let f be
an embedding of G into the 3-sphere S3. Then f is called a spatial
embedding of G and the image G = f(G) is called a spatial graph. In
particular, f(G) is called a knot if G is homeomorphic to a circle and
an r-component link if G is homeomorphic to disjoint r circles. In this
paper, we say that two spatial graphs G1 and G2 are said to be ambient
isotopic if there exists an orientation-preserving self-homeomorphism
h on S3 such that h(G1) = G2. A graph G is said to be planar if there
exists an embedding of G into the 2-sphere S2. A spatial graph G is
said to be trivial (or unknotted) if G is ambient isotopic to a graph in
S2 where we consider S2 as a subspace of S3. Thus only planar graphs
have trivial spatial graphs. We consider only planar graphs from now
on. It is known in [11] that a trivial spatial graph of G is unique up to
ambient isotopy in S3.

A continuous map ϕ : G → S2 is called a regular projection, or
simply a projection, of G if the multiple points of ϕ are only finitely
many transversal double points away from the vertices. Then P =
ϕ(G) is also called a projection. A diagram D is a projection P with
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over/under information at the every double point. Then we say that D
is obtained from P and P is a projection of D. A diagram D uniquely
represents a spatial graph up to ambient isotopy. Let G be a spatial
graph represented by D and G ′ a spatial graph ambient isotopic to
G. Then we also say that P is a projection of G ′. A double point
with over/under information and a double point without over/under
information are called a crossing and a pre-crossing, respectively. Thus
a diagram has crossings and has no pre-crossings, and a projection has
pre-crossings and has no crossings.

A projection P is said to be trivial if any diagram obtained from
P represents a trivial spatial graph. On the other hand, a projection
P is said to be knotted [22] if any diagram obtained from P repre-
sents a nontrivial spatial graph. Moreover, the following definitions for
a projection P are known. A projection P is said to be identifiable
[9] if every diagram obtained from P yields a unique labeled spatial
graph, and completely distinguishable [14] if any two different diagrams
obtained from P represent different labeled spatial graphs. Nikkuni
showed in [13, Theorem 1.2] that a projection P is identifiable if and
only if P is trivial.

Let G be a spatial graph and P a projection of G. Then we ask the
following question.

Question 1.1. Can we determine from P whether the original spatial
graph G is trivial or knotted?

If P is neither trivial nor knotted, then the (non)triviality of G can-
not be determined from P . For example, let P be a projection of a
circle with 3 pre-crossings as illustrated in Fig. 1.1. Then we have 23

diagrams obtained from P . Two diagrams represent a nontrivial knot
and six diagrams represent a trivial knot.

Figure 1.1. Projection and diagrams obtained from it.

It is well known in knot theory that for any projection P of disjoint
circles there exists a diagram D obtained from P such that D represents
a trivial link. Namely P never admits a knotted projection. However it
is known in [22] that there exists a knotted projection of a planar graph.
For example, let G be a spatial graph of the octahedron graph and P
a projection of G as illustrated in Fig. 1.2. Then we can see that any
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diagram obtained from P contains a diagram of a Hopf link. Namely
P is knotted. However there exists a projection of G which is neither
trivial nor knotted. In general, we have the following proposition.

octahedron graph knotted projectionG

Figure 1.2. Octahedron graph and a knotted projec-
tion of it.

Proposition 1.2. For any spatial graph G of a graph G, there exists
a projection P of G such that P is neither trivial nor knotted.

We give a proof of Proposition 1.2 in section 2.
Then it is natural to ask the following question.

Question 1.3. Let G be a spatial graph and P a projection of G.
Which pre-crossings of P and the over/under information lead the
(non)triviality of G?

Now we introduce the notion of a pseudo diagram as a generalization
of a projection and a diagram. Let P be a projection of a graph G. A
pseudo diagram Q of G is a projection P with over/under information at
some of the pre-crossings. Then we say that Q is obtained from P and
P is a projection of Q. Thus a pseudo diagram Q has crossings and pre-
crossings. Here we allow the possibility that a pseudo diagram has no
crossings or has no pre-crossings, that is, a pseudo diagram is possibly
a projection or a diagram. We denote the number of crossings and pre-
crossings of Q by c(Q) and p(Q), respectively. For a pseudo diagram
Q, by giving over/under information to some of the pre-crossings, we
can get another (possibly same) pseudo diagram Q′. Then we say that
Q′ is obtained from Q.

We say that a pseudo diagram Q is trivial if for any diagram obtained
from Q represents a trivial spatial graph. On the other hand, we say
that Q is knotted if any diagram obtained from Q represents a nontrivial
spatial graph. For example, in Fig. 1.3, a pseudo diagram (a) is trivial,
(b) is knotted, and (c) is neither trivial nor knotted.
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(a) (b) (c)

Figure 1.3. Pseudo diagrams.

Let P be a projection of a graph G. Then we define the trivializing
number (resp. knotting number) of P by the minimum of c(Q), where
Q varies over all trivial (resp. knotted) pseudo diagrams obtained from
P , and denote it by tr(P ) (resp. kn(P )). Note that there does not exist
a knotted (resp. trivial) pseudo diagram obtained from P if and only
if tr(P ) = 0 (resp. kn(P ) = 0), namely P is trivial (resp. knotted). In
this case we define that kn(P ) = ∞ (resp. tr(P ) = ∞). Note that for
any graph G there exists a projection P of G with kn(P ) = ∞. For
example, P is an image of a planar embedding of G. We also note that
for a certain graph G there exists a projection P of G with tr(P ) = ∞
as in Fig. 1.2.

We remark here that the observation of DNA knots was an oppor-
tunity of this research, namely we cannot determine over/under infor-
mation at some of the crossings in some photos of DNA knots. DNA
knots barely become visual objects by examining the protein-coated
one by electromicroscope. However there are still cases in which it is
hard to confirm the over/under information of some of the crossings.
If we can know the (non-)triviality of a knot without checking every
over/under information of crossings, then it may give a reasonable way
to detect the (non-)triviality of a DNA knot. In addition, it is known
that there exists an enzyme, called topoisomerase, which plays a role
of crossing change. The research of pseudo diagrams may provide an
effective method to change a given DNA knot to a trivial (nontrivial)
one. See [7, 4, 12] on DNA knots.

We start from two questions on the trivializing number and the knot-
ting number of projections of a circle.

Question 1.4. For any non-negative integer n, does there exist a pro-
jection P of a circle with tr(P ) = n?

Question 1.5. For any non-negative integer n, does there exist a pro-
jection P of a circle with kn(P ) = n?
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We have the following theorem and propositions as answers to Ques-
tions 1.4 and 1.5.

Theorem 1.6. For any projection P of a circle, the trivializing number
of P is even.

Proposition 1.7. For any non-negative even number n, there exists a
projection P of a circle with tr(P ) = n.

Proposition 1.8. There does not exist a projection of a circle whose
knotting number is less than three. For any positive integer n ≥ 3,
there exists a projection P of a circle with kn(P ) = n.

We give proofs of Theorem 1.6 and Proposition 1.7 in section 3 and
a proof of Proposition 1.8 in section 4. Moreover we see from the
following proposition that there are no relations between trivializing
number and knotting number in general.

Proposition 1.9. For any non-negative even number n and any posi-
tive integer l ≥ 3, there exists a projection P of a circle with tr(P ) = n
and kn(P ) = l.

We give a proof of Proposition 1.9 in section 5. In addition, we have
the following theorems.

Theorem 1.10. Let P be a projection of disjoint circles. Then tr(P ) =
2 if and only if P is obtained from one of the projections as illustrated
in Fig. 1.4 (a) and (b) where m is a positive integer by possibly adding
trivial circles and by a series of replacing a sub-arc of P as illustrated
in Fig. 1.4 (c) where a trivial circle means an embedding of a circle
into S2 which does not intersect any other component of the projection.

m pre-crossings

}

(a) (c)(b)

Figure 1.4

We see that for any projection P of disjoint circles, tr(P ) ≤ p(P ) by
the definitions. We also see that for any projection P with kn(P ) 6= ∞,
kn(P ) ≤ p(P ) by the definitions. Then we have the following theorems.
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Theorem 1.11. Let P be a projection of a circle with at least one pre-
crossing. Then it holds that tr(P ) ≤ p(P ) − 1. The equality holds if
and only if P is one of the projections as illustrated in Fig. 1.5 where
m is a positive odd integer.

m pre-crossings

}
Figure 1.5

Theorem 1.12. Let P be a projection of n disjoint circles. Let C1, C2,
. . . , Cn be the image of the circles of P . Then tr(P ) = p(P ) if and
only if each of C1, C2, . . . , Cn has no self-pre-crossings where a self-
pre-crossing is a pre-crossing whose preimage is contained in a circle.

Theorem 1.13. Let P be a projection of disjoint circles. Then kn(P ) =
p(P ) if and only if P is obtained from one of the projections as illus-
trated in Fig. 1.6 by possibly adding trivial circles.

(a) (b) (c)

Figure 1.6. Projections P of a circle with kn(P ) = p(P ).

We give proofs of Theorems 1.10, 1.11 and 1.12 in section 3 and a
proof of Theorem 1.13 in section 4.

Let Q be a pseudo diagram of a circle. By giving an orientation to
the circle, we can regard Q as a singular knot, namely an immersion of
a circle into S3 whose multiple points are only finitely many transver-
sal double points of arcs spanning a sufficiently small flat plane. We
consider a singular knot up to ambient isotopy preserving the flatness
at each double point. A singular knot K is said to be trivial if K is
deformed by ambient isotopy preserving the flatness at each double
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point to a singular knot in S2. See [17] for details. We can also regard
a singular knot as a spatial 4-valent graph up to rigid vertex isotopy,
see [10, 28]. Then we have the following.

Theorem 1.14. Let Q be a trivial pseudo diagram of a circle. Let
KQ be a singular knot obtained from Q by giving an orientation to the
circle. Then KQ is trivial.

We give a proof of Theorem 1.14 in section 3. In section 6 we give
an application of the trivializing number and the knotting number.

2. Fundamental property

First of all, we prove Proposition 1.2.

Proof of Proposition 1.2. First we show that G has a projection
which is not knotted. For any spatial graph G we can transform G into
a trivial spatial graph by crossing changes and ambient isotopies. Thus
any spatial graph can be expressed as a band sum of a trivial spatial
graph and Hopf links, see Fig. 2.1. See [19, 29, 24] for details. Then we
can get a diagram D of G which is identical with a planar embedding
of G except the Hopf bands. Let P be the projection of D. Then P
is also a projection of a band sum of a trivial spatial graph and trivial
2-component links which is itself a trivial spatial graph. Therefore P
is not knotted.

crossing

change

ambient

isotopy
Hopf band

sum

Figure 2.1

If P is not trivial then P is neither trivial nor knotted. Suppose that
P is trivial. Let l be a simple arc in P which belongs to the image



8 RYO HANAKI

of a cycle of P . Let P ′ be a projection obtained from P by applying
the local deformation to l as illustrated in Fig. 2.2. Then P ′ is also a
projection of G which is neither trivial nor knotted. ¤

Figure 2.2

In the rest of this section, we show fundamental properties of the
trivializing number and the knotting number which are needed later.
Let P be a projection of a circle. We say that a simple closed curve S
in S2 is a decomposing circle of P if the intersection of P and S is the
set of just two transversal double points. See Fig. 2.3.

Proposition 2.1. Let P be a projection of a circle and S a decomposing
circle of P . Let {q1, q2} = P ∩S. Let B1 and B2 be the disks such that
B1 ∪ B2 = S2 and B1 ∩ B2 = S. Let l be one of the two arcs on S
joining q1 and q2. Let P1 = (P ∩ B1) ∪ l and P2 = (P ∩ B2) ∪ l. Then
tr(P ) = tr(P1) + tr(P2) and kn(P ) =min{kn(P1), kn(P2)}.

S

B1

P1 P2

B2
l

P

Figure 2.3. Decomposing circle.

Proof. Let Q be a pseudo diagram obtained from P . Let Q1 (resp.
Q2) be the pseudo diagram obtained from P1 (resp. P2) corresponding
to Q. Then Q is trivial if and only if both Q1 and Q2 are trivial.
This implies that tr(P ) = tr(P1) + tr(P2). We also see that Q is
knotted if and only if either Q1 or Q2 is knotted. This implies that
kn(P ) =min{kn(P1), kn(P2)}. ¤

The following proposition is shown in [5, 15, 20, 21] as a characteri-
zation of trivializing number zero projections of disjoint circles.
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Proposition 2.2. [5, 15, 20, 21] Let P be a projection of disjoint cir-
cles. Then tr(P ) = 0 if and only if P is obtained from the projection
in Fig. 2.4 (a) by possibly adding trivial circles and by a series of
replacing a sub-arc of P as illustrated in Fig. 1.4 (c).

(a) (b)

Figure 2.4. Projections P of a circle with tr(P ) = 0.

As an example we illustrate a projection of two circles whose trivi-
alizing number equals to zero in Fig. 2.4 (b).

Let P be a projection of disjoint circles. A pre-crossing p of a projec-
tion P is said to be nugatory if the number of connected components of
P − p is greater than that of P . A crossing c of a diagram D obtained
from a projection P is also said to be nugatory if the pre-crossing cor-
responding to c is nugatory in P . Then we can rephrase that P is
a projection of disjoint circles with tr(P ) = 0 if and only if all pre-
crossings of P are nugatory. A projection P (resp. a diagram D) is
said to be reduced if P (resp. D) has no nugatory pre-crossings (resp.
no nugatory crossings). Then the following propositions hold.

Proposition 2.3. Let P be a projection of disjoint circles with nuga-
tory pre-crossings and tr(P ) = k. Let p be a nugatory pre-crossing of
P . Let Q be a trivial pseudo diagram obtained from P with k crossings.
Then p is a pre-crossing of Q.

Proof. Suppose that p is a crossing in Q. By forgetting the over/under
information of p, we can get another trivial pseudo diagram. Then we
have tr(P ) < k. This is a contradiction. ¤

Similarly we have the following proposition.

Proposition 2.4. Let P be a projection of disjoint circles with nuga-
tory pre-crossings and kn(P ) = k. Let p be a nugatory pre-crossing of
P . Let Q be a knotted pseudo diagram obtained from P with k cross-
ings. Then p is a pre-crossing of Q. ¤
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3. Trivializing number

In this section, we study trivializing number. First we prove Theorem
1.6 and Proposition 1.7.

For a pseudo diagram of a circle, we recall a chord diagram of pre-
crossings to prove Theorem 1.6. Let Q be a pseudo diagram of a circle
with n pre-crossings. A chord diagram of Q is a circle with n chords
marked on it by dashed line segment, where the preimage of each pre-
crossing is connected by a chord. We denote it by CDQ. For example,
let Q be a pseudo diagram (a) in Fig. 3.1. Then a chord diagram (b)
in Fig. 3.1 is CDQ. Note that for each chord of a chord diagram of a
projection, each of the two arcs in the circle bounded by the end points
of the chord contains even number of end points of the other chords.
Moreover, a realization problem of a chord diagram by a projection is
known in [8].

(a) (b) (c)

Figure 3.1. Chord diagram.

To prove Theorem 1.6, we regard a pseudo diagram of a circle as a
singular knot by giving an orientation to the circle and consider the
Vassiliev invariant. Let v be a knot invariant which takes values in an
additive group. We can extend v to singular knots by the Vassiliev
skein relation:

v(K×) = v(K+) − v(K−)

where K×, K+ and K− are singular knots which are identical except
inside the depicted regions as illustrated in Fig. 3.2. Then v is called
a Vassiliev invariant of order k if v(K) = 0 for any singular knot K
with more than k double points and there exists a singular knot J
with exactly k double points such that v(J) 6= 0. See [27, 2, 3, 17] for
Vassiliev invariants. Then the following lemmas hold.

Lemma 3.1. Let Q be a trivial pseudo diagram of a circle with p(Q) >
0. Let KQ be a singular knot obtained from Q by giving an orientation
to the circle. Then v(KQ) = 0 where v is a Vassiliev invariant of
oriented knots.

Proof. It is clear from the definitions of Vassiliev invariants. ¤
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KKK

Figure 3.2

Lemma 3.2. Let Q be a pseudo diagram of a circle with two pre-
crossings such that CDQ is (c) in Fig. 3.1. Then Q is not trivial.

Proof. Let KQ be a singular knot obtained from Q. Let a2 be
the second coefficient of the Conway polynomial which is extended to
singular knots as above. It is well known that a2(KQ) = 1. Thus Q is
not trivial by Lemma 3.1. ¤

We have the following lemma by applying Lemma 3.2.

Lemma 3.3. Let Q be a trivial pseudo diagram of a circle. Then CDQ

contains no sub-chord diagrams as in Fig. 3.1 (c).

Proof. Suppose that Q contains sub-chord diagrams as in Fig. 3.1
(c). Let Q′ be a pseudo diagram obtained from Q such that CDQ′ is
(c) in Fig. 3.1. By Lemma 3.2, a diagram representing nontrivial knot
is obtained from Q′, hence from Q. This implies that Q is not trivial.
This completes the proof. ¤

Proof of Theorem 1.6. Let CD be a sub-chord diagram of CDP with
the maximum number of chords over all sub-chord diagrams of CDP

which do not contain (c) in Fig. 3.1. We show that a trivial pseudo
diagram whose chord diagram is CD is obtained from P . Let p1 be
a pre-crossing of P which corresponds to an outer most chord c1 in
CD and l1 the sub-arc on P which corresponds to the outer most arc.
By giving over/under information to each pre-crossing on l1 so that l1
goes over the others as in Fig. 3.3, we obtain a pseudo diagram Q1

from P . Next, let p2 be a pre-crossing of Q1 which corresponds to an
outer most chord c2 under forgetting c1 in CD, and l2 the sub-arc on
Q1 which corresponds to the outer most arc. By giving over/under
information to each pre-crossing on l2 so that l2 goes over the others
except l1, we obtain a pseudo diagram Q2 from Q1. By repeating this
procedure until all of the chords are forgotten, we obtain a pseudo
diagram Q from P . For any diagram D obtained from Q, first we can
vanish the crossings on l1 and the crossing corresponding to p1, next
we can vanish the crossings on l2 and the crossing corresponding to p2,
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similarly we can vanish all crossings of D. Therefore, we see that Q is
trivial. Moreover c(Q) is even because each li has no self-crossings by
the maximality of chords in CD. Since tr(P ) = c(Q) by Lemma 3.3,
tr(P ) is even. ¤

p p

ll

CD

l

p

Figure 3.3

Proof of Proposition 1.7. The projection of Fig. 1.5 where m = n+1
has trivializing number n. ¤

Then we have the following corollary of Theorem 1.6 for projections
of n disjoint circles.

Corollary 3.4. Let P be a projection of n disjoint circles. Let C1, C2,
. . . , Cn be the images of the circles of P . Then the following formula
holds.

tr(P ) =
∑

1≤i<j≤n

](Ci ∩ Cj) +
n∑

k=1

tr(Ck)

where ]A is the cardinality of a set A. Therefore, tr(P ) is even.

Proof. First we show that

tr(P ) ≥
∑

1≤i<j≤n

](Ci ∩ Cj) +
n∑

k=1

tr(Ck).

Let Q be a trivial pseudo diagram obtained from P . Suppose that there
exists a pre-crossing in Ci ∩Cj(i 6= j) such that it is also a pre-crossing
of Q. Then a diagram whose sub-diagram represents a 2-component
link with nonzero linking number is obtained from Q, namely Q is not
trivial. Thus each of the pre-crossings in Ci ∩ Cj is a crossing of Q.
Note that ](Ci ∩ Cj) is even. Moreover each Ck(1 ≤ k ≤ n) has to be
a trivial pseudo diagram in Q. This implies that the above inequality
holds.

Next we construct a trivial pseudo diagram obtained from P with∑
1≤i<j≤n ](Ci ∩ Cj) +

∑n
k=1 tr(Ck) crossings. We give over/under in-

formation to the pre-crossings in Ci ∩ Cj so that Ci goes over Cj for
i > j and some pre-crossings of Ck so that a pseudo diagram obtained
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from Ck is trivial and has tr(Ck) crossings. Then it is easy to see that
the pseudo diagram obtained from P by the above way is trivial. This
completes the proof. ¤

In general, we have the following proposition.

Proposition 3.5. Let P a projection of a graph. Then tr(P ) 6= 1.

Proof. Suppose that there exists a projection P with tr(P ) = 1. Let
Q be a trivial pseudo diagram obtained from P with only one crossing
c. Let Q′ be the pseudo diagram obtained from Q by changing the
over/under information of c. We show that Q′ is trivial. Let D be a
diagram obtained from Q′. The mirror image diagram of D is obtained
from Q. Since the mirror image of a trivial spatial graph is also trivial,
D represents a trivial spatial graph. Hence Q′ is trivial. Thus this
implies that tr(P ) = 0. This is a contradiction. ¤

However, for a certain graph G there exists a projection P of G with
tr(P ) = 3. For example, let G be a graph which is homeomorphic to
the disjoint union of a circle and a θ-curve as illustrated in the left side
of Fig. 3.4. Then there exists a projection P of G with tr(P ) = 3,
see the right side of Fig. 3.4. Moreover for each n ≥ 2 there exists a
projection Pn of G with tr(Pn) = n, see Fig. 3.5.

G P

Figure 3.4

n : odd n : even

Figure 3.5

Next we prove Theorem 1.10 that characterizes trivializing number
two projections of disjoint circles.
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Proof of Theorem 1.10. The ‘if’ part is obvious. Let P be a projection
of n disjoint circles with tr(P ) = 2. Let C1, C2, . . . , Cn be the image of
the circles in P . Suppose that there exist pre-crossings in Ci∩Cj(i 6= j).
In this case, such pre-crossings must be crossings in a trivial pseudo
diagram by the same reason as we said in the proof of Corollary 3.4.
Since tr(P ) = 2, such pre-crossings belong to the intersection of only
one pair of Ci and Cj and each Ci is a trivial projection by Corollary
3.4. Thus P is a projection obtained from (b) in Fig. 1.4 by adding
trivial circles and by a series of replacing a sub-arc of P as illustrated
in Fig. 1.4 (c).

Suppose that Ci ∩ Cj = ∅(i 6= j). Since tr(P ) = 2, by Theorem 1.6
and Corollary 3.4, only one of C1, C2, . . . , Cn is not a trivial projection.
Then by the proof of Theorem 1.6 we see that CDP is obtained from
one of the chord diagrams (a) or (b) in Fig. 3.6 by adding chords which
do not cross the other chords. These chord diagrams (a) or (b) in Fig.
3.6 are realized by the projections (a) in Fig. 1.4. It follows from [8,
Theorem 1] that the realizations of these chord diagrams are unique
up to mirror image and ambient isotopy. Adding chords which do not
cross the other chords corresponds to a series of replacing a sub-arc as
illustrated in Fig. 1.4 (c). This completes the proof. ¤

(a) (b)

}

odd

}

even

Figure 3.6

We use the following procedure which is called a descending procedure
to prove Theorem 1.11 and Proposition 1.8. Let P be a projection of
n disjoint circles. Let C1, C2, . . . , Cn be the image of the circles in P .
We give an arbitrary orientation and an arbitrary base point which is
not a pre-crossing to each Ci. We trace C1, C2, . . . , Cn in order and
from their base points along their orientation. We give the over/under
information to each pre-crossing of P so that every crossing may be first
traced as an over-crossing as illustrated in Fig. 3.7. Then the diagram
obtained from P by the procedure as above represents a trivial link.

Proof of Theorem 1.11. First we show that tr(P ) ≤ p(P ) − 1. Let
P be a projection of a circle. We give an orientation to the circle.
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1
2

Figure 3.7. A descending procedure.

Let b1 be a base point on P which is not a pre-crossing. Let p be the
pre-crossing of P which first appears when we trace P from b1 along
the orientation. Let b2 be a base point which is slightly before it than
p with respect to the orientation.

Let D1 (resp. D2) be the diagram obtained from P by the descending
procedure from a base point b1 (resp. b2) along the orientation. Here
each of D1 and D2 represents a trivial knot. The difference of D1 and D2

is only the over/under information of p. Let Q be the pseudo diagram
obtained from D1 (or D2) by forgetting the over/under information of
p. Then Q is trivial. This implies that tr(P ) ≤ p(P ) − 1.

Next we show that the equality holds if and only if P is one of the
projections as illustrated in Fig. 1.5. The ‘if’ part is obvious. Let P
be a projection of a circle with tr(P ) = p(P ) − 1. Then CDP is a
chord diagram in Fig. 3.8 since there exists no pair of parallel chords
by the proof of Theorem 1.6. Note that CDP has odd chords. These
chord diagrams are realized by the projections as illustrated in Fig. 1.5
where m is a positive odd integer. It follows from [8, Theorem 1] that
the realizations of these chord diagrams are unique up to mirror image
and ambient isotopy. This completes the proof. ¤

Figure 3.8

Proof of Theorem 1.12. This is an immediate consequence of Theo-
rem 1.11 and Corollary 3.4. ¤

Note that similar results on the unknotting number for knot diagrams
and link diagrams as Theorem 1.11 and Theorem 1.12 are known in [25,
Theorem 1.4, Theorem 1.5].
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In the rest of this section, we prove Theorem 1.14. To accomplish
this, we use the following Theorem 3.6. Let D be a diagram of a circle
and K a knot represented by D. Then a disk E in S3 is called a
crossing disk for a crossing of D if E intersects K only in its interior
exactly twice with zero algebraic intersection number and these two
intersections correspond the crossing.

Theorem 3.6. [1] Let K be a trivial knot and D a diagram of K. Let
c1, c2, . . . , cn be crossings of D and E1, E2, . . . , En crossing disks corre-
sponding to c1, c2, . . . , cn respectively. Suppose that for any nonempty
subset C ⊂ {c1, c2, . . . , cn} the diagram obtained from D by crossing
changes at C represents a trivial knot. Then K bounds an embedded
disk in the complement of ∂E1 ∪ ∂E2,∪ · · · ∪ ∂En.

Proof of Theorem 1.14. Let p1, p2, . . . , pn be all of the pre-crossings
of Q. Let D be a diagram representing a trivial knot K obtained
from Q. Let c1, c2, . . . , cn be the crossings of D corresponding to
p1, p2, . . . , pn respectively. Let E1, E2, . . . , En be crossing disks cor-
responding to c1, c2, . . . , cn respectively. For any nonempty subset C of
{c1, c2, . . . , cn}, a diagram obtained from D by crossing changes at C
represents a trivial knot by the definition of a trivial pseudo diagram.
By Theorem 3.6, there exists an embedded disk H whose boundary
is K in the complement of ∂E1 ∪ ∂E2,∪ · · · ∪ ∂En. By taking suf-
ficiently small sub-disk of Ei if necessary, we may assume that each
H ∩ Ei(i = 1, 2, . . . , n) is a simple arc. By contracting each simple arc
to a point, we obtain a singular disk bounding KQ. Here, we stick two
disks at each double point of KQ as illustrated in Fig. 3.9. Then we
have a disk containing KQ. Therefore, KQ is trivial. ¤

H

Figure 3.9

4. Knotting number

In this section, we study knotting number and give proofs of Propo-
sition 1.8 and Theorem 1.13.

Proof of Proposition 1.8. First we show that there does not exist a
projection of a circle whose knotting number is less than three. Suppose
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that there exists a projection P of a circle with kn(P ) = 2. Let Q be
a knotted pseudo diagram obtained from P with two crossings c1 and
c2. Let p1 and p2 be the pre-crossings of P which correspond to c1 and
c2 respectively.

Without loss of generality, we may assume that the position of p1

and p2 (resp. c1 and c2) on P (resp. Q) is (a) or (b) (resp. (c) or (d))
as in Fig. 4.1. We give an orientation and a base point to the image of
the circle as illustrated in Fig. 4.1. In case (a) (resp. (b)), let D1 (resp.
D2) be the diagram obtained from P by the descending procedure from
a base point b. Here under any of the over/under information of c1 and
c2, each of D1 and D2 represents a trivial knot. This is a contradiction.
In case (c) (resp. (d)), let D3 (resp. D4) be the diagram obtained from
Q by the descending procedure from a base point b1 (resp. b2). Then
each of D3 and D4 represents a trivial knot. This is a contradiction.

c1

b1
c2 c1 c2

(c)

(a)

(d)

(b)

b2

p1 p2

b

p1
p2

b

Figure 4.1

Similarly we can show that there do not exist projections of a circle
whose knotting number is less than two.

For n ≥ 3, the projection of Fig. 1.5 where m = 2n− 3 has knotting
number n. This completes the proof. ¤

Note that there exists a projection P of two circles with kn(P ) = 2
as (c) in Fig. 1.6. In general, we have the following proposition which
is similar to Proposition 3.5.

Proposition 4.1. Let P be a projection of a graph G. Then kn(P ) 6= 1.
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Proof. Since the mirror image of a nontrivial spatial graph is also
nontrivial, we can prove it in the same way as the proof of Proposition
3.5. ¤

We prepare some known theorems to prove Theorem 1.13. Let D be
a diagram of disjoint circles. We give an orientation to the image of
each circle in D. Then each crossing has a sign as illustrated in Fig.
4.2. A diagram D is said to be positive if all crossings of D are positive.
Then the following is known.

Figure 4.2

Theorem 4.2. [5, 26, 15, 6] Let D be a positive diagram of disjoint
circles with a crossing which is not nugatory. Then D represents a
nontrivial link.

A diagram D is said to be almost positive if all crossings except one
crossing of D are positive. The following theorem is shown in [18, 16]
for knots and in [16] for links.

Theorem 4.3. [18, 16] Let D be an almost positive diagram represent-
ing a trivial link. Then D can be obtained from one of the diagrams
(a), (b), (c) in Fig. 4.3 by possibly adding trivial circles and by a series
of replacing a sub-arc by a part as illustrated in Fig. 4.3 (d).

(a) (b) (c) (d)

Figure 4.3

Proof of Theorem 1.13. The ‘if’ part is obvious. Let P be a projection
with tr(P ) 6= 0 which is not obtained from any of the projections as
illustrated in Fig. 1.6 by possibly adding trivial circles. We show that
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there exists a knotted pseudo diagram with at least one pre-crossing
obtained from P , that is, kn(P ) < p(P ).

First we suppose that P has a nugatory pre-crossing p1. By Propo-
sition 2.4 there exists a knotted pseudo diagram obtained from P with
a pre-crossing p1. This implies that kn(P ) < p(P ).

Next we suppose that P has no nugatory pre-crossings. Suppose that
P is not a projection as (a) or (b) in Fig. 1.4. Let p2 be a pre-crossing
of P and Q2 the pseudo diagram obtained from P by giving over/under
information to all pre-crossings except p2 to be positive. We show that
Q2 is knotted. Let D2+ be the diagram obtained from Q2 by giving the
over/under information to p2 to be positive. Since D2+ is a positive
diagram, D2+ represents a nontrivial link by Theorem 4.2. Let D2−
be the diagram obtained from Q by giving the over/under information
to p2 to be negative. Since D2− is an almost positive diagram, D2−
represents a nontrivial link by Theorem 4.3. Thus Q2 is knotted.

Suppose that P is a projection (a) in Fig. 1.4. Note that m > 2
since P is not obtained from one of the projections as illustrated in
Fig. 1.6. Let p3 be one of m pre-crossings in a row. Let Q3 be the
pseudo diagram obtained from P by giving over/under information to
all crossings except p3 to be positive. We show that Q3 is knotted.
Let D3+ be the diagram obtained from Q3 by giving the over/under
information to p3 to be positive. Since D3+ is a positive diagram, D3+

represents a nontrivial link by Theorem 4.2. Let D3− be the diagram
obtained from Q3 by giving the over/under information to p3 to be
negative. We deform D3− into D′

3− as illustrated in Fig. 4.4. Since
D′

3− is a positive diagram with crossings which are not nugatory, D′
3−

represents a nontrivial link by Theorem 4.2. Thus Q3 is knotted. ¤

D3- D3-

or

Figure 4.4

Note that for a certain graph G there exist infinitely many projec-
tions P of G with kn(P ) = p(P ). For example, let G be a handcuff
graph and {Pi}i=1,2,... is the family of the projections as illustrated in
Fig. 4.5. It is known in [23] that a diagram representing a nontrivial



20 RYO HANAKI

spatial graph is obtained from Pi (i = 1, 2, 3, . . .). Then it is easy to
check kn(Pi) = p(Pi).

handcuff graph P1

P3 P4

P2

Figure 4.5

5. Relations between trivializing number and knotting
number

In this section, we study relations between the trivializing number
and the knotting number. We give a proof of Proposition 1.9.

Proof of Proposition 1.9. Let P1 be a projection of a circle as illus-
trated in Fig. 1.4 where l = 2m − 5. Then we have tr(P1) = 2 and
kn(P1) = l. Let P be the projection which is the composition of n/2
copies of P1 as illustrated in Fig. 5.1. Thus tr(P ) = n and kn(P1) = l
by Proposition 2.1. ¤

n

2

Figure 5.1

6. An application of trivializing number and knotting
number

We ask the following question. For a projection P of a graph, how
many diagrams obtained from P which represent trivial spatial graphs
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(resp. nontrivial spatial graphs)? We denote the number of diagrams
obtained from P which represent trivial spatial graphs (resp. nontriv-
ial spatial graphs) by ntri(P ) (resp. nnontri(P )). Then we have the
following inequality between ntri(P ) (resp. nnontri(P )) and tr(P ) (resp.
kn(P )) for any graphs.

Proposition 6.1. Let P be a projection of a graph. If P is nei-
ther trivial nor knotted, then ntri(P ) ≥ 2p(P )−tr(P )+1 and nnontri(P ) ≥
2p(P )−kn(P )+1.

Proof. We show that ntri(P ) ≥ 2p(P )−tr(P )+1. Let Q be a trivial
pseudo diagram obtained from P with tr(P ) crossings. Then 2p(P )−tr(P )

diagrams which represent trivial spatial graphs are obtained from Q.
Let Q′ be the pseudo diagram obtained from Q by changing over/under
information at all crossings of Q. Then Q′ is trivial in the same way as
the proof of Proposition 3.5. Then 2p(P )−tr(P ) diagrams which represent
spatial graphs are obtained from Q′. Thus ntri(P ) ≥ 2p(P )−tr(P )+1.
Similarly we can show that nnontri(P ) ≥ 2p(P )−kn(P )+1. ¤
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