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Partial Dirichlet–Neumann Boundary Value Problems on finite Networks

E. Bendito, A. Carmona and A.M. Encinas

We aim here at studying partial Dirichlet boundary value problems on finite net-

works. Given two disjoint subset, A and B, of the vertex boundary of a set,

F , a partial boundary value problem consists on finding a harmonic function

with prescribed values on δ(F ) \ B and with prescribed values of its normal

derivative on A. We study existence and uniqueness of the solutions.

1. Preliminaries

Throughout the paper, Γ = (V,E) denotes a simple, finite and connected graph without loops, with
vertex set V and edge set E. Two different vertices, x, y ∈ V , are called adjacent, which will be represented
by x ∼ y, if {x, y} ∈ E.

Given a vertex subset F ⊂ V , we denote by F c its complementary in V and we call boundary and
closure of F , the sets δ(F ) = {x ∈ V : x ∼ y for some y ∈ F} and F̄ = F ∪ δ(F ), respectively. If F ⊂ V
is a proper subset, we say that F is connected if for any x, y ∈ V there exists a path joined x and y whose
vertices are all in F . It is easy to prove that F̄ is connected when F is.

The sets of functions and non-negative functions on V are denoted by C(V ) and C+(V ) respectively. If
u ∈ C(V ), its support is given by supp(u) = {x ∈ V : u(x) 6= 0}. Moreover, if F is a non empty subset of V ,
its characteristic function is denoted by χ

F
and we can consider the sets C(F ) = {u ∈ C(V ) : supp(u) ⊂ F}

and C+(F ) = C(F ) ∩ C+(V ). We call weight on F any function σ ∈ C+(F ) such that supp(σ) = F . The set
of weights on F is denoted by Ω(F ).

Given a weight ν ∈ Ω(V ), for any u ∈ C(F ), we denote by

∫
F

u(x) dν(x) or simply by

∫
F

u dν the value∑
x∈F

u(x)ν(x). When ν(x) = 1 for any x ∈ V , we denote

∫
F

u dν simply by

∫
F

u dx.

We call conductance on Γ a function c : V ×V −→ IR+ such that c(x, y) > 0 iff x ∼ y. We call network
any triple (Γ, c, ν), where c is a conductance on Γ and ν ∈ Ω(V ). In what follows we consider fixed the

network (Γ, c, ν) and we refer to it simply by Γ. The function κ ∈ C+(V ) defined as κ(x) =

∫
V

c(x, y) dy

for any x ∈ V is called the degree of Γ that clearly satisfies that supp(κ) = V . In addition, for any proper

subset F ⊂ V we call the boundary degree of F the function κ
F
∈ C
(
δ(F )

)
defined as κ

F
(x) =

∫
F

c(x, y) dy

for any x ∈ δ(F ), that clearly satisfies that supp(κ
F

) = δ(F ).
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The combinatorial Laplacian or simply the Laplacian of Γ is the linear operator L : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function

(1) L(u)(x) =
1

ν(x)

∫
V

c(x, y)
(
u(x)− u(y)

)
dy, x ∈ V.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear operator Lq : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu.

If F is a proper subset of V , for each u ∈ C(F̄ ) we define the normal derivative of u on F as the
function in C(δ(F )) given by

(2)

(
∂u

∂n
F

)
(x) =

1

ν(x)

∫
F

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).

The normal derivative on F is the operator
∂

∂n
F

: C(F̄ ) −→ C(δ(F )) that to any u ∈ C(F̄ ) assigns its

normal derivative on F .

The relation between the values of the Schrödinger operator with potential q on F and the values of
the normal derivative at δ(F ) is given by the First Green Identity, proved in [1]∫

F

vLq(u) dν =
1

2

∫
F̄

∫
F̄

c
F

(x, y)(u(x)− u(y))(v(x)− v(y)) dxdy +

∫
F

quv dν −
∫
δ(F )

v
∂u

∂n
F

dν,

where u, v ∈ C(F̄ ) and c
F

= c · χ
(F̄×F̄ )\(δ(F )×δ(F ))

. A direct consequence of the above identity is the so–called
Second Green Identity∫

F

(
vLq(u)− uLq(v)

)
dν =

∫
δ(F )

(
u
∂v

∂n
F

− v ∂u

∂n
F

)
dν, for all u, v ∈ C(F̄ ).

2. Partial Dirichlet–Neumann Boundary Value Problems

Through this section we fixed F ⊂ V a proper and connected subset and A,B ⊂ δ(F ) non-empty
subsets such that A ∩ B = ∅. Moreover we denote by R the set R = δ(F ) \ (A ∪ B), so δ(F ) = A ∪ B ∪ R
is a partition of δ(F ). We remark that R can be an empty set. Our aim is to study self-adjoint boundary
value problems associated with the Schrödinger operator with potential q ∈ C(F̄ ).

Definition 2.1. For any h ∈ C(F ), f ∈ C(A ∪ R) and g ∈ C(A), the partial Dirichlet–Neumann boundary
value problem on F with data h, f, g consists in finding u ∈ C(F̄ ) such that

(3) Lq(u) = h on F,
∂u

∂n
F

= g on A and u = f on A ∪R.

Moreover, the homogeneous partial Dirichlet–Neumann boundary value problem on F consists in finding
u ∈ C(F̄ ) such that

(4) Lq(u) = 0 on F,
∂u

∂n
F

= u = 0 on A and u = 0 on R.

Notice that the above boundary condition fix the values of u and of its normal derivative on A and

we do not have any requirements on the values of u or
∂u

∂n
F

on B. It is clear that the set of solutions of the

homogeneous boundary value problem is a vector subspace of C(F ∪B) that we will denote by V
B

. Moreover
if Problem (3) has solutions and u is a particular one, then u+ V

B
describes the set of all its solutions.

In addition, if u is a solution of Problem (3), then for any x ∈ A we get that∫
F

c(x, y)u(y)dy = f(x)κ
F

(x)− ν(x)g(x).
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Therefore, if u is a solution of Problem (4), then for any x ∈ A we get that∫
F

c(x, y)u(y)dy = 0.

Let us define the adjoint of problem (4).

Definition 2.2. The adjoint problem of the partial Dirichlet–Neumann boundary value problem on F (4) is
given by

(5) Lq(v) = 0 on F,
∂v

∂n
F

= v = 0 on B and v = 0 on R.

The subspace of solution of the above problem will be denoted by V
A

. It is clear that V
A
⊂ C(F ∪A).

The Second Green Identity leads to the following result.

Proposition 2.3. Problems (4) and (5) are mutually adjoint; that is∫
F

vLq(u)dν =

∫
F

uLq(v)dν,

for any u, v ∈ C(F̄ ) such that
∂u

∂n
F

= u = 0 on A,
∂v

∂n
F

= v = 0 on B and u = v = 0 on R.

Proposition 2.4 (Fredholm Alternative). Given h ∈ C(F ), f ∈ C(A ∪ R), g ∈ C(A), the boundary
value problem

Lq(u) = h, on F,
∂u

∂n
F

= g on A and u = f on A ∪R

has solution iff ∫
F

hv dν +

∫
P

gv dν =

∫
A∪R

f
∂v

∂n
F

dν, for each v ∈ V
A

.

In addition, when the above condition holds, then there exists a unique solution of the boundary value problem
in V⊥

B
, i.e. a unique solution u, such that∫

F∪B
uz dν = 0, for any z ∈ V

B
.

Proof. First observe that problem (3) is equivalent to the boundary value problem

Lq(u) = h− L(f) on F,
∂u

∂n
F

= g − f κF
ν

1 on A and u = 0, on A ∪R

in the sense that u is a solution of the this problem iff u+ f is a solution of (3).

Consider now the linear operators F : C(F ∪B) −→ C(F ∪A) and F∗ : C(F ∪A) −→ C(F ∪B) defined
as

F(u) =


Lq(u), on F,

∂u

∂n
F

, on A,
and F∗(v) =


Lq(v), on F,

∂v

∂n
F

, on B,

respectively. Then, for any u ∈ C(F ∪B) and v ∈ C(F ∪A) it is verified that∫
F∪A

vF(u) dν =

∫
F

vLq(u) dν +

∫
δ(F )

v
∂u

∂n
F

dν

=

∫
F

uLq(v) dν +

∫
δ(F )

u
∂v

∂n
F

dν =

∫
F∪B

uF∗(v) dν.

1Recall that
∂f

∂nF

= f
κF
ν

, since f ∈ C(δ(F )).
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Therefore the operators F and F∗ are mutually adjoint with respect to the inner products induced in C(F∪A)
and C(F ∪ B) . By applying the classical Fredholm Alternative we obtain that ImgF = (kerF∗)⊥. Clearly,
the subspace kerF∗ coincides with the space of solutions of the homogeneous problem (5) and moreover

problem (3) has a solution iff the function h̃ ∈ C(F ∪A) given by h̃ = h−L(f) on F and h̃ = g− fκ
F

on A

verifies that h̃ ∈ ImgF . Therefore, problem (3) has solution iff for any v ∈ V
A

0 =

∫
F∪A

h̃v dν =

∫
F

hv dν +

∫
A

gv dν −
∫
F

vL(f) dν −
∫
A

v
∂f

∂n
F

dν

=

∫
F

hv dν +

∫
A

gv dν −
∫
F

fL(v) dν −
∫
δ(F )

f
∂v

∂n
F

dν +

∫
R∪B

v
∂f

∂n
F

dν

=

∫
F

hv dν +

∫
A

gv dν −
∫
R∪A

f
∂v

∂n
F

dν.

Finally, the Fredholm Alternative also establishes that when the necessary and sufficient condition is attained
there exists a unique w ∈ (kerF)⊥ such that F(w) = h̃. Therefore, u = w + f is the unique solution of
problem (3) such that for any z ∈ kerF = V

B
verifies∫

F∪B
uz dν = 0. �

Observe that Fredholm Alternative establishes the following formula

(6) |A| − |B| = dimV
A
− dimV

B

On the other hand, the existence of solution for any data is equivalent to be V
A

= {0}, that is; iff
|B| − |A| = dimV

B
≥ 0. Moreover, uniqueness of solutions is equivalent to be |A| − |B| = dimV

A
≥ 0. In

particular, if |A| = |B|, the existence of solution of problem (3) for any data h, f and g is equivalent to the
uniqueness of solution and hence it is equivalent to the fact that the homogeneous problem has v = 0 as its
unique solution.

Next, we establish the variational formulation of the boundary value problem (3), that represents the
discrete version of the weak formulation for boundary value problems.

Prior to describe the claimed formulation, we give some useful definitions. The bilinear form associated
with the boundary value problem (3) is B : C(F̄ )× C(F̄ ) −→ IR given by

(7) B(u, v) =

∫
F

vLq(u) dν +

∫
A

v
∂u

∂n
F

dν.

Analogously, B∗ : C(F̄ )× C(F̄ ) −→ IR, the bilinear form associated with the adjoint boundary value problem
(5) is given by

(8) B∗(u, v) =

∫
F

vLq(u) dν +

∫
B

v
∂u

∂n
F

dν.

Therefore, for all u ∈ C(F ∪B) and v ∈ C(F ∪A), it holds

B∗(v, u) = B(u, v)

Applying the First Green Identities, we obtain that

(9)

B(u, v) =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

) (
v(x)− v(y)

)
dx dy +

∫
F

q u v dν −
∫
B∪R

v
∂u

∂nF
dν,

B∗(v, u) =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

) (
v(x)− v(y)

)
dx dy +

∫
F

q u v dν −
∫
A∪R

u
∂v

∂nF
dν.

Associated with any pair of functions h ∈ C(F ) and g ∈ C(A) we define the linear functional ` : C(F̄ ) −→

IR as `(v) =

∫
F

hv dν +

∫
A

gv dν, whereas for any function f ∈ C(A ∪ R) we consider the convex set

Kf = f + C(F ∪B).
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Proposition 2.5 (Variational Formulation). Given h ∈ C(F ), g ∈ C(A) and f ∈ C(A ∪ R), then
u ∈ Kf is a solution of Problem (3) iff

B(u, v) = `(v), for any v ∈ C(F ∪A)

and in this case, the set u+
{
w ∈ C(F ∪B) : B(w, v) = 0, for any v ∈ C(F ∪A)

}
describes all solutions of

(3).

In particular, V
B

=
{
w ∈ C(F ∪ B) : B(w, v) = 0, for any v ∈ C(F ∪A)

}
and, analogously V

A
={

w ∈ C(F ∪A) : B(v, w) = 0, for any v ∈ C(F ∪B)
}

.

Proof. A function u ∈ Kf satisfies that B(u, v) = `(v) for any v ∈ C(F ∪A) iff∫
F

v(Lq(u)− h) dν +

∫
A

v

(
∂u

∂n
F

− g
)
dν = 0.

Then, the first result follows by taking v = εx, x ∈ F ∪ A. Finally, û ∈ Kf is another solution of (3) iff
B(û, v) = `(v) for any v ∈ C(F ∪A) and hence iff B(u− û, v) = 0 for any v ∈ C(F ∪A).

3. Partial Dirichlet to Neumann map

In this section we study sufficient and necessary conditions so that V
B

= {0} and/or V
A

= {0}. To do
this we consider the Dirichlet problem

(10) Lq(u) = 0 on F, u = f on δ(F )

and we will assume that Lq is positive definite on C(F ). We recall that this hypothesis assures the existence
and uniqueness of solution for any data f ∈ C(δ(F )). We will denoted this solution by uf . In fact, the
following result holds.

Lemma 3.1 ([2], Proposition 4). Given q ∈ C(F ), the Schrödinger operator Lq is positive definite on C(F )
iff there exists a weight σ ∈ Ω(F ) such that q ≥ qσ on F , where qσ = −σ−1L(σ).

Let us consider the linear operator Λ
A,B

: C(A) −→ C(B), defined for any v ∈ C(A) and any x ∈ B by

(11) Λ
A,B

(v) =
∂uv
∂n

F

χ
B
.

We define Λ
B,A

in an analogous manner.

Proposition 3.2. Λ∗
A,B

= Λ
B,A

and, in addition, kerΛ
A,B

= V
A
· χ

A
and kerΛ

B,A
= V

B
· χ

B
.

Proof. Given v ∈ C(A) and w ∈ C(B), then from the Second Green Identity∫
B

wΛ
A,B

(v)dν =

∫
B

uw
∂uv
∂n

F

dν =

∫
δ(F )

uw
∂uv
∂n

F

dν =

∫
δ(F )

uv
∂uw
∂n

F

dν =

∫
A

uv
∂uw
∂n

F

dν =

∫
A

vΛ
B,A

(w)dν,

where we have taken into account that Lq(uv) = Lq(uw) = 0 on F .

Clearly, if v ∈ kerΛ
A,B

, then uv ∈ VA and v = uv · χA . Conversely, if u ∈ V
A

then Lq(u) = 0 on F ,
∂u

∂n
F

= 0 on B and u = 0 on B∪R. Therefore, if we consider v = u ·χ
A

, then u = uv and clearly v ∈ kerΛ
A,B

.

The equality for kerΛ
B,A

follows analogously. �

Corollary 3.3. Problem (3) has solution for any data iff Λ
A,B

is non-singular. Moreover, Problem (3) has
uniqueness of solutions iff Λ

B,A
is non-singular. In particular, when |A| = |B|, Λ

A,B
is non-singular iff Λ

B,A

is non-singular, and in this case Problem (3) has a unique solution for any data.

Remark: If Γ is a circular planar resistor network and A,B is a circular pair of sequences of boundary
nodes that are connected through Γ, then ΛA,B is an isomorphism, see [4, Theorem 4.2].
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