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An Introduction to Discrete Vector Calculus

on Finite Networks

A. Carmona and A.M. Encinas

We aim here at introducing the basic terminology and results on discrete vector

calculus on finite networks. After defining the tangent space at each vertex of

a weighted network we introduce the basic difference operators that are the

discrete counterpart of the differential operators. Specifically we define the

derivative, gradient, divergence, curl and laplacian operators. Moreover we

prove that the above defined operators satisfy properties that are analogues

to those satisfied by their continuous counterpart.

1. Preliminaries

Throughout these notes, Γ = (V,E) denotes a simple connected and finite graph without loops, with
vertex set V and edge set E. Two different vertices, x, y ∈ V , are called adjacent, which is represented by
x ∼ y, if {x, y} ∈ E. In this case, the edge {x, y} is also denoted as exy and the vertices x and y are called
incidents with exy. In addition, for any x ∈ V the value k(x) denote the number of vertices adjacent to x.
When, k(x) = k for any x ∈ V we say that the graph is k-regular.

We denote by C(V ) and C(V × V ) , the vector spaces of real functions defined on the sets that appear
between brackets. If u ∈ C(V ) and f ∈ C(V × V ), uf denotes the function defined for any x, y ∈ V as
(uf)(x, y) = u(x)f(x, y).

If u ∈ C(V ), the support of u is the set supp(u) = {x ∈ V : u(x) 6= 0}.
A function ν ∈ C(V ) is called a weight on V if ν(x) > 0 for all x ∈ V . For each weight ν on V and

any u ∈ C(V ) we denote by

∫
V

u dν the value
∑
x∈V

u(x) ν(x). In particular, when ν(x) = 1 for any x ∈ V ,∫
V

u dν is simply denoted by

∫
V

u dx.

Throughout the paper we make use of the following subspace of C(V × V ):

C(Γ) = {f ∈ C(V × V ) : f(x, y) = 0, if x 6∼ y}.

We call conductance on Γ a function c ∈ C(Γ) such that c(x, y) > 0 iff x ∼ y. We call network any
triple (Γ, c, ν), where ν is a weight and c is a conductance on Γ. In what follows we consider fixed the

network (Γ, c) and we refer to it simply by Γ. The function κ ∈ C(V ) defined as κ(x) =

∫
V

c(x, y) dy for any

x ∈ V is called the (generalized) degree of Γ. Moreover we call resistance of Γ the function r ∈ C(Γ) defined

as r(x, y) =
1

c(x, y)
when d(x, y) = 1.
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Figure 1. Weighted network

Next we define the tangent space at a vertex of a graph. Given x ∈ V , we call the real vector space
of formal linear combinations of the edges incident with x, tangent space at x and we denote it by Tx(Γ).
So, the set of edges incident with x is a basis of Tx(Γ), that is called coordinate basis of Tx(Γ) and hence,
dimTx(Γ) = k(x). Note that, in the discrete setting, the dimension of the tangent space varies with each
vertex except when the graph is regular.
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Figure 2. Tangent space at x

We call any application f : V −→
⋃

x∈V
Tx(Γ) such that f(x) ∈ Tx(Γ) for each x ∈ V , vector field on

Γ. The support of f is defined as the set supp(f) = {x ∈ V : f(x) 6= 0}. The space of vector fields on Γ is
denoted by X (Γ).
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If f is a vector field on Γ, then f is uniquely determined by its components in the coordinate basis.
Therefore, we can associate with f the function f ∈ C(Γ) such that for each x ∈ V , f(x) =

∑
y∼x

f(x, y) exy

and hence X (Γ) can be identified with C(Γ).

A vector field f is called a flow when its component function satisfies that f(x, y) = −f(y, x) for any
x, y ∈ V , whereas f is called symmetric when its component function satisfies that f(x, y) = f(y, x) for any
x, y ∈ V . Given a vector field f ∈ X (Γ), we consider two vector fields, the symmetric and the antisymmetric
fields associated with f, denoted by fs and fa, respectively, that are defined as the fields whose component
functions are given respectively by

(1) fs(x, y) =
f(x, y) + f(y, x)

2
and fa(x, y) =

f(x, y)− f(y, x)

2
.

Observe that f = fs + fa for any f ∈ X (Γ).

If u ∈ C(V ) and f ∈ X (Γ) has f ∈ C(Γ) as its component function, the field uf is defined as the field
whose component function is uf .

If f, g ∈ X (Γ) and f, g ∈ C(Γ) are their component functions, the expression 〈f, g〉 denotes the function
in C(V ) given by

(2) 〈f, g〉(x) =
∑
y∼x

f(x, y)g(x, y)r(x, y), for any x ∈ V .

Clearly, for any x ∈ V , 〈·, ·〉(x) determines an inner product on Tx(Γ).

The triple (Γ, c, ν), where ν is a weight on V , is called weighted network. So, on a weighted network
we can consider the following inner products on C(V ) and on X (Γ),

(3)

∫
V

u v dν, u, v ∈ C(V ) and
1

2

∫
V

〈f, g〉 dx, f, g ∈ X (Γ),

where the factor 1
2 is due to the fact that each edge is considered twice.

Lemma 1.1. Given f, g ∈ X (Γ) such that f is symmetric and g is a flow, then

∫
V

〈f, g〉 dx = 0.

2. Difference operators on weighted networks

Our objective in this section is to define the discrete analogues of the fundamental first and second
order differential operators on Riemannian manifolds, specifically the derivative, gradient, divergence, curl
and the laplacian. The last one is called second order difference operator whereas the former are generically
called first order difference operators. From now on we suppose fixed the weighted network (Γ, c, ν) and also
the associated inner products on C(V ) and X (Γ).

We call derivative operator the linear map d : C(V ) −→ X (Γ) that assigns to any u ∈ C(V ) the flow
du, called derivative of u, given by

(4) du(x) =
∑
y∼x

(
u(y)− u(x)

)
exy.

We call gradient the linear map ∇ : C(V ) −→ X (Γ) that assigns to any u ∈ C(V ) the flow ∇u, called
gradient of u, given by

(5) ∇u(x) =
∑
y∼x

c(x, y)
(
u(y)− u(x)

)
exy.

Clearly, it is verified that du = 0, or equivalently ∇u = 0, iff u is a constant function.

We define the divergence operator as div = −∇∗, that is the linear map div : X (Γ) −→ C(V ) that
assigns to any f ∈ X (Γ) the function div f, called divergence of f, determined by the relation

(6)

∫
V

u div f dν = −1

2

∫
V

〈∇u, f〉 dx, for an u ∈ C(V ).
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Therefore, taking u constant in the above identity, we obtain that

(7)

∫
V

div f dν = 0 for any f ∈ X (Γ).

Proposition 2.1. If f ∈ X (Γ), for any x ∈ V it holds

div f(x) =
1

ν(x)

∑
y∼x

fa(x, y).

Proof. For any z ∈ V consider u = εz, the Dirac function at z. Then, from Identity (6) we get that

div f(z) = − 1

2ν(z)

∫
V

〈∇εz, f〉 dx = − 1

2ν(z)

∑
x∈V
〈∇εz, f〉(x)

Given x ∈ V , we get that

〈∇εz, f〉(x) =
∑
y∼x

c(x, y)
(
εz(y)− εz(x)

)
f(x, y)r(x, y) =

∑
y∈V

(
εz(y)− εz(x)

)
f(x, y)

= f(x, z)−
∑
y∈V
y 6=z

εz(x)f(x, y)

and hence when x 6= z, then 〈∇εz, f〉(x) = f(x, z), whereas 〈∇εz, f〉(z) = −
∑
y∈V
y 6=z

f(z, y). Therefore,

div f(z) = − 1

2ν(z)

∑
x∈V
〈∇εz, f〉(x) =

1

2ν(z)

∑
y∈V
y 6=z

f(z, y)−
∑
x∈V
x 6=z

f(x, z)

 =
1

ν(z)

∑
x∈V

fa(z, x). �

We call curl the linear map curl : X (Γ) −→ X (Γ) that assigns to any f ∈ X (Γ) the symmetric vector
field curl f, called curl of f, given by

(8) curl f(x) =
∑
y∼x

r(x, y)fs(x, y) exy.

In the following result we show that the above defined difference operators verify properties that are
mimetic to the ones verified by their differential analogues.

Proposition 2.2. curl ∗ = curl , div ◦ curl = 0 and curl ◦ ∇ = 0.

Now we introduce the fundamental second order difference operator on C(V ) which is obtained by
composition of two first order operators. Specifically, we consider the endomorphism of C(V ) given by
L = −div ◦ ∇, that we call the Laplace-Beltrami operator or Laplacian of Γ.

Proposition 2.3. For any u ∈ C(V ) and for any x ∈ V we get that

L(u)(x) =
1

ν(x)

∑
y∼x

c(x, y)
(
u(x)− u(y)

)
=

1

ν(x)

∫
V

c(x, y)
(
u(x)− u(y)

)
dy.

Moreover, given u, v ∈ C(V ), the following properties hold:

(i) First Green Identity∫
V

vL(u)dν =
1

2

∫
V

〈∇u,∇v〉dx =
1

2

∫
V×V

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy.

(ii) Second Green Identity ∫
V

vL(u)dν =

∫
V

uL(v)dν.
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(iii) Gauss Theorem ∫
V

L(u)dν = 0.

Proof. The expression for the Laplacian of u follows from the expression of the divergence keeping in mind
that ∇u is a flow. On the other hand, given v ∈ C(V ) from the definition of divergence we get that∫

V

vL(u) dν = −
∫
V

vdiv (∇u) dν =
1

2

∫
V

〈∇u,∇v〉dx =
1

2

∫
V×V

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dx dy

and the First Green Identity follows. The proof of the Second Green Identity and the Gauss Theorem are
straightforward consequence of (i). �

Corollary 2.4. The Laplacian of Γ is self-adjoint and positive semi–definite. Moreover L(u) = 0 iff u is
constant.

Remark: Suppose that V = {x1, . . . , xn}, assume that ν = 1 and consider cij = c(xi, xj) = cji.

Then, each u ∈ C(V ) is identified with
(
u(x1), . . . , u(xn)

)T ∈ IRn and the Laplacian of Γ is identified with
the irreducible matrix

L =


k1 −c12 · · · −c1n
−c21 k2 · · · −c2n

...
...

. . .
...

−cn1 −cn2 · · · kn


where ki =

n∑
j=1

cij , i = 1, . . . , n. Clearly, this matrix is symmetric and diagonally dominant 1 and hence it

is positive semi-definite. Moreover, it is singular and 0 is a simple eigenvalue whose associated eigenvectors
are constant.

1http://en.wikipedia.org/wiki/Diagonally_dominant_matrix

http://en.wikipedia.org/wiki/Diagonally_dominant_matrix
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