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Abstract. In this paper, we look at the distributions that a random walk
network may tend to as time is allowed to go to infinity. Although there are

networks where there is a single steady state that all distributions will tend
towards and it is what one might expect in the continuous case, there are many
networks where we do not end up with a simple steady state but instead finite
sets of distributions that cycle between each other at each tick of the clock.
We will examine when this is the case and what maximum near-equilibrium
class length we can expect for a given graph.

1. Introduction

Imagine a graph (a set of vertices and edges connecting them) in which a particle
dropped into it at a particular vertex has some probability for each edge attached
to the vertex of moving to the vertex on the other side of the edge after some unit
amount of time. Given this we could find the probability of the particle reaching
any other vertex after a particular amount of time. This data can be represented as

a vector ~v(m) = (v
(m)
1 , v

(m)
2 , . . . , v

(m)
n ), where the vertices are numbered 1 through n

and v
(m)
k is the probability that, after time m, the particle will be at the kth vertex.

After enough time has passed, it would be reasonable to expect the probability
vector ~v(m) to settle down to an equilibrium, like a sloshing pool of water eventually
coming to rest. The first simple examples that were looked at with regard to this
line of thought gave an indication that the distribution of probabilities does indeed
settle down but perhaps not as simply as would be hoped (that is, not a simple
stationary distribution).

Example 1. Suppose we have a simple line segment with 5 vertices and 4 edges as
below and we say the at each vertex, a particle on the vertex has an equal chance
of leaving the vertex via any one the edges attached to it.

Figure 1. Line Segment Graph

If we drop a particle into the node on the far left, the probability for each vertex
that the particle will have reached it after a given time is given in Figure 2.

If enough time passes, this will converge to an alternation between these two
states:
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1 0 0 0 0

0 1 0 0 0

1/2 0 1/2 0 0

0 3/4 0 1/4 0

3/8 0 1/2 0 1/8

0 5/8 0 3/8 0

5/16 0 1/2 0 3/16
Figure 2. Times 1 Through 7

1/4 0 1/2 0 1/4

0 1/2 0 1/2 0

As you can see this is not a simple equilibrium distribution for the network, but
instead a pair of states that together comprise a kind of equilibrium. Though this
network also has a simple steady state distribution, where ~v = (1/8, 1/4, 1/4, 1/4, 1/8),
the fact that when we try to find an equilibrium induced by a particular initial state
we end up with something that is analogous but more complicated leads us to the
question, what can we say about this phenomenon more generally?

This last example showed that there are cases where a distribution in a graph can
converge as time goes on to something that is not a simple equilibrium. However,
the next example shows that we can find very similar graphs that may only converge
to simple equilibriums.

Example 2. Consider the case where we have a graph shaped like a circle with
five nodes (5 vertices, 5 edges) such that a particle at any given vertex has an equal
chance of moving to either of its neighboring vertices at the next step (see figure
3). In this case, unlike the case of the line segment, the only type of end-state that
a distribution may tend toward is a simple steady state in which all vertices have
the same probability assigned to them.

In the case of the line segment, if we assigned by vertices the labels 1, 2, 3, 4,
and 5 from left to right, it is reasonably clear that if a particle started at vertex 1,
then after an even number of steps, the vertices it could have arrived at would all
have the same parity (that is they would all have odd labels). It is easy enough to
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Figure 3. Circle Graph

see that this parity-preserving property of that network was precisely what made
a set of two states possible as a limiting sequence of states for the network. In the
case of the pentagon, however, if a particle started at the vertex on the right side
of the circle and followed a path clockwise around to get back to the top, it could
reach the same vertex after an odd number of steps instead of an even number.
That means that after enough steps have gone by, the probability that the particle
will have reached any vertex will be nonzero because not only even-labeled vertices
but odd-labeled vertices will be reachable.

This difference between the line segment and the pentagon can be expressed by
saying that the only cycles of vertices (paths from a vertex back to itself) are of
even length for the line segment, whereas the cirle graph has cycles of both length
2 (moving to a neigboring vertex and right back) and length 5 (travelling all the
way around the pentagon), and the difference in parity between 2 and 5 in this
case keeps the circle graph from having limiting sequences of states other than the
one simple equilibrium. We will see later on (Corollary 3) that this idea can be
generalized to give a characterization of the possible limiting sequences of states
for random walk networks.

2. Setting the Stage

So far we have only thought intuitively about random walk networks and the
near-equilibrium classes of states. The goal of this section is to lay out the defini-
tions and theorems necessary to speak precisely about these ideas.

2.1. Random Walk Networks as Markov Chains. To make the most of our
study of random walks, we must first formalize the notion and then think of it in
terms of the structures that we have the most tools for working with – in this case,
Markov Chains. First things first, definitions.

Definition 1. A Random Walk Network is a pair (G, ρ), where G = (V, E) is a
finite directed graph and ρ : V × V −→ [0, 1] is a function such that if there is no
directed edge from vertex vi to vertex vj , then ρ(vi, vj) = 0, if there is a directed
edge from vi to vj , then ρ(vi, vj) > 0, and for any vertex v ∈ V we have that
∑

w∈V ρ(v, w) = 1

The number ρ(v, w) is viewed as the probability of a particle at vertex v jumping
to vertex w at the next step. The function ρ naturally induces a very useful matrix
for the random walk network.
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Definition 2. The Transition Matrix for a random walk network (G, ρ) where V
= {v1, v2, . . . , vn} is the matrix P = [ρ(vi, vj)].

The i-jth entry of the transtion matrix P is the probability of a particle at vi

jumping to vj . It is easily verifiable that the i-jth entry of Pn is the probability after
n steps of a particle at vi arriving at vj . This means that the matrix P completely
describes the random walk network (except perhaps for edges that do not allow flow
of particles in either direction) and that Pn completely describes where a particle
may be after n steps.

Definition 3. Let (G, ρ) be a random walk network and let n = |V |. Then
a Distribution for G is a vector ~w = (w1, w2, . . . , wn) ∈ R

n, where wk ≥ 0 for
k = 1, . . . , n and

∑n
k=1 wk = 1.

The interpretation of a distribution ~w is that wk is the probability of a particle
being at vertex vk for k = 1, . . . , n, where V = {v1, . . . , vm). It can also be thought
of as the amount of water, say, at a particular vertex, and in that case we would
think of ρ(vi, vj) as the fraction of the water at vertex vi that will move to vertex
vj at the next step.

Distributions for a random walk network naturally interact with the correspond-
ing transition matrices. If P is the transition matrix for the random walk net-
work (G, ρ) and ~w is a distribution for (G, ρ), then the distribution we get by
pushing ~w one step forward in time is ~wP . This is most easily seen by verifying
it for the standard basis vectors: ~ekP is just the kth row of P, i.e. the vector
(ρ(k, 1), ρ(k, 2), . . . , ρ(k, n)), where n = |V |. This row represents the probabilities
of a particle at vertex vk moving to the other vertices – that is, the distribution
you get by pushing that particle forward one step.

Remark 1. We will find that it is very important to look at the matrix Pn for
different n, rather than P . As noted before, the matrix Pn has a natural interpre-
tation as the matrix representing where the i− jth entry represents the probability
of a particle starting at vi reaching vj exactly n steps later. And in this sense, the
matrix Pn is a transition matrix for a new random walk network with the same
vertices as before. The difference is that instead of taking the same edges as before,
we say that there is an edge from vi to vj if and only if there is a path from vi to
vj through the graph that is exactly n steps long.

Now that we have random walk networks defined, we will define the objects
and the properties that we will use as tools for proving things about random walk
networks.

Definition 4. A Markov Chain is a sequence of random variables X1,X2, . . . with
an at most countable state space S along with a (potentially infinite) |S| × |S|
matrix P = [pi,j ] called the transition matrix such that

Pr(Xn+1 = in+1|Xn = in) = Pr(Xn+1 = in+1|X1 = i1,X2 = i2, . . . ,Xn =
in) = pin,in+1

.

In other words, if we are dealing with only at most countably many possible
states in discrete time, if we have the probability of those states at the given time,
and if the next state’s probabilities depend only on the current state and not on
any earlier states or the current time, then we have a Markov chain. Note that
the notion of a distribution, which we have defined for a random walk network, is
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adaptable to Markov chains: it is a (potentially infinite) vector of length |S|, where
S is the state space, with entries that are nonnegative real numbers and with the
entries summing to 1. It is important to remember that S may be countable for
Markov chains in general.

It is easy, then, to verify that a random walk network forms a Markov chain.
For instance, say that we have a random walk network (G, ρ). Then let the random
variables X1,X2, . . . have state space V and be such that Pr(Xn = vj |Xn−1 = vi) =
ρ(vi, vj). Since the next step in a random walk inside a graph depends only on the
vertex the particle is currently on (i.e. the current state of the particle in Markov
chain terms) and not on the vertices that the particle visited earlier (i.e. the earlier
states of the particle) or the number of steps that have already been traversed and
the graph is finite, these random variables make the random walk network a Markov
chain. Note that the measure space that we would be computing these probabilities
on would essentially be the space of countably long paths through the graph. For
a rigorous exposition of this idea, see [3]

Also the notion of a transition matrix for a Markov chain fits the definition of a
transition matrix for a random walk. Having this structure with which to look at
random walk networks allows us to use the tools that have been developed already
for it.

2.2. Important Facts. In this section, we will present the basic theorems that
allow us to work with random walk networks using Markov chain tools and allow
us to apply those tools to the problem of determining the classes of near-equilibrium
distributions. First, we’ll give a few definitions to be able to talk about the theorems
sensibly.

Definition 5. If we have a Markov chain with transition matrix P = [pi,j ] and
state space S, then a set I ⊂ S is a Communicating Class for the chain if, given

i ∈ I, we have for all j ∈ S that j ∈ I if and only if p
(m)
i,j > 0 and p

(n)
j,i > 0 for some

m,n ∈ N, where p
(n)
i,j is the i − jth entry of the matrix Pn.

Note that Pn in this case has the same intrepretation that we mentioned for
the transition matrix for a random walk network in Remark 1 – giving us the
probability that n steps in the future we go from one state to another. With this
interpretation, upon inspection it is clear that a communicating class for a Markov
chain is an equivalence class and the set of communicating classes for a Markov
chain forms a partition of the subset of the state space of states that can return to
themselves.

Definition 6. A Markov chain is said to be Irreducible if it has only one commu-
nicating class.

For instance, if every state in the state space for the Markov chain can return to
itself with nonzero probability, then the Markov Chain is irreducible if and only if
S itself is a communicating class.

Definition 7. A Markov chain with random variables X1,X2, . . . and state space S
is said to be Positive Recurrent if Pr(Xn = i for infinitely many n ∈ N|X1 = i) = 1
for all i ∈ S and if the expected return time for every state in S is finite – that is,
if pn = Pr(Xn = i|Xn−1 6= i,Xn−2 6= i, . . . ,X2 6= i,X1 = i), then

∑∞
n=1 pnn < ∞.
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Definition 8. If a ~w is a distribution for a Markov chain with transition matrix
P , then ~w is said to be a Stationary Distribution if ~wP = ~w.

Now that we have these definitions describing nice properties a Markov chain can
have (which we will find random walk networks share), we can state an important
theorem regarding our problem.

Theorem 1. Suppose a Markov chain is both irreducible and positive recurrent.
Then it has a unique stationary distribution λ.

Proof. See Theorem 1.7.7 in [1]. �

The key idea in this paper is that, although this theorem only applies to chains
where there is only one communicating class, each separate communicating class
may be viewed as the state space for its own Markov chain, meaning that we can
find a stationary distribution for each communicating class and use this to find
near-equilibrium classes of distributions (see Definition 11).

Now we want to relate some of these ideas to random walk networks, so that we
can get some results in the next section. First a definition.

Definition 9. A random walk network with transition matrix P and vertex set
V is Connected if for every vi, vj ∈ V , there is and n such that p

(n)
i,j > 0, where p

(n)
i,j

is the i-jth entry of the matrix Pn.

This can be interpreted as saying that the random walk network is connected if
a particle at any one vertex can eventually reach any other. Of particular note is
that this just says that the graph G for the network should have a directed path
from any vertex to any other (this particular fact will be used as an expedient in a
later definition). These random walk networks are special in that they allow us to
talk intelligently about their communicating classes.

Remark 2. Note that given a transition matrix P for a random walk network
(G, ρ), the matrix Pn is also a transition matrix for some random walk network
that shares the vertices of G. Thus, we may talk about the communicating classes
for Pn, viewing Pn as a transition matrix.

Lemma 1. Let (G, ρ) be a random walk network and let P be its transition matrix.
For any vertex vi ∈ V , the communicating class for Pn containing vi (here, we are

using the convention adopted in Remark 2), is {vj : p
(mn)
i,j > 0 for some m ∈ N},

where p
(mn)
i,j is the i-jth entry of Pmn.

Proof. It is easiest to prove this if we understand what these things stand for. First,
the i-jth entry of Pn is nonzero if and only if there is a path of length n through
the graph G from vi to vj . So the communicating class for vi with respect to Pn

is the set of vertices that a particle starting at vi can reach via a path of kn steps
for some k ∈ N and get back to vi from there in mn steps for some m ∈ N.

With this interpretation, we can prove it without much trouble. If vk /∈ {vj :

p
(mn)
i,j > 0 for some m ∈ N}, then there is not even a path of length mn from vi to

vk, so vk cannot be in the communicating class for vi

If, on the other hand, vk ∈ {vj : p
(mn)
i,j > 0 for some m ∈ N}, then there is a

path of length mn from vi to vk for some m ∈ N. And since (G, ρ) is assumed to
be connected, there is a path of length α from vk to vi. Therefore, since mn is the
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length of a path from vi to vk and α of a path from vk to vi, there is a path of
length α + mn steps from vi to vi. And by repeating that path n times, we get
a path of length (α + mn)n steps from vi back to itself that reaches vk after mn
steps. That just means there is a path from vk to vi of length (α+mn−1)n – that
is, a particle can get from vi to vk and back in steps of length n. So vk is in the
communicating class of vi with respect to Pn.

Thus, vk is in the same communicating class as vi with respect to Pn if and only

if vk ∈ {vj : p
(mn)
i,j > 0 for some m ∈ N}. �

This lemma essentially says that in a connected random walk network with
transition matrix P , if we can go from one vertex to another in steps of length
n, then the two vertices are in the same communicating class with respect to the
transition matrix Pn. So we do not need to worry about checking that we can go
in one direction and then get back again – one direction is enough.

Remark 3. The fact that, for a connected random walk network (G, ρ), we only
need to check that we can get from v to u in steps of length n to know they are
in the same communicating class for Pn has a more significant implication. Since
any vertex that can be reached from a vertex in the communicating class I ⊂ V
in the random walk network induced by Pn is also in I, we know that the entire
subnetwork of points connected to I via Pn is in I. This means that if there is an
edge coming out of v ∈ V in the random walk network induced by Pn, then that
edge lead to an element of I, and from that element of I we can get back to v. On
the one hand, having all edges coming out of v leading to vertices in I means that
∑

u∈I ρ(n)(u) = 1, where ρ(n) is the probability function induced by Pn, so the set
I is the vertex set for a random walk network induced by Pn. And since from any
element of I we can come back to v, that random walk network is connected.

In short, the communicating class I for Pn is in fact the vertex set for a connected
random walk network with transition matrix induced by Pn.

Theorem 2. Let (G, ρ) be a random walk network and let P be its transition matrix.
If G is connected, then (G, ρ) is irreducible and positive recurrent.

Proof. First off, (G, ρ) is irreducible by Lemma 1 for the case n = 1 simply because
(G, ρ) is connected.

So let’s prove that it is positive recurrent. This means proving that if a particle
starts at a particular vertex v ∈ V , then the probability is 1 that it will return to
v an infinite number of times as the number of steps is allowed to go to infinity.

To prove this, note that the connectedness of (G, ρ) implies that for every vertex
u ∈ V , there is a path Au from u to v. That means that if |Au| is the number of
steps in Au, then there is a nonzero probability pu of a particle at u moving to v in
|Au| steps. Let p = minu∈V,u6=vpu. Then the probability that a particle at a vertex
u does not return to v at some point in A = maxu∈V,u6=v|Au| steps is always less
than or equal to 1 − p ∈ [0, 1). Therefore, if a particle starts at v, the probability
that it does not return to v any time after kA steps is less than or equal to (1−p)k.
And (1 − p)k −→ 0 as k −→ ∞. So the probability that the particle never returns
to v is 0. So the probability that the particle returns to v is 1.

Furthermore, if αn is the probability that a particle leaving v returns to v after
exactly n steps and βm is the probability that a particle starting at v does not
return to v any time when m steps have past, then whenever kA < n, we get that
αn ≤ βkA ≤ (1− p)k. Therefore,

∑∞
n=1 αnn ≤ 1 + 2 + . . . + (1− p)k(kA + 1) + (1−
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p)k(kA + 2) . . . Since kA+m
√

(1 − p)k(kA + m) −→ (1− p)(1/A) < 1 as k −→ ∞, the
root test from calculus implies that series converges and hence the expected return
time for v is finite.

Repeating the argument from the first paragraph for each of the countably many
paths that return to v exactly n times after some number of steps, we get that the
probability that the particle returns to v n + 1 times given that it begins with a
particular path that returns n times is 0 for any n ∈ N. Thus, by the subadditivity
of measures and the countability of the set of finite paths, the probability that the
particle returns to v a finite number of times is less than or equal to

∑∞
n=1 0 = 0, by

the subadditivity of probability measures. Thus, the probability that the particle
returns to v an infinite number of times is 1. So (G, ρ) is positive recurrent. �

3. Near-Equilibrium Distributions

We begin with the definition of an object that is intuitive enough and will be
very important in our proofs (e.g. Lemma 2 and the results that follow from it).

Definition 10. If G is a directed graph, then an n-cycle is a list of vertices
v0v1 . . . vn such that v0 = vn and for k = 0, . . . , n − 1 there is a directed edge
from vk to vk+1.

In other words, an n-cycle is a directed path from a vertex back to itself through
G. Next, we define the objects that have the starring role: near-equilibrium classes
of distributions.

Definition 11. If (G, ρ) is a random walk network with transition matrix P , then
a Near-Equilibrium Class of Distributions is a finite set X = { ~w1, ~w2, . . . , ~wn} of
distributions for (G, ρ) such that ~w1P = ~w2, ~w2P = ~w3, . . . , ~wnP = ~w1 and ~wi 6= ~wj

for i 6= j. In this case, we say the class has length n. And we say that ~wj is a
Near-Equilibrium Distribution for j = 1, 2, . . . , n.

In other words a near-equilibrium class of distributions is a set of distributions
that cycle through each other as time goes along. The elements of the class can
also be seen as left eigenvectors of eigenvalue 1 for the transition matrix Pn, where
n is the length of the class. Note that this means that the elements of the class are
stationary distributions for Pn.

Lemma 2. Let (G, ρ) be a connected random walk network with transition matrix
P . Let m1,m2, . . . ,mk, . . . be some lengths of cycles in G. Then the communicating
class I for the transition matrix Pn containing the vertex v ∈ V contains all points
within n,m1,m2, . . . ,mk, . . . steps of v.

Proof. First, we know by definition that I contains all vertices in G that are n steps
away from v.

Second, either G is the collection of directed edges that form a cycle in which
no vertices in the cycle are repeated except the initial and terminal vertices, or
the cycle of length mj in G can be exited – that is, if a particle is in the cycle
v0v1 . . . vmj

, there is an i ∈ {0, 1, . . . ,mj − 1} such that if the particle is at vi, then
at the next step, it can move to a vertex that is not vi+1 if i 6= mj or v1 if i = mj .
If G is such a cycle, then I trivially contains every vertex mj steps away, since that
is simply v.

On the other hand, suppose G is not such a cycle. Since G is connected, a
particle starting at v may reach the vertex v0 in the cycle v0 . . . vmj

in, say, αj
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bc

v

v0

v1

mj-cycle vmj−2

vmj−1

mj steps until v′

v′

αj steps

Figure 4. After αj Steps

steps, where we assume the particle may exit the cycle v0 . . . vmj
at v0. This is

pictured in Figure 4, where the open node represents the location of the particle.
Then after a total of αj + mj steps, the particle may either have left the cycle,
continuing for mj more steps, or gone around the cycle once more, ending up back
at v0, mj steps behind its other possible location. Then if β is the number of steps
needed for a particle at v to come back to v given that it travels to v0 and through
the cycle with length mj once along the way, we may repeat this cycle n times to
get such a cycle of length βn. This means that there is another cycle of length βn
starting at v, going to v0 in αj steps, skipping the cycle and going to v in βn−mj

steps total and ending mj steps ahead of v. These two paths of length βn are
pictured in Figure 5. Thus, all vertices mj steps forward from v are reachable with
the transition matrix Pn, so Lemma 1 says that they are in I.

This implies that if I is a communicating class for Pn and v ∈ I, then all vertices
n,m1,m2, . . . ,mk, . . . steps ahead of v are in I. �

Remark 4. Note that in a connected random walk network (G, ρ) with v ∈ V
there is always a cycle either from v directly to itself, or a cycle obtained by leaving
v and then returning to v. If either of these cycles is repeated n times, we get a
cycle of length mn for some m ∈ N. That is, in a connected random walk network,
each vertex is in fact contained in a communicating class. This is a technical detail,
but it is noteworthy since it is implicit in the statement of the next corollary.
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bc
v

v0

v1

mj-cycle

mj steps until v′

v′

vmj−2

vmj−1

αj steps

bc
v

v0

v1

mj-cycle vmj−2

vmj−1

mj steps until v′

v′

αj steps

Figure 5. At v after βn Steps and mj Steps Ahead of v After βn Steps
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|

u0 = v u1

u2uβn−2

uβn−1

0 1 βn − 2 βn − 1

Figure 6. Z

βnZ
Mapping To The Cycle C

Corollary 1. Let (G, ρ) be a connected random walk network with transition matrix
P . Let m1,m2, . . . ,mk, . . . be lengths of cycles in G. Then the communicating class
I for the transition matrix Pn containing the vertex v ∈ V contains all points within
gcd({n,m1,m2, . . . ,mk, . . .}) steps of v.

Proof. Let v′ ∈ V be a vertex that can be reached in gcd({n,m1,m2, . . . ,mk, . . .})
steps from v. Then there is a cycle of length β that starts at v, passes through v′

after gcd({n,m1,m2, . . . ,mk, . . .}) steps, and returns to v. Repeating this cycle n
times gives us a cycle of length βn, call this cycle C.

If C = u0u1 . . . uβn, where we may have ui = uj for i 6= j, then we have a

map φ : Z

βnZ
−→ {u0, . . . , uβn−1}, defined by j 7→ uj (this can be thought of as

“wrapping” Z

βnZ
around the cycle C as in Figure 6). We know that since at any

point of I on this cycle C we may move forward n,m1, . . . ,mk, . . . steps in C to
reach another point in I, from Lemma 2, the subgroup < n,m1,m2, . . . ,mk, . . . >
of Z

βnZ
is in φ−1(I). Since gcd({n,m1,m2, . . . ,mk, . . .}) is in that subgroup, we

know that v′ ∈ I, since that is φ(gcd({n,m1,m2, . . . ,mk, . . .})) ∈ I. �

By putting a cap on the how far apart points in a communicating class for Pn

are placed, Corollary 1 effectively allows us to figure out how many communicating
classes there are, based on their “concentration.” We shall see later in the paper
that this, combined with a close connection between the communicating classes and
near-equilibrium classes of distributions, allows us to determine information about
the near-equilibrium classes.

Next, we want to get an understanding of how the distance between the points
in a communicating class relates to the number of communicating classes.

Definition 12. If (G, ρ) is a connected random walk network with transition matrix
P and I is a communicating class for Pn, let k((G, ρ), n, I) be the length of the
smallest path from one vertex in I to another. We will simply write k(I) when the
context is understood.

Definition 13. If (G, ρ) is a connected random walk network with transition matrix
P , let α((G, ρ), n) be the number of communicating classes for Pn. We will simply
write α(n) when the context is understood.

Lemma 3. Let (G, ρ) be a connected random walk network with transition matrix
P . Let v ∈ V be a vertex and let I ⊂ V be the communicating class for Pn

containing v. Let u1, u2 ∈ I be such that u2 can be reached in k(I) steps from u1.
Then if v′ is k(I) steps forward from v, then v′ ∈ I.

Proof. First, by Lemma 1, we know that a vertex is in I if and only if it is reachable
after mn steps from a vertex in I, for some m ∈ N. Let v′′

0 ∈ V be a vertex that
is n steps ahead of v, where the path connecting them includes v′. Then, since v′′

0
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is n steps away from v ∈ I, we know that v′′
0 ∈ I. Therefore, since u2 ∈ I as well,

there is a path A of length mn from u2 to v′′
0 . Then the path of length mn that

starts at u1, goes k(I) steps to u2 and then follows A ends at the vertex v′′
1 k(I)

steps behind v′′
0 . So v′′

1 ∈ I by Lemma 1.
We may repeat this process for v′′

1 , v′′
2 , etc., where after the jth repetition, v′′

j will
be n − jk(I) steps ahead of v on the path containing v′. There is, then, a j such
that n − jk > 0 but n − (j + 1)k(I) ≤ 0. Since k is defined to be the smallest
distance from one vertex in I to another, n− jk(I) ≥ k(I) but n− (j + 1)k(I) ≤ 0
implies that n − jk(I) ≤ k(I). So n − jk(I) = k(I). So v′ = v′′

j ∈ I. �

Essentially, this theorem is talking about things similar to what Corollary 1 talks
about, except that instead of taking some particular distance between elements of
I, it takes the minimum possible distance. The idea is to use that minimality as
an exact way of looking at the communicating classes and then use the distance
mentioned in Corollary 1 as a bound for that exact number, so that we can estimate
it.

Theorem 3. If (G, ρ) is a connected random walk network with transition matrix
P and I and I ′ are communicating classes for Pn, then k(I) = k(I ′).

Proof. Let’s assume I 6= I ′.
First, by Lemma 3, we know that if v′

1 ∈ I ′, then there is a v1 ∈ I such that v′
1

is k(I) − j steps forward from v1, where 0 < j < k(I). This follows because the
connectedness of G implies there is a path from any vertex in I to v′

1, so we can
just follow some path from I to v′

1 in increments of k(I), by Lemma 3, until we
arrive at a vertex v1 ∈ I fewer than k(I) steps behind v′

1 (it must be fewer and not
equal because I 6= I ′ and if it were equal to k(I) we would get I = I ′.

Let v2 ∈ I be a vertex that is k(I) steps forward from v1 (which is guaranteed to
exist by the connectedness assumption), where the path from v1 to v2 goes k(I)− j
steps to v′

1 and j more steps to v2. Then, since v1, v2 ∈ I, Lemma 1 says that there
is a path of length mn from v2 to v1, for some m ∈ N. Then the path of length
mn that starts at v′

1, goes j steps to v2 and continues along the path from v2 to v1

ends at a vertex v′
2 j steps behind v1. And since v′

2 is mn steps from v′
1, Lemma 1

says that v′
2 ∈ I ′. And since v′

2 is j steps behind v1, which is k(I)− j steps behind
v′
1, we know that v′

2 is k(I) steps behind v′
1. Therefore, since k(I ′) is defined as the

minimum number of steps from a vertex in I ′ to another, k(I ′) ≤ k(I).
The same argument in reverse shows that k(I) ≤ k(I ′). So k(I) = k(I ′). �

By telling us that the minimum distances between points within communicating
classes are all the same, Theorem 3 let’s us know that the each communicating class
is just a slight perturbation of another, with all the minimum distances preserved.
And that brings us to the following corollary.

Corollary 2. If (G, ρ) is a connected random walk network with transition matrix
P and {I1, . . . , Iα(n)} is the set of communicating classes for Pn, then k(I1) = α(n).

Proof. Let I ′j be the set containing all vertices that are one step forward from some
vertex in Ij . Let v ∈ I ′j . Since Ij is simply all vertices that can be reached in
mk(Ij) steps from some particular vertex of Ij for some m ∈ N, I ′j is similarly just
the set of vertices that can be reached after mk(Ij) steps from v for some m ∈ N.
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But since k(Ij) = k(Ii) for all i = 1, . . . , α(n), by Theorem 3, we know that I ′j is
simply the communicating class containing v.

Let σ : {1, 2, . . . , α(n)} −→ {1, 2, . . . , α(n)} be the function defined by I ′j = Iσ(j).
Then, since the connectedness of G implies that any vertex in Ij may reach any
vertex of Ii eventually, for any i, j ∈ {1, 2, . . . , α(n)}, we know that σ must in fact
be a permutation (that is, we know that it is surjective, so by order considerations,
it must also be bijective).

But after k(Ij) steps from a vertex in Ij , we are back in Ij , by Lemma 3 meaning
that I

σk(Ij)(j)
= Ij . Therefore, since σ is a permutation and k(Ij) ≤ α(n) (this is

because between any two vertices of Ij that are k(Ij) steps apart, every pair of
vertices is less than k(Ij) steps apart and hence they are from different communi-
cating classes), this implies that {I1, I2, . . . , Iα(n)} = {I1, I2, . . . , Ik(Ij)}. Therefore,
α(n) = k(Ij). �

Remark 5. Not only does the proof of Corollary 2 prove that k(I) = α(n), but it
proves that if γj is the stationary distribution on Ij (which exists and is unique by
Theorems 1 and 2 and the observation that Pn is a transition matrix) for Pn, then
γjP has nonzero values only on Iσ(j) and (γjP )Pn = γjP , i.e. γjP = γσ(j).

So the transition matrix P acts on the set {γ1, γ2, . . . , γα(n)} on the right as a
permutation.

Lemma 4. Let (G, ρ) be a random walk network, P its transition matrix, {I1, . . . , Iα(n)}
the communicating classes for Pn, and γ1, . . . , and γα(n) be the stationary distri-
butions on I1, . . . , and Iα(n) respectively. Let ~ω be a stationary distribution for Pn.

Then ~ω =
∑α(n)

i=1 βiγi for some β1, . . . , βα(n) ≥ 0 such that
∑αn

i=1 βi = 1.

Proof. Suppose that ~ω = (ω1, ω2, . . . , ωm} has nonzero values on Ij , where m = |V |.
Then let ~ωj = (ω1

j , ω2
j , . . . , ωm

j ) be the distribution with ωi
j = 0 for vi 6∈ Ij and

ωi
j = ωi

∑

vl∈Ij
ωl for vi ∈ Ij , so that the entries of ~ωj in this case still sum to 1. Since

under action on the right by Pn, entries for communicating classes do not affect
entries for other communicating classes (after n steps, a particle only has a nonzero
probability of ending up at particles that are in its communicating class), we know
that ~ωjP

n only has nonzero entries for Ij .

And if we let ~ωj = ~0, when ~ω has no nonzero values on Ij , then we get ~ω =
∑α(n)

j=1 βj ~ωj for appropriate βj , where we let βj = 0 when ~ωj = ~0. But since

~ω = ~ωP =
∑α(n)

j=1 ~ωjP and both ~ωj and ~ωjP can only be nonzero on entries for

Ij and I1, . . . , Iα(n) are pairwise disjoint, we must have that ~ωj = ~ωjP . That is,

~ωj = γj when ~ωj 6= ~0.

Thus, ~ω =
∑α(n)

j=1 βj ~γj and by the definition of βj and ~ωj , we have β1, . . . , βα(n) ≥

0 and
∑αn

i=1 βi = 1. �

This lemma reduces the problem of describing near-equilibrium distributions
and their classes to describing the stationary distributions on the communicating
classes. So, for instance, in Example 1, the longest near-equilibrium distribution
we could find was of length two, which corresponds to the number of stationary
distributions and hence communicating classes for that network for any n: two.
Having such a reduction tells us that we can connect near-equilibrium classes in
general with the number of communicating classes, which we have already proved
much about. The next lemma takes advantage of this.
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Lemma 5. Let (G, ρ) be a random walk network, and P its transition matrix.
Then the largest near-equilibrium class of distributions for Pn has as its length the
number of communicating classes for Pn: α(n).

Proof. First, as noted in Remark 5, if {γ1, . . . , γα(n)} is the set of stationary dis-
tributions on the communicating classes for Pn, then P act on the right of this
set as a permutation. Therefore, {γ1, . . . , γα(n)} is in fact a near-equilibrium class
of distributions, meaning that α(n) is less than or equal to the size of the largest
near-equilibrium class of distributions.

On the other hand, if { ~ω1, ~ω2, . . . , ~ωm} is a near-equilibrium class of distributions
for Pn, then Lemma 4 and what we have just said about γ1, . . . , γα(n) imply that

~ω1P
α(n) = ~ω1, so that m ≤ α(n). So the size of the largest near-equilibrium

distribution is also less than or equal to α(n).
So α(n) is the size of the largest near-equilibrium distribution. �

Corollary 3. Let (G, ρ) be a random walk network, and P its transition ma-
trix. If m1,m2, . . . ,mj , . . . are some lengths of cycles in G and { ~ω1, ~ω2, . . . , ~ωl}
is a near-equilibrium class of distributions, then l ≤ gcd({m1,m2, . . . ,mj , . . .}) and
l|gcd({m1,m2, . . . ,mj , . . .}).

Proof. Let I be a communicating class for P l. By Corollary 1 and the definition
of k(I), we know that k(I) ≤ gcd({m1,m2, . . . ,mj , . . .}). By Corollary 2, k(I) =
α(l). By Lemma 5, l ≤ α(l) (in fact, we know that l = α(l) in this case). Thus,
l ≤ gcd({m1,m2, . . . ,mj , . . .}).

And since by Corollary 1, l = α(l) = k(I) ≤ gcd({l,m1,m2, . . . ,mj , . . .}) ≤ l,
we get that l = gcd({l,m1,m2, . . . ,mj , . . .})|gcd({m1,m2, . . . ,mj , . . .}).

So l|gcd({m1,m2, . . . ,mj , . . .}). �

Now that we have a good, perhaps even exact, upper bound on the size of near-
equilibrium classes of distributions for connected random walk networks, we may
generalize it to the rest of the random walk networks.

Definition 14. If (G, ρ) is a random walk network, then a subgraph H of G
is a Connected Component if H is connected in the sense described immediately
following Definition 9, that is, every vertex in H is connected to every other vertex
in H via a directed path in H, if H is maximal in this regard (there is no larger
connected subgraph containing H), and if there are no directed paths from a vertex
of H to a vertex in G − H.

The idea now is to break a given graph up into connected components, apply
our previous results to those components, and use that to get a result for graphs
in general.

Theorem 4. If (G, ρ) is a random walk network that has connected components
C1, C2, . . . , Ck and f(Cj) is the maximum length of a near-equilibrium class of dis-
tributions on Cj when it is viewed as a random network, then the maximum length of
a near-equilibrium class of distributions for (G, ρ) is lcm(f(C1), f(C2), . . . , f(Ck)).

Proof. First, suppose ~ω is a near-equilibrium distribution for (G, ρ).
If the vertex vi 6∈ C1, C2, . . . , Ck, then either vi has no paths back to itself, or it

has some maximal connected subgraph of G containing it.
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In the first case, Let Bvi
be the set of vertices in G that have paths leading to

vi along with vi itself, in which case there must be an edge from vi to a vetex not
in Bvi

or we would have a path from vi back to itself.
In the second case, let Svi

be the set of vertices u such that there is a path
from u to vi and from vi to u. Then Svi

is the vertex set for the largest connected
subgraph of G that contains vi. Therefore, there must be a directed path from a
vertex of Svi

to a vertex in G − Svi
, since otherwise, Svi

would be a connected
component containing vi. So if, in this case Bvi

is the set of all vertices in G
with paths leading into Svi

, then this implies that, for every vertex u ∈ Bvi
there

is a nonzero probability pu of a particle starting at u ending at a vertex outside
of Svi

after nu steps for some nu ∈ N (this is also true for the Bvi
defined in

the first case, so from now on the argument will apply to both). Therefore, if
g(~w) is the sum of the entries of w ∈ R

|V | corresponding to vertices in Bvi
, then

g(~ωPmaxu∈Bvi
nu) ≤ (1−minu∈Bvi

pu)g(~ω) if ~ω has nonzero entries corresponding to
vertices in Svi

. Therefore, we also get that if m is the length of the near-equilibrium

class containing ~ω, then g(~ω) = g(~ωPm(maxu∈Svi
nu)) < (1 − minu∈Svi

pu)g(~ω) <

g(~ω), a contradiction. Thus, ~ω is zero on vertices in Svi
. So we know that ~ω has

nonzero values only for vertices of the connected components.
If, then, v ∈ Cj for some j, then let ρj be the restriction of ρ to vertices of Cj .

Since the definition of connected component requires that there are no edges leading
out of Cj , we still get

∑

w ρj(v, w) = 1, so (Cj , ρj) is in fact a connected random
walk network. If ~ω is nonzero on any vertices of Cj , let hj(~ω) be the distribution
on (Cj , ρj) obtained by giving hj(~ω) the same values as ~ω for the same vertices,
only scaled so that the sum of the entries of hj(~ω) is 1. If ~ω is zero on all vertices

of Cj , then let hj(~ω) = ~0. Since there are no edges from any vertices of Cj to any
vertices outside of Cj and any edges leading into Cj must be from vertices that do
not belong to connected components and for which ~ω hence has a zero entry, we
get that hj(~ω)Pj = hj(~ωP ), where Pj is the transition matrix for (Cj , ρj). Thus,
hj(~ω)Pm

j = hj(~ωPm) = hj(~ω), that is, hj(~ω) is a near-equilibrium distribution on
(Cj , ρj).

Therefore, since hj(~ω) is a near-equilibrium distribution, the length of the near-
equilibrium class containing hj(~ω) divides f(Cj) (if l is the length of the class con-
taining hj(~ω), then gcd(l, f(Cj)) must be a multiple of l, i.e. l|f(Cj)). Therefore,
if mj is the length of the near-equilibrium class containing hj(~ω), then we get that
lcm(m1,m2, . . . ,mk) ≤ lcm(f(C1), . . . , f(Ck)). And if Hj(hj(~ω)) is the distribu-
tion on (G, ρ) with the same entries as hj(~ω) for vertices of Cj and zero entries oth-
erwise, then there are β1, . . . , βk ≥ 0 such that

∑

βj = 1 and ~ω =
∑

βjHj(hj(~ω)),
by definition.

Since Hj(hj(~ω)) is a near-equilibrium distribution of length mj , we know that

Hj(hj(~ω))P lcm(m1,m2,...,mk), so that ~ωP lcm(m1,m2,...,mk) = ~ω, meaning that m di-
vides lcm(m1,m2, . . . ,mk). So m ≤ lcm(m1,m2, . . . ,mk) ≤ lcm(f(C1), . . . , f(Ck)).

On the other hand, if ~ω is a near-equilibrium distribution such that hj(~ω) is
a near-equilibrium distribution of length f(Cj) for each j, then we know that
Hj(hj(~ω)) is a near-equilibrium distribution with class length f(Cj), so we know
that f(Cj) divides m because Hj(hj(~ω))Pm = Hj(hj(~ω)), so lcm(f(C1), . . . , f(Ck))
divides m. Thus, lcm(f(C1), . . . , f(Ck)) is in fact the maximum length for a near-
equilibrium class of distributions for (G, ρ). �



16 TREVOR MCCARTEN

These culminating results gives us a bound on the size of near-equilibrium classes
for arbitrary random walk networks, based solely on their directed graphs. The
fact that the network in Example 2 did not have a parity-preserving property in
the face of the fact that the only near-equilibrium distribution it had was a simple
stationary distribution was an example of these results in action, where the fact
that gcd(2, 5) = 1 implied that only a stationary distribution was possible. Having
such results allows us to analyze particular types of random walk networks and
describe their near-equilibium classes of distributions, at least in number.

For instance, consider electrical networks (for definitions and theorems concern-
ing electrical networks, see [2]).

Definition 15. An Electrical Network is a pair (G, γ), where G is a graph with
vertex set V and edge set E, V = ∂V ∪ intV , where ∂V ∩ intV = ∅ and ∂V
is called the set of boundary vertices and intV the set of interior vertices, and
γ : E −→ [0,∞) is the conductivity function for the network.

From an electrical network, we may induce a random walk network based on the
conductivities of the edges.

Definition 16. If (G, γ) is an electrical network, then the Random Walk Network
Induced by (G, γ) is the random walk network (G′, ρ), where the vertex set for G′

is the vertex set for G, V , there is a directed edge from an interior vertex of V to
any other vertex exactly when there is an edge in G connecting the two, there is
exactly one directed edge out of any boundary vertex, which is from itself to itself.
And we define ρ : V × V −→ [0, 1] like so: if v ∈ intV and v′ ∈ V and there is

an edge between v and v′ in G, then ρ(v, v′) =
γ(ev,v′ )

∑

u∈N(v) γ(ev,u) , where we say that

N(v) is the set of vertices that are connected via an edge to v in G and ev,u is the
edge from v to u in G. And if v ∈ ∂V , then ρ(v, u) = 0 if u 6= v and ρ(v, v) = 1.

It is clear enough that ρ in the above definition does in fact make (G′, ρ) a random
walk network. Given this structure for the random network, we immediately get a
result for electrical networks.

Corollary 4. Let (G, γ) be an electrical network and let (G′, ρ) be the random
walk network induced by (G, γ). Then any near-equilibrium class of distributions
for (G′, ρ) has length no more than 2.

Proof. Suppose C is a connected component of (G′, ρ). Then, either C is a single
vertex with a directed edge to itself (a cycle of length 1) or C contains vertices v
and v′ such that there is a directed edge from v to v′ and another from v′ to v (a
cycle of length 2) because if there is a directed edge form one v to v′, that means

ρ(v, v′) 6= 0, which means
γ(ev,v′ )

∑

u∈N(v) γ(ev,u) 6= 0 and hence
γ(ev′,v)

∑

u∈N(v′) γ(ev′,u) 6= 0, in the

notation of Definition 16. The latter inequality says that there is a directed edge
form v′ to v.

Thus, all connected components of (G′, ρ) contain either 1-cycles or 2-cycles. So
Corollary 3 says that the maximum length for a near-equilibrium class of distribu-
tions on C when it is viewed as a random walk network is 1 or 2. Thus, Theorem 4
says that the maximum length of a near-equilbrium class of distributions for (G′, ρ)
is the least common multiple of 1’s and 2’s, so it is either 1 or 2, i.e. it is less than
or equal to 2. �
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