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Abstract. We discuss random stuff about characteristic polynomials.
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1. Introduction

Consider an electrical network Γ = (G, γ), where G = (V,E) is a graph with the
vertices partitioned into two sets, called intV and ∂V respectively. We number the
vertices starting at 1 such that the all the boundary vertices are numbered before
any of the interior vertices. Let γ : E → R be termed the conductivity of an edge
where γij is the conductivity of the edge between vertex i and vertex j. We create
a matrix K such that:

K(i, j) =


−γ(i, j) if there is an edge from i to j
0 if no such edge exists∑

i 6=j γij i=j


This is called the Kirkhoff matrix of Γ. It’s useful to write the Kirchhoff matrix

in the following block form:

K =
[
A B
BT C

]
This is done such that all the indices in the A block consist of of boundary vertices
and all the indices in the C block consist of interior vertices.

This paper will discuss multiple aspects of the characteristic polynomial of K
and related matrices. In doing so, we will frequently be using results from Matthew
Lewandowski’s paper ??on tree diagrams.

Definition 1.1. A tree diagram T , is a forest that spans the interior of a network
such that each component contains at most 1 node in ∂V . We will refer to T
interchangeably as both the tree digram itself and its edge set. The value of a tree
diagram is val(T ) =

∏
e∈T γ(e)
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In that paper he proves the following theorem which will prove useful in this
discussion.

Theorem 1.2. Let Ω be the set of all tree diagrams of an electrical network. If

K =
[
A B
BT C

]
is the Kirkhoff matrix of that electrical network, then:

(1)
∑
T∈Ω

val(T )

2. Characteristic Polynomials and Principle Proper Submatrices

In this section we relate the characteristic polynomial and related polynomials
in any number of variables to the principle proper submatrices of a matrix. The
following results will apply to any matrix, making no assumptions about its form. If
M is a matrix then for A ⊆ {1, 2, ..., |M |}, M(A) is the principle proper submatrix
obtained by deleting the rows and columns associated with the indices in A from
M . Similarly, M [A] is obtained by deleting all rows and columns not in A from M .
The same can be used analagously for a single integer a, i.e M(a) is obtained by
deleting the row and column associated with a.

Lemma 2.1. Let M be a matrix with real valued entries. Let A ⊆ {1, 2, ..., |M |}.
Let IA be a matrix where off diagonal entries are 0 and diagonal entries are 1 if
their index is in A and 0 otherwise. Define the function fA(λ) = det|M − λIA|.
In the case that A consists of all the indices of M we have f(λ) = fA(λ) is the
characteristic polynomial of M . Then

(2) f ′A(λ) =
∑
i∈A

det|M(i)− λIM (i)|

Proof. �

Theorem 2.2. Let M be a matrix and A1, ..., An be disjoint subsets of {1, 2, ..., |M |}
Define fA1,...,An

(λ1, ..., λn) = det|M − λ1IA1 − ... − λnIAn
|. Let Bak

be an ak

element subset of Ak. Let B =
⋃
Bak

. Let Θa1,...an
be the set of all such B for the

exponents a1, ...an. Then the coefficient of the term λa1
1 ...λan

n in fA1,...,An
(λ1, ..., λn)

is
∑

B∈Θa1,...an
det|M [B]|.

Proof. �

This gives a nice result for the characteristic polynomial.

Corollary 2.3. If A = {1, 2, ..., |M |} then

(3) f(λ) =
n=|M |∑
n=0

∑
B⊂A,|B|=n

det|M [B]|

This gives a nice interpretation of the characteristic polynomial of C using tree
diagrams. We can think of deleting a row and column from C as turning that
node into a boundary node. Thus, the coefficient of λn can now be seen to be the
sum of all tree diagrams resulting from graphs with n interior nodes converted into
boundary nodes.
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3. Tree Diagrams and the Characteristic Polynomial of the
Kirkhoff Matrix

Now we interpret the coefficients of the characteristic polynomial of the Kirkhoff
Matrix in terms of Lewandowski’s tree diagrams. In order to do this, consider
a network Γ. Associate with it a network Γ′, which is constructed by letting its
interior contain all the vertices in Γ and adding boundary spikes with edge weights

−λ. Clearly if K ′ = K =
[
A′ B′

B′T C ′

]
, then detC ′ = f(λ), in other words, the

determinant of the principle proper submatrix of Γ′ associated with its interior is
equal to the characteristic polynomial of Γ.

Theorem 3.1. Consider the characteristic polynomial f(λ) of the Kirkhoff ma-
trix of a network Γ. Let comp(T ) be the number of components in T . Then the
coefficient of λk in f(λ) is ∑

T∈Ω,comp(T )=k

g(T )val(T )

. Where g(T ) is the product of the component sizes of T .

Proof. �

An important idea will be to think of the characteristic polynomial as a poly-
nomial not in 1 variable, but as a polynomial in |E| + 1 variables, where we use
the conductivity of each variable as a seperate indeterminate. The following results
utilize this construction.

Lemma 3.2. Consider a subset F of E consisting of i edges e1, ..., ei. If the
characteristic polynomial (in the edges and λ) has degree n (in λ) then the m edges
form a star if and only if the coefficient of e1, ..., ei, λ

n−i is n − i + 1, and the
coefficient of any j element subset of F multiplied by λn−j is n− j + 1.

Proof. �

Corollary 3.3. The n-star with edges e1,2 , ..., en has characteristic polynomial

f(λ) =
i=n∑
i=0

∑
F⊂E,|F |=i

∏
e∈F

γ(e)

Theorem 3.4. The characteristic polynomial of the Kirkhoff Matrix with all con-
ductivities given as indeterminates contains enough information to recover the un-
derlying graph.

4. Characteristic Polynomials of Response Matrices

The response matrix of an electrical network is found by taking the Schur com-
plement, i.e Λ = A−BC−1BT . (Derivation of response matrix equation, comment
on inapplicability of the results of previous section, interpretations as tree diagrams)

5. Conclusion

Conclusion goes here.
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