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1. Abstract

This paper describes the discretization of the time-independent Schrödinger
equation. We discuss the formulation of the forward problem, as well as the recov-
erability of interior data in certain graphs when dealing with the inverse problem.
Since this particular problem has not been worked on much, and there is not a lot
of extant background theory, this paper’s results are primarily exploratory.

2. Introduction

Construct a connected graph with boundary G = (V, ∂V, E), where V is the set
of all vertices vi, ∂V ⊆ V is the set of all boundary vertices, and E is the set of
all edges eij connecting the ith vertex to the jth vertex. For our purposes, we will
not distinguish between eij and eji, and we will allow loops such that an edge can
start at a vertex and terminate at that same vertex.

A Schrödinger network is a graph G with boundary with two real-valued func-
tions q and u defined on V . In this paper, q will be referred to as the potential and
u will be referred to as the probability distribution.

In the continuous case, the Schrödinger equation is given by the formula

Squ = ∆u − qu = 0

.
However, since we are dealing with an analog of the Schrödinger equation for a

graph, a discretized version is required, which is given by

Sqd
u(i) = ∆du(i) − q(i)u(i) =





∑

j∈N(i)

u(i) − u(j)



 + q(i)u(i),

where q(i) and u(i) are the values of q and u on the ith vertex, and N (i) is the
set of the vertices that are connected to i by an edge.

3. The Forward Problem

To guarantee that the inverse problem exists, we must first solve the forward
problem. To do this, we need to show that, given any boundary data, there exists
exactly one set of interior data that satisfies the conditions of a Schrödinger network.
The construction of the Schrödinger problem involves an n × n Kirchoff matrix K

of the following form:
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K =

[

A B

Bt C

]

where the boundary-to-boundary connections are in the upper-left partition, the
interior-to-boundary connections are in the upper-right and lower-left partitions,
and the interior-to-interior connections are in the lower-right partition. For the
construction of a Kirchoff matrix, the sum of the entries of any row (or column) is
zero, and any non-zero entry at Kij , when i 6= j, represents an edge joining vertex
i to vertex j.

From here, we consider transforming the diagonal entries of K by adding to it
another n × n matrix Q, which has the values of the Schrödinger potentials qi on
its main diagonal. It is of the form

Q =











q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · qn











To complete the set-up of the forward problem, we will consider an n× 1 vector
U that contains each of the probability distributions ui

U =











u1

u2

...
un











such that when U is multiplied by K + Q a corresponding vector Φ of the form

Φ =

[

φ

0

]

will be created, where the lower partition contains entries that are all zero, so as to
show that each φi on the interior is zero. Also, each of the φi in the upper partition
are the boundary readings. The data associated with a Schrödinger network can
be summarized as follows:

(K + Q)U = Φ.

Lemma 3.1. The matrix K + Q is symmetric.

Proof. The addition of Q changes only the diagonal rows of K, so all other entries
are preserved, and thus, by construction, K is symmetric, which implies that K+Q
is also symmetric. �

At this point, if we make certain restrictions on q, we have the following theorem:

Theorem 3.2. If ∀i ∈ int(V ), qi ≥ 0, the forward Schrödinger problem has exactly

one solution.

Proof. By the construction of the forward problem, there will be exactly one so-
lution if the sub-matrix containing the interior-to-interior information of K + Q is
invertible. Now, if we view K + Q as the partition

K + Q =

[

A + Q1 B

Bt C + Q2

]

,
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where Q1 and Q2 are the boundary and interior qi, respectively, and take the Schur
complement of K+Q, we have A−B(C+Q2)

−1BT . This is a legal operation as long
as the matrix C + Q2 is invertible. To establish that it is invertible, we note that
because every qi in the interior of G is non-negative, adding Q2 to C (an already
positive definite matrix) results in a non-negative number being added to each of
the entries of the main diagonal of C, and so the matrix C +Q2 is positive definite,
and thus invertible. Hence, there is a unique solution to the forward Schrödinger
problem. �

Since this theorem places restrictions on the interior qi only, we can still have
any values for the qi on the boundary. Now that we have shown that the forward
problem exists, we can consider the inverse problem.

4. The Inverse Problem

Given the response map Φ, as well as the ui and the qi on ∂V , the goal of the
inverse problem is to determine qi on each i ∈ int(G). Before we work on recovering
any qi on the interior, we will establish a ratio of boundary to interior vertices that
must be satisfied if there is any hope of recovering all of the interior qi.

Theorem 4.1. Given a graph with m boundary vertices and n interior vertices, it

is impossible to recover all qi if
m(m+1)

2 < n.

Proof. We are given the map from the qi to the response matrix Λ = (A+Q)−B(C+

Q2)
−1BT . Our goal is show that this mapping is injective only if m(m+1)

2 ≥ n.
Suppose that the qi form a subset of <n

+. Decomposing the matrix K +Q as before,

we know the information contained in A + Q1, B, BT and A − B(C + Q2)
−1BT .

Because the only known information that is dependent on Q2 is contained in A −
B(C + Q2)

−1BT , the above statement is equivalent to saying that the mapping

from <n
+ to Λ is injective only if

m(m+1)
2 ≥ n. We can view the set of all Λ as being

a subspace of <
m(m+1)

2 because there are m(m+1)
2 potentially independent entries

in the response matrix, with each of these entries being located above the main

diagonal. Thus, we will consider the map from <n
+ to <

m(m+1)
2 . For this to be

an injective mapping, by the invariance of domain, it is necessary to require that
m(m+1)

2
≥ n.

�

The above theorem provides an absolute minimum that must be satisfied to find
the qi. However, if there exist relationships between any of the known data, then,
even if this restriction is satisfied, we still might not be able to determine the qi on
the interior of the graph.

If we avoid graphs that do not have enough independent information or structures
in which the qi are shown to not be recoverable, there are still many remaining
graphs in which we can recover the qi. One method is to write out the matrices
symbolically and solve by using matrix algebra. We have the following theorem
that demonstrates this tactic:

Theorem 4.2. If we are given a graph that has an equal number of interior and

boundary vertices such that each interior vertex is connected to exactly one boundary

vertex, and vice versa, we can always determine the qi on the interior.
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Proof. After partitioning K +Q in the usual way and taking its Schur complement,
we have the equation

(A + Q1) − B(C + Q2)
−1BT = Λ.

Since there are an equal number of boundary and interior vertices, B and BT are
necessarily square matrices. Further, because every vertex i ∈ ∂V is connected to
one interior node only, the entries in B, and by extension BT , will be permutations
of the identity. Hence their columns will be linearly independent, and thus the
matrices are invertible. From here, we can use matrix multiplication to solve for
Q2 as follows:

(A − Q1) − B(C + Q2)
−1BT = Λ

⇐⇒ B(C + Q2)
−1BT = (A + Q1) − Λ

⇐⇒ (C + Q2)
−1BT = B−1[(A + Q1) − Λ

⇐⇒ (C + Q2)
−1 = B−1 [(A + Q1) − Λ](BT )−1

⇐⇒ Q2 = [B−1[(A + Q1) − Λ](BT )−1]−1.

This last expression for Q2 determines exactly the values for the qi on the interior
for this entire class of graphs. �

The theorem above deals with a very special case of graphs, since B and BT

are frequently non-invertible. Another special case is the triangle-in-triangle graph
shown below.

Figure 1. The triangle-in-triangle graph

This graph is constructed in such a way that it is almost a trivial practice to
recover the qi, since they can be read off nearly immediately.

Example 4.3. We can recover the qi on the interior in the triangle-in-triangle

graph.
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Proof. If we write out the matrix K + Q, we have

K+Q =





























2 + q1 0 0 0 0 0 −1 0 −1
0 2 + q2 0 0 0 0 −1 −1 0
0 0 2 + q3 0 0 0 0 −1 −1
0 0 0 2 + q4 0 0 −1 0 −1
0 0 0 0 2 + q5 0 −1 −1 0
0 0 0 0 0 2 + q6 0 −1 −1
−1 −1 0 −1 −1 0 4 + q7 0 0
0 −1 −1 0 −1 −1 0 4 + q8 0
−1 0 −1 −1 0 −1 0 0 4 + q9





























.
�

In addition to the restriction on the ratio of interior to boundary vertices, there
are also certain graph structures in which we cannot recover the qi on the interior.
One such structure, pictured below, will be referred to as an ”in-series connection”,
and is infinite-one.

Figure 2. In-series connection. An example of an infinite-one graph

Theorem 4.4. There are infinitely many values of possible qi on the interior ver-

tices of an in-series connection.

Proof. Writing out K + Q gives us

K + Q =









2 + q1 0 −1 −1
0 2 + q2 −1 −1
−1 −1 2 + q3 0
−1 −1 0 2 + q4











6 JARON GUBERNICK

. Taking the Schur complement gives us

Λ =

[

2 + q1 0
0 2 + q2

]

−

[

−1 −1
−1 −1

][ 1
2+q3

0

0 1
2+q4

] [

−1 −1
−1 −1

]

,

from which we get
[

1 1
1 1

] [ 1
2+q3

1
2+q3

1
2+q4

1
2+q4

]

=

[ 1
2+q3

+ 1
2+q4

1
2+q3

+ 1
2+q4

1
2+q3

+ 1
2+q4

1
2+q3

+ 1
2+q4

]

= Λ

The matrix above has only one meaningful entry, 1
2+q3

+ 1
2+q4

, and it is an expression

involving the sum of fractions containing q3 and q4, respectively. Since there are
infinitely many choices for q3 and q4 that can be used to satisfy the above equation,
this graph is necessarily infinite-one. �

Another method of determining the qi is to read off information from a given
graph and to form a system of equations from which q can be determined on the
interior. This is done by writing out the conditions for a Schrödinger network that
a given vertex must satisfy. To provide an example of this method, consider the
familiar ”top-hat” graph. It is one such graph that lends itself easily to determining
the qi on its interior in this fashion.

Figure 3. The top-hat graph

Example 4.5. We can recover the interior qi of a top-hat graph.

Proof. If we write out the conditions of the Schrödinger equation on vertex 1, we
get the equation

u1q1 + (u1 − u5) = φ1,

where φ1 is the boundary reading on the 1st vertex. From here, since we are given
u1, q1 and φ1, we can determine u5. In a symmetric argument, we can determine
u6. At this point, we can write out the Schrödinger equation for the 5th vertex:

u5q5 + (u5 − u1) + (u5 − u2) + (u5 − u6) = 0,

in which q5 is the only unknown. If we can guarantee that u5 is non-zero for some
choice of boundary data, q5 can be solved for using this expression. Since we are
able to choose our boundary information, we will be able to construct a scenario in
which u5 6= 0. Again, using a symmetric argument, q6 can be found as well. �
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This method can suffice for similar, small graphs, but the system of equations
becomes intractable quickly as the number of vertices is increased. Another method
is to use the connection-determinant formula, which is described in detail in [P-M],
but will be only summarized here.

Theorem 4.6. The connection-determinant formula. Suppose we are given a k×k

matrix S containing all information contained in a Schrödinger network. Also,

partition the matrix as before so that

S =

[

A + Q1 B

Bt C + Q2

]

.

Now, suppose that S(P +C +Q2; T +C +Q2) is a sub-matrix of S, with P being

a set of row indices in A + Q1 and T being a set of column indices in A + Q1, and

|P | = |T | = k, for some k ∈ \. Then,

det[S(P + C + Q2; T + C + Q2)] = (−1)kΣ

Corollary 4.7. If we can form a unique connection between source and target

vertices that uses all interior vertices, then detΛ(S; T ) = 1
det(C+Q2)

.

Corollary 4.8. If we can form a unique connection between source and target

vertices that uses all but one interior vertex i, then detΛ(S; T ) = a+qi

det(C+Q2)
, where

a is the number of vertices that i is connected to by an edge.

This second corollary implies that under the right conditions, we can determine
the value of qi, because

qi = detΛ(S; T )det(C + Q2).

To provide an example of when the connection-determinant formula allows us to
easily recover the interior qi, consider the graph in Figure 3.

Example 4.9. We can recover the interior qi on the graph in Figure 3.

Proof. We can form a set of connections, for example (5, 4; 2, 3), such that each
interior vertex is involved in exactly one of the connections. This allows us to
determine the value of det(C +Q2). Now, if we can find a unique set of connections
that uses all but one interior vertex i, we will have an equation in which qi appears
as the only unknown, since we know det(C +Q2, which would allow us to determine
its value. Consider the source and target vertices (1, 5; 2, 3). There is only one way
to make this connection, but it does not use the 7th vertex. Using the formula in
the second lemma above for this vertex gives us

q7 = detΛ(S; T )det(C + Q2),

from which we can determine the value of q7. Use of a symmetric argument allows
for the determination q8. We cannot, however, use symmetry to find the values of
the other qi. However, we can find other unique connections to determine the other
vertices. �

5. Special Cases

In the previous section, we showed methods to recover q on some graphs that
did not contain in-series connections or that did not have a ratio of interior to
boundary vertices that was too high. These methods made use of a great deal of
boundary information, since the u, q and φi were given on the boundary. However,
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Figure 4. Circular graph with boundary spikes.

there are certain classes of graphs whose qi can be recovered with somewhat re-
laxed conditions, such as having qi known only on a proper subset of the boundary
vertices.

For instance, Richard Oberlin described extensively the case of square lattices
([R-O]) with information about q known on only one face of the boundary. Another
case is the top hat graph. With this graph, we never used the qi appearing in vertices
three and four. Because of this, we could have determined the interior qi without
any knowledge of those particular boundary qi.

6. Future Research

There has been virtually no previous work done on Schrödinger networks, and
thus there remains a large number of open questions. One class of these questions is:
what similarities are there between Schrödinger networks and electrical networks?
Is there an analog of the maximum/minimum principle? Is there such a structure
that is ”Schrödinger equivalent” in an analogous way to Y − ∆ equivalence in the
electrical network case? More generally, what would it mean for two graphs to be
Schrödinger equivalent? What trivial modifications, if any, can be made to alter a
Schrödinger network so its properties remain the same?

Also, in the case of the forward problem, we required that the qi on the interior
be nonnegative. However, since the matrix C + Q2 needed only to be invertible,
are there weaker conditions we can place on the qi and retain the invertability of
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C + Q2? Is there also a way to form a weaker statement of the problem where we
are given far less information on the boundary?
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