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Abstract

We examine the eigenvalues of the response matrix of an electrical

network, specifically bounding the eigenvalues through physical inter-

pretation and matrix analysis. Additionally, the general characteristic

polynomial is considered and is evaluated in the n-star case.
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1 Preliminaries

Let G = (V,E) be a graph where V is the set of vertices and E is the
set of edges. Let Ω = (G, γ) be a network where the vertices are nodes of
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the network and γ is a function defined on the edges of the network. V
is partitioned into two disjoint sets: boundary nodes denoted by ∂G and
interior nodes denoted by int G. Let v be a voltage function defined on the
nodes of the network. Then a network is γ-harmonic if for all interior nodes
p:

∑

q∼p γpq(v(p) − v(q)) = 0 where q ∼ p denotes all nodes q such that
an edge from p to q exists. For any electrical network Ω with a γ-harmonic
function defined on its vertices, there exists a Kirchhoff matrix K defined as
such:

Kij =

{

−γij if the edge ij exists,
∑

k 6=i γik if i = j.

If an edge does not exist between i and j, Kij=0. The row sums of K are
equal to 0 as γij = γji. Thus, K is symmetric and positive semi-definite. K
can be partitioned into four submatrices A, B, BT and C .

K=

(

A B
BT C

)

The response matrix Λ is defined by taking the Schur complement of K
with respect to C , which equals: A − BC−1BT . Λ, like K, has row sums
equal to 0, is symmetric, and is positive semi-definite. Let φ be a column
vector where φi be the boundary voltage at boundary node i and ψ be a
column vector where ψi be the boundary current at boundary node i. Then
the response matrix maps boundary voltages to boundary currents, such that
Λφ = ψ.

Let λ be an eigenvalue of Λ. Then λφ=ψ, indicating that the boundary
currents are a scalar multiple of the boundary voltages. Because the net
current flow into any network is 0,

∑

i ψi = λ
∑

i φi = 0. Thus it follows that
if λ 6= 0, then

∑

i φi = 0. Also Λ is a symmetric n× n matrix, implying that
there exist n eigenvalues with n linearly independent eigenvectors that form
a basis of R

n.

Lemma 1.1. 0 is an eigenvalue for all response matrices with multiplicity
1.

Proof. Let there exist a constant column vector φ. Then it follows from
the row sum property of Λ that Λφ = 0. Thus, φ is an eigenvector of Λ
corresponding to an eigenvalue of 0. A non-constant φ cannot have eigenvalue
0 because there must be a current flow for the network as the current along
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boundary-interior edges is nonzero. Thus, 0 only exists as an eigenvalue for
constant φ.

Remark 1. Lemma 1.1 bears a geometric interpretation. A constant column
vector φ is equivalent to setting all the boundary voltages equal to a constant
voltage. By the maximum/minimum principle, all interior voltages equal this
constant value. This implies that no current flows through the network, which
corresponds to an eigenvalue of 0.

Lemma 1.2. 0 is the lower bound for all eigenvalues of a response matrix.

Proof. Normalize the eigenvector φ such that ||φ||∞ = 1. Let p be the bound-
ary node such that v(p) = 1. If p is connected to n different nodes:

λ =
n

∑

i

(1 − vi)ai

where vi denotes the voltage at node i and ai denotes the conductivity of the
edge from p to i. Because −1 ≤ vi ≤ 1 by the maximum/minimum principle,
λ ≥ 0.

Remark 2. Lemma 1.2 may also be proven using the positive semi-definite
property of a response matrix, given that a positive semi-definite matrix has
eigenvalues greater than or equal to 0.

2 Bounds for the Eigenvalues of Λ

In [1], the goal was to find eigenvalues of n-star and n-lattice graphs. While
determining specific eigenvalues is difficult, finding an upper bound for eigen-
values of general graphs proved to be much more feasible.

Definition 1. A boundary spike network is a connected network such that
each boundary node neighbors only one interior node.

Definition 2. A boundary antenna is a pair of boundary nodes that neighbor
the same interior node.

3



2.1 Physical Interpretations for Eigenvalues of Λ

A graph containing a boundary antenna with equal conductivities yields in-
teresting properties for eigenvalues of its response matrix.

Theorem 2.1. If a boundary spike network has a boundary antenna with the
same conductivity a on both edges, a is an eigenvalue.

Proof. Let G = (V,E) be the graph corresponding to the boundary spike
network. Let pq and pr be the edges of a boundary antenna with γ(pq) =
γ(pr) = a, where p is an interior vertex and q and r are boundary vertices.
Let φ be a vector such that φq = 1, φr = −1 and φs = 0 for all other
boundary vertices s. The function v which is 0 at all interior nodes satisfies
Kirchhoff’s law at all interior nodes and hence is the unique solution of the
Dirichlet problem on G with boundary values φ. Then it is easy to see that
[Λφ]s = 0, [Λφ]q = a and [Λφ]r = −a. Hence Λφ = aφ. This proves that φ is
an eigenvector of Λ with eigenvalue a.

Figure 1: Assigning boundary voltages as shown in the proof of Theorem 2.1

Corollary 2.2. For a boundary spike network, choose each interior node pi

such that there exists ki boundary nodes neighboring pi with equal conductiv-
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ities a. a is an eigenvalue with multiplicity
∑

i(ki − 1) if there exists some i
for which ki ≥ 2.

Proof. Using the voltage assignment from Theorem 2.1 for boundary antenna
pairs, ∀j: ej − ej+1 is an eigenvector if 1 ≤ j ≤ ki − 1. Thus, for each pi,
there exists ki − 1 linearly independent eigenvectors all with corresponding
eigenvalue a.

Due to the way we defined a boundary spike network, the eigenvalues of
its response matrix are limited by its boundary-interior edge conductivities
as there exists no boundary-boundary edges.

Theorem 2.3. For a boundary spike network, let n be the number of bound-
ary nodes and S = {a1, a2, ..., an} be the set of conductivities for boundary-
interior edges. Let ak be the maximal element of S. For any eigenvalue λ of
response matrix Λ, 0 ≤ λ ≤ ak.

Proof. Assume λ > ak. Let φ be an eigenvector for λ. Let {p1...pl} be
the set of interior nodes connected to boundary nodes and let Qi be the set
of boundary nodes connected to pi where qi ∈ Qi. Let v be a γ-harmonic
function on int G and v = φ for all Qi. Therefore:

v(pi) = v(qi)(1 − λ/ai)

where ai = γpiqi
. Because λ > ai, v(pi)v(qi) < 0 for v(qi) 6= 0. Because

0 6= φ, there must be a qi and qj such that v(qi) > 0 and a v(qj) < 0. Thus,
v(pi) < 0 and v(pj) > 0. Let G = (V,E) be the graph corresponding to
the boundary spike network. Then let G

′

= (V
′

, E
′

) be the subgraph such
that V

′

= V − {Q1, ..., Ql}, E
′

= E − {p1Q1, ..., plQl} and ∂G
′

= {p1...pl}.
Let v|G′ = w, which is still γ-harmonic on G

′

. By the maximum/minimum
principle, the maximum and minimum values of w occur on ∂G

′

. Because
there exists a v(pj) > 0, then the maximum value of w is positive. Letting
the maximum of w occur at node pj , v(qj) < 0. This implies the net current
out of pj for v in G is greater than zero. This demonstrates a contradiction
since pi ∈ int G. Therefore, λ ≤ ak. Note that a similar argument can be
made using the minimum of w.
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Figure 2: Contradiction shown in the proof of Theorem 2.3

Theorem 2.4. Suppose ak is an eigenvalue of a boundary spike network
where ak is the maximal conductivity for all boundary-interior edges. Then
there must exist a boundary antenna with equal conductivity ak.

Proof. Let λ = ak and suppose there does not exist a boundary antenna with
constant conductivity ak. Let all notation be defined as it was in the proof of
Theorem 2.3. If for each pi there exists an edge piqi such that ai = ak, letting
v(p1) = ... = v(pl) = 0 satisfies Ohm’s Law for all edges piqi. Defining v = 0
for all other interior nodes satisfies Kirchoff’s Law and therefore is the unique
Dirichlet solution of G

′

. Because there exists a v(qi) > 0 and a v(qj) < 0,
there must exist a boundary antenna at pi and pj so γ will be harmonic at
pi and pj. Therefore, there must be current flowing along some edge piqi

with conductance ai < ak. However, any boundary voltage v(qi) with edge
conductance ai has current v(qi)ai flowing across it. This demonstrates a
contradiction as it implies λ 6= ak. Now, let there exist at least one pi such
that for each edge piqi, ai 6= ak ∀qi ∈ Qi. v(qi) 6= 0 because if v(pi) = 0,
v = 0 for all interior nodes in G and the same contradiction as before will be
reached (λ 6= ak). Thus, knowing that v(qi)v(pi) < 0 for v(qi) 6= 0, the same
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contradiction will be reached as in the proof of Theorem 2.3. Thus, there
must exist a boundary antenna with equal conductivity ak.

2.2 Relating the Composition of Λ to its Eigenvalues

Consider the composition of Λ:

Λφ = λφ

(Λ − λI)φ = 0

(A− BC−1BT − λI)φ = 0

(A− λI)φ = (BC−1BT )φ

Using this interpretation for sub-matrices of Λ generates a means to prove
the upper bound for eigenvalues in the general case. This decomposition is
useful due to the properties of C−1 (invertible and positive semi-definite).

Notice that when A = aI (a is a scalar):

(a− λ)φ = (BC−1BT )φ

⇔ λ
′

= a− λ is an eigenvalue of BC−1BT

Theorem 2.5. Suppose there exists a network with no boundary-boundary
connections and for each i ∈ ∂V ,

∑

i∼k γik = a where k ∈ int V (A =
aI where A is a submatrix of Kirchhoff matrix K). When the number of
boundary nodes is greater than the number of interior nodes connected to the
boundary, a is an eigenvalue.

Proof. Let n be the number of boundary nodes and r be the number of
interior nodes connected to the boundary.

rank(BC−1BT ) ≤ rankB ≤ min[n, r]

Nullity(BC−1BT ) = n− rank(BC−1BT )

For n > r:

n− rank(BC−1BT ) ≥ n− rankB ≥ n− r > 0

⇒ Nullity(BC−1BT ) > 0

⇒ λ
′

= 0 is an eigenvalue for BC−1BT

⇒ a is an eigenvalue for Λ
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Lemma 2.6. For all eigenvalues λ of response matrix Λ, there exists an
eigenvector φ such that:

λ ≤

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

Proof. For any vector x:

x(BC−1BT )xT = (xB)C−1(xB)T ≥ 0

as C−1 is positive semi-definite. For some λ with eigenvector φ:

BC−1BT is positive semi-definite

⇒ φTBC−1BTφ = φT (A− λI)φ ≥ 0

⇒ φTAφ ≥ φTλφ

⇒
∑

i

φi[Aφ]i ≥ λ
∑

i

φ2
i

⇒ λ ≤

∑

i,j aijφiφj
∑

i φ
2
i

(Note that φ 6= 0 so
∑

i

φ2
i 6= 0)

=

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

Choosing the largest eigenvalue shows that for all λ, there exists an eigen-
vector φ such that:

λ ≤

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

Theorem 2.7. Let Λ be the response matrix of any network with no boundary-
boundary connections (A is a diagonal submatrix of Kirchhoff matrixK). For
any eigenvalue λ of Λ, λ ≤ maxi{aii}.
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Proof. By Lemma 2.6:

λ ≤

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

=

∑

i aiiφ
2
i

∑

i φ
2
i

as aij = 0 for i 6= j

≤
maxi{aii}

∑

i φ
2
i

∑

i φ
2
i

= maxi{aii}

Now the foundation has been built to prove the upper bound for eigenval-
ues of general response matrices. First, the following lemma must be shown:

Lemma 2.8. Let tij be the ijth entry of an n× n symmetric matrix T such
that tijtkl ≥ 0 for i 6= j and k 6= l. Letting x be a vector in R

n:

|
∑

i,j(i6=j)

tijxixj| ≤ |
∑

i,j(i6=j)

tijx
2
i |

Proof.

∀xi, xj : (|xi − xj|)
2 ≥ 0

⇒ x2
i + x2

j ≥ 2|xi||xj|

⇒
∑

i6=j

|tij|(x
2
i + x2

j) ≥ 2
∑

i6=j

|tij||xi||xj|

⇒
∑

i<j

|tij|(x
2
i + x2

j) ≥
∑

i6=j

|tij||xi||xj|

⇒
∑

i<j

2|tij|x
2
i ≥

∑

i6=j

|tij||xi||xj|

⇒
∑

i6=j

|tij|x
2
i ≥

∑

i6=j

|tij||xi||xj|

⇒
∑

i6=j

|tijx
2
i | ≥

∑

i6=j

|tijxixj|

⇒ |
∑

i6=j

tijx
2
i | ≥ |

∑

i6=j

tijxixj|
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Theorem 2.9. Let aij be the ijth entry of A corresponding to a Kirchhoff
matrix K. For the response matrix Λ derived from K, λ ≤ maxi [aii −
∑

i6=j aij] where λ is any eigenvalue of Λ.

Proof. By Lemma 2.6:

λ ≤

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

≤

∑

i aiiφ
2
i −

∑

i,j(i6=j) aijφ
2
i

∑

i φ
2
i

by Lemma 2.8

≤
maxi{

∑

i aii −
∑

i6=j aij}
∑

i φ
2
i

∑

i φ
2
i

= maxi{
∑

i

aii −
∑

i6=j

aij}

Theorem 2.10. Let λ be an eigenvalue of Λ and µ be an eigenvalue of
Kirchhoff submatrix A. Then λ ≤ max{µ}. If λ < mini{aii +

∑

i6=j aij},
λ < max{µ}.

Proof. By Lemma 2.6:

λ ≤

∑

i aiiφ
2
i +

∑

i,j(i6=j) aijφiφj
∑

i φ
2
i

=

∑

i,j aijφiφj
∑

i φ
2
i

≤ max{µ} by properties of the Rayleigh Quotient

If λ < mini{aii +
∑

i6=j aij}, then ∀aii ∈ A : aii − λ > −
∑

j(i6=j) aij.

φTBC−1BTφ = φT (A− λI)φ

=
∑

i

φi[(A− λI)φ]i

=
∑

i

φi[
∑

j

(aij − λδij)φj ]

=
∑

i

[(aii − λ)φ2
i + φi

∑

j(i6=j)

aijφj]

> −
∑

i,j(i6=j

aijφ
2
i +

∑

i,j(i6=j)

aijφiφj ≥ 0 by Lemma 2.8
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⇒ φTAφ > φTλφ

⇒ λ <

∑

i,j aijφiφj
∑

i φ
2
i

≤ max{µ} by properties of the Rayleigh Quotient

3 Characteristic Polynomial of Λ

When considering the characteristic polynomial of Λ, a useful relationship
between Λ and K, the Kirchhoff matrix, can be derived as follows:

0 = det(Λ − λI)

= det((A− BC−1BT ) − λI)

= det((A− λI) − BC−1BT )

= det(K
′

/C)

= det K
′

/det C

where

K
′

=

(

A− λI B
BT C

)

and K
′

/C denotes the Schur complement of K
′

with respect to C .
Because det C 6= 0:

det(Λ− λI) = 0 ⇔ detK
′

= 0

Remark 3. Letting (A− λI) be an n × n matrix:

detK
′

=
∑

k

(−1)kλk(
∑

M

det(Mn−k))

where Mn−k are minors of K
′

through removal of k rows and columns, leaving
C intact.

The proof of this theorem is similar to the proof of the general character-
istic polynomial in [2].
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3.1 The Characteristic Polynomial for Λ of an n-star

Theorem 3.1. For an n-star network where {γ1...γn} are the edge conduc-
tivities, its characteristic polynomial is of the form:

(−λ)n(
∑

i γi) + (−λ)n−1(2
∑

i<j γiγj) + (−λ)n−2(3
∑

i<j<k γiγjγk) + ...+ (−λ)(nγ1γ2...γn)

=
∑n−1

0 [(−λ)n−k(k + 1)
∑n

a1<a2<...<ak+1
γa1
γa2
...γak+1

]

Proof. A network is an n-star ⇒

detK
′

= det

(

Kii − λ Ki,n+1

Kn+1,i

∑n

i γi

)

where Kii = −Kn+1,i = −Ki,n+1 = γi.

=

n
∑

i

[γi

n
∏

i

(γi − λ)] −
∑

i

[γ2
i

n
∏

j 6=i

(γj − λ)]

=
n

∑

i

[(γi(γi − λ) − γ2
i )

n
∏

j 6=i

(γj − λ)]

=
n

∑

i

[−γiλ
n

∏

j 6=i

(γj − λ)] = 0

Choosing n− k entries of λ letting i = a1:

n
∑

a1

[−γa1
λ

n
∑

a2 6=... 6=ak+1 6=a1

γa2
...γak+1

(−λ)n−k−1 ]

= (−λ)n−k

n
∑

a1 6=a2 6=... 6=ak+1

γa1
γa2
...γak+1

= (−λ)n−k(k + 1)
n

∑

a1<a2...<ak+1

γa1
γa2
...γak+1

Summing over all n− k entries for 0 ≤ k ≤ n− 1 yields:

n−1
∑

0

[(−λ)n−k(k + 1)
n

∑

a1<a2<...<ak+1

γa1
γa2
...γak+1

]
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Remark 4. The characteristic polynomial of the n-star can also be derived
through summation of minors for K

′

.

Theorem 3.2. Suppose {γ1, ...γn} is the set of edge conductivities for an
n-star network. If {λ1, ...λn−1} is the set of nonzero eigenvalues for Λ, then
γ1 < λ1 < γ2 < λ2 < ... < λn−1 < γn. But ∀(1 ≤ k ≤ n − 1): if γk = γk+1,
then λk = γk.

Proof. Consider the characteristic polynomial for an n-star:

(−λ)n(
∑

i

γi) + (−λ)n−1(2
∑

i<j

γiγj) + ...+ (−λ)(nγ1γ2...γn) = 0 (1)

λ 6= 0 ⇒

(−λ)n−1(
∑

i

γi) + (−λ)n−2(2
∑

i<j

γiγj) + ...+ (nγ1γ2...γn) = 0 (2)

Letting ρ = 1/λ ⇒

(
∑

i

γi) + (−ρ)(2
∑

i<j

γiγj) + ...+ (−ρ)n−1(nγ1γ2...γn) = 0 (3)

Integrating in terms of ρ⇒

− 1 − (−ρ)(
∑

i

γi) − (−ρ)2(
∑

i<j

γiγj) + ...− (−ρ)n(γ1γ2...γn) = 0 (4)

Substituting λ and multiplying by -1 ⇒

(−λ)n + (−λ)n−1(
∑

i

γi) + (−λ)n−2(
∑

i<j

γiγj) + ...+ (γ1γ2...γn) (5)

= (λ− γ1)(λ− γ2)...(λ− γn) = 0

Thus the roots of (5) are γ1...γn, which implies the roots of (4) are 1/γ1...1/γn.
Because (3) is the derivative of (4) with respect to ρ, the roots of (3) lie
between the roots of (4) unless γk = γk+1 wherein ρk = 1/γk. Therefore:

1/γ1 < ρ1 < 1/γ2 < ... < ρn−1 < 1/γn

By (2):
γ1 > λ1 > γ2 > ... > λn−1 > γn

Hence {λ1, ..., λn} and 0 are roots of (1), the characteristic polynomial for an
n-star. Note that if γk = γk+1, then λk = γk.
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4 Future Research

There is much research still to be done regarding eigenvalues of the response
matrix. Future problems include:

• Further bounding the eigenvalues for specific cases

• Relating the eigenvalues of K and its submatrices to eigenvalues of Λ

• Finding general criteria for the existence of certain eigenvalues

• Relating the minimal path between boundary nodes to eigenvalue bounds

• Using eigenvalues to characterize the eigenvectors

• Further evaluating the characteristic polynomial for specific cases
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