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Abstract. In this paper we introduce a new inverse problem. An agreement
protocol can also be modeled using the Laplacian operatator. Using an input
output mapping, we hope to indentify the graph underlying the network. We
assume constant conductivity of 1 on all edges.

1. Introduction

Let Γ be a graph with n nodes.

1.1. The Forward Problem. Suppose we number the nodes of Γ. Now consider
a vertex function vj(t), where j indicates the vertex, and t the time. With each
time step, information gets passed between the vertices in the following fashion:
Suppose i has r neighbors j, k, ..., o. Then the time derivative of vi(t) is

˙v(i(t)) = rvi(t)− vj(t)− vk(t)...− vo(t)

. The equation that models the time derivative is then clearly

[ ˙v(t)] = −L[v(t)]

where L is the laplacian for the graph: the adjacency matrix for the graph with the
diagonal such that the row and column sums are zero. Over time, the initial states
of all of the vertices will tend towards one value.

1.2. Our Inverse Problem. We are going to pick a certain set R of r nodes
at which to excite the network- by sending a current [u(t)] = [u1(t)...ur(t)] along
them, if we think of this as an electrical network. Then, at another, not necessarily
disjoint, set S of s nodes, we will read output measurements [y] = C[x(t)] where
[y] = [y1 . . . ys]. Our system is now

P =
{

ẋ = Ax + Bu
y = Cx

B, C are simply matrices of 0’s and 1’s which pick out and make u the right size,
pick out the vertices in x at which measurements are taken.
We have a black box engineering method called system identification. This method
yields an approximation of the original system P = {A,B, C} → P ′ = {Ã, tildeB, tildeC}.
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2. Tackling the Inverse Problem

2.1. What information can we get directly from the measurements? The
relation between the two systems is a transformation T so that

Ã = TAT−1

B̃ = TB

C̃ = CT−1

.

Thus we know that CAB = C̃ÃB̃. Furthermore, because of the structure of B, C,
the product yields some entries in the Laplacian A, which fully characterizes the
graph.
Our goal is to find A, knowing B, C, P ′.
A can be characterized in a number of ways. We know that it is the Kirchoff matrix
for a simple connected graph, so it has all of those poperties. Furthermore, A has
only integer entries.
The next step we can take is to adopt the convention of number the boundary
nodes first. This allows for a natural block partition of the Laplacian, and of the
transformation T .

Remark 1. Another convention which we adopt for simplicity is that C = BT .
This means that we measure input and output at the same nodes- and it makes it
easier to think of there simply being one boundary. This seems like a very simple
convention, but it actually gives us some immediate insight into the problem. Notice

now that B =
[

Im×m

0

]
.

Now we can think of

[A] =
[

A11 A12

A21 A22

]
.

A12 = AT
21 A11 is m ×m. We can partition T the same way, but T does not have

any explicit properties except for invertability; it is not necessarily a symmetric
matrix.
It is now obvious that the product BAC = A11. Thus, we have the fixed boundary
of our unknown graph, and also some access into the interior. Specifically, we know
how many interior vertices are connected to each boundary vertex. This is good,
since it will allow us to identify boundary antennae- but it will not allow us to
differentiate between a spike and an antannae of any number of spikes.
We then observe that we have not used B̃, C̃ for any information. It is interesting
to note that before we adopted the convention of numbering the boundary vertices
first, we had no idea what they meant. Now, it is totally obvious. Partition T in
the usual manner, and use block mutliplication to see the following.

B̃ = TB =
[

T11 T12

T21 T22

] [
Im×m

0

]
=

[
T11

T21

]

C̃ = CT−1 =
[

Im×m 0
] [

T−1
11 T−1

12

T−1
21 T−1

22

]
=

[
T−1

11 T−1
12

]

We now have the explicit relationship between parts of T and the boundary. One
of our intial attempts to construct T and A from Ã involved breaking T up into
elementary matrices, and trying to equate those to physical transformations of the
graph. This does not turn out to be a viable method, because most elementary
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operations on a matrix do not preserve many properties of the Kirchoff matrix.
Our next observation is that A and Ã have the same eigenvalues, because they are
symmetric matrices. This means that we know the trace of A. Since we also know
A11, we know the trace of A22, which is the difference of the two.

2.2. Degree Based Graph Construction. Since we now have the sum of the
unknown diagonal entries (there are n−m of them), we can can generate all of the
sets of cardinality n−m of integers > 0 whose sum is tr(A22). Then we can begin
to eliminate some of these sets as possible for the diagonal of the Kirchhoff matrix.
The diagonal of A is the degree sequence for the graph. There can be more than
one graph associated to each degree sequence, but we can limit them somewhat
since we have fixed the boundary of the graph. We can further eliminate many
of these because they will have the wrong eigenvalues, even though they have the
correct trace.
Now we will describe the algorithm through which we can build all possible graphs
with a given degree sequence. This is outlines in the paper ”Degree Based Graph
Construction” by Kim, Toroczkai, Erdos, Miklos, and Szekely, avaialbe on the
arXiv.

3. Some interesting things from Combinatorial/Algebraic Graph
Theory

In this section the author will talk about her attempt to read section 5 of C.D.
Godsil’s paper ”Tools from Linear Algebra” which appeared as Chapter 31 in the
book ”Handbook for Combinatorics.” The paper was very interesting, but we had
some trouble reading it due to numerous misprints and mistakes. The paper can
be found at http://quoll.uwaterloo.ca/pstuff/tools.pdf.

4. Interpretting the characteristic polynomial of the adjacency
matrix of a graph

Here we have anumber of goals. First, we wish to see what information can
be read off from the coefficients of the characteristic polynomail of an adjacency
matrix; this had been done before, but we derived this independantly.
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