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1 Introduction

The inverse problem for the stationary transport equation on a bounded
domain in Rn has been well-studied; see for example [1] for n ≥ 3 and [4] for
n = 2. In this paper, we develop a problem on directed graphs with boundary
that is a discrete analogue to the inverse transport problem. The discrete
transport problem was first considered in [3] in a form slightly different from
the problem we are studying.

We recall the formulation of the continuous problem. Let X ⊂ Rn be
a bounded domain with C1-boundary ∂X, and let V ⊂ Rn be open. The
function f(x, v), which represents the density of particle transport at a point
x ∈ X travelling with velocity v ∈ V , satisfies the stationary linear transport
equation, given by

−v · ∇xf(x, v)− σa(x, v)f(x, v) +

∫
V

k(x, v′, v)f(x, v′)dv′ = 0, (1)

at every (x, v) ∈ X × V . The coefficient σa(x, v) represents the density of
particles being aborbed into the surrounding medium, and the scattering
kernel k(x, v′, v) represents the particles changing direction from v′ to v at
x. Let n(x) be the outward unit normal to ∂X at x ∈ ∂X, and define
Γ± = {(x, v) ∈ ∂X × V : ±n(x) · v > 0}. The boundary value problem, or
forward problem, is to find f which satisfies (1) and such that

f |Γ− = f−, (2)

where f− is a given function defined on Γ−. Under certain conditions on
σa, k, and X (for the exact conditions, see [1] and [4]), the forward problem
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(1)-(2) is uniquely solvable for f(x, v). Let f+ be the restriction of f to Γ+,
called the outgoing flux. On the boundary of our domain, we can measure
the outgoing flux generated by some incoming flux f−. The albedo operator
A, defined by

A : f− 7→ f+ = f |Γ+

encapsulates all the information that can be obtained from such measure-
ments. The inverse problem is: Does A determine σa and k? It is proved
in [1] that if σa(x, v) = σa(x), i.e. the absorption depends only on position,
then A determines σa and k for for n ≥ 3. For n = 2, it is proved in [4] that
if σa = σa(x) and k is small in the appropriate norm, then A determines σa
and k.

Our goal is to formulate a discrete version of the inverse transport problem,
and if possible to derive analogous results. Instead of a region X, we imagine
particles moving along the edges of a directed graph G. A possible physical
interpretation of this discrete model is traffic flow, where the edges of G
represent streets and vertices represent intersections. We may interpret f
as a density of cars, scattering as cars changing streets, and absorption as
cars being parked. However, our primary focus is the mathematical problem
without a specific application in mind.

The paper is structured as follows. In Section 2, we derive a version of
the transport equation for particles travelling through a discrete medium.
The parameters σa and k, which depend on the medium, still represent ab-
sorption and scattering of particles respectively. In Section 3, we show that
the forward problem as posed in Section 2 is uniquely solvable as long as
the absorption dominates the scattering at each edge. This unique solution
gives us access to the (linear) albedo operator A, which maps particle flux
entering the medium to the measured outgoing flux of particles. The inverse
problem, explored in Section 4, is to reconstruct σa and k from A, which
encapsulates the information available from boundary measurements. This
is possible only if the map

S : (σa, k) 7→ Aσa,k

is one-to-one, where Aσa,k is the albedo operator for a transport network
with absorption coefficient σa and scattering kernel k. The inverse problem is
highly nonlinear, and the main results of this paper deal with the linearization
of the problem. Namely, in Section 4.2 we characterize the differential D(σa,k)
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of S and give conditions which ensure D(σa,k)S is injective. In Section 5, we
discuss possible future work on this problem and related ones.

The version of the discrete forward problem outlined in [3] was shown
to have a unique solution. To the author’s knowledge, the discrete inverse
transport problem has not been previously studied.

2 The Discrete Transport Equation

Consider a symmetric digraph with boundary G = (V, ∂V,E). V is the set
of vertices, E is the set of edges, and ∂V is a nonempty subset of V whose
elements are designated boundary vertices. The complement in V of ∂V is
denoted IntV , the set of interior vertices. Here, “symmetric” means that
if a directed edge exists from p to q, then there is a directed edge from q
to p. We assume G is finite and connected. Also, we assume that the in-
degree (and hence also the out-degree) of each interior vertex is even, and
that each boundary vertex has in-degree and out-degree equal to one. We
can then consider edges incident to ∂V as boundary edges and denote the
set of boundary edges ∂E. Since for each boundary vertex p, there is one
directed edge originating at p and one directed edge ending at p, we can
further divide ∂E into the set of incoming boundary edges, denoted ∂E−,
and the set of outgoing boundary edges, denoted ∂E+. The set of interior
edges, denoted IntE, is the complement in E of ∂E.

At each interior vertex p, let N (p) be the set of neighbors of p. As with
any directed graph, if qp ends at the vertex where pr begins, we say qp is a
direct predecessor of pr and pr is a direct successor of qp. We assume that a
fixed-point free permutation φp of N (p) has been specified for each interior
vertex p, and that φ2

p = 1. Interpret φp(q) as the “preferred direction” at qp,
in the sense that a particle moving along an edge qp continues along φp(q) if
it does not scatter. Sometimes, q′ will denote φp(q) when the base vertex p
is clear from the context. We assume that repeated application of φ always
leads to ∂V eventually, i.e. that any sequence p, q, φq(p), φφq(p)(q), . . . must
terminate. Then, the collection of permutations φp induces a permutation
Φ of the boundary vertices by letting Φ(r) be the unique boundary vertex
reached by repeated application of φpi

for appropriate pi.
Consider particles moving along the edges of G, and let f(p q) denote

the density of particles travelling along the edge p q (in general, f(p q) 6=
f(qp)). From an edge p q, a particle may continue along φq(p), scatter to a
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different edge, or be absorbed. We interpret the coefficients σa(p q) ≥ 0 and
k(rp, p q) ≥ 0 as follows: σa(p q)f(p q) is the rate of particle absorption at
edge p q, and k(rp, p q)f(rp) is the rate at which particles change direction
from edge rp to edge p q at p. The absorption coefficient σa is not defined
on incoming boundary edges. We are now ready to make precise the discrete
domain on which we will study the transport equation.

Definition 2.1. A transport network (G, {φp}, σa, k) is a graph G with a
collection of permutations {φp} satisfying the conditions described above, to-
gether with functions σa : E \ ∂E− → R≥0 and k : E × E → R≥0 (extend
k(a, b) to be 0 if a is not a direct predecessor of b, and k(e, φp(e)) = 0 for all
p ∈ V, e ∈ E).

We introduce notation which will help us classify the transport networks
under consideration.

Definition 2.2. For an interior node p, let NInt(p) = N (p)∩IntV be the set
of interior neighbors of p, and let N∂(p) = N (p)∩∂V be the set of boundary
neighbors of p. If |N∂(p)| is greater than one (equivalently, if more than
one boundary edge is incident to p), then p will be called a corner,and the
boundary edges incident to p will be called corner edges.

Because G is connected, a directed path e1, . . . , er with ei ∈ E exists
between any two vertices, and in particular between any two boundary ver-
tices. However, in the context of particle transport, a particle can only travel
from boundary vertex p to boundary vertex q if q = Φ(p) or if the particle
scatters. Therefore, communication between most boundary nodes requires
certain values of k to be nonzero.

Definition 2.3. For p, q ∈ ∂V , we say that a k-path exists from p to q if
q = Φ(p) or if a path e1, . . . , er exists between p and q such that k(ei, ei+1) > 0
for all 1 ≤ i < r.

The existence of a k-path from p to q means that some of the particles
that enter the network at p will exit the network at q.

Next we derive a discrete analog to the stationary linear transport equa-
tion. Assume that particles are travelling throughout the network, and that
the system has been allowed to reach equilibrium. In the absence of scatter-
ing and absorption, the number of particles travelling along an edge p q will
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equal the number of particles travelling along q′p = φp(q)p. Then we have
f(p q) = f(q′p), or

f(q′p)− f(p q) = 0.

Ignoring the particles scattering to edge p q from other edges at p, the dif-
ference between the rates of particle transport on p q and on q′p equals the
rate of absorbed particles:

f(q′p)− f(p q) = σa(p q)f(p q).

Finally, if we consider scattering, then the total particle density along p q
includes particles scattering from other directions,

f(q′p)− f(p q) +
∑

r∈N (p)
r 6=q′

k(rp, p q)f(rp) = σa(p q)f(p q),

or, rearranging terms,

−[f(p q)−f(q′p)]−σa(p q)f(p q)+
∑

r∈N (p)
r 6=q′

k(rp, p q)f(rp) = 0, p q ∈ E \∂E−.

(3)
Equation (3) is the discrete transport equation for a transport network (G, σa, k).
It gives a formula for the particle density f(p q) at each interior edge p q in
terms of the particle densities on the direct predecessors of p q. At an in-
coming boundary edge rs, where s is the unique neighbor of r, the value of
f(rs) is interpreted as the rate of particles entering the network at r, and it
is not governed by (3). We refer to f(rs) as the incoming flux at r, and the
components of the vector f− of incoming flux values are given as boundary
conditions:

f(rs) = f−(rs), rs ∈ ∂E−. (4)

In this situation, sr ∈ ∂E+, and f(sr) represents the rate of particles escaping
the network at r. f(sr) will be called the outgoing flux at r , and the vector
of outgoing flux values will be denoted f+. Note that while f− is an arbitrary
vector given as a boundary condition, f+ is part of the solution governed by
the transport equation (3). Together, (3) and (4) comprise the boundary
value problem, or forward problem, for the discrete transport equation.
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3 The Forward Problem

Here we solve the forward problem for a general transport network. We
assume that σa and k are known everywhere in the network, and we wish to
find a function f : E → R≥0 that satisfies (3) at each edge in E \ ∂E−, and
such that f |∂E− = f−. Since (3) is linear in f , we will cast the problem as
a matrix equation, and we derive some properties of the matrices involved
that, while irrelevant to the forward problem, will be useful in studying the
inverse problem.

To solve the forward problem, it will be necessary to impose the following
condition on σa and k:∑

r∈N (p)
r 6=q′

k(p q, qr) ≤ σa(p q) for all p q ∈ E. (5)

This condition ensures that, at each edge, the amount of particles scattering
to other directions from that edge is no more than the amount absorbed. It
is analogous to a condition imposed in [4] and elsewhere to ensure solvability
of the continuous transport equation; that condition guarantees subcritical
dynamics (i.e., uniformly bounded energy).

Assume that G has n boundary vertices and m (directed) interior edges.
In the transport problem represented by (3)-(4), there are m+ n unknowns.
Let f− ∈ Rn be the vector of inward flux data, and let f+ ∈ Rn be the
outward flux values. Finally, let x ∈ Rm be the interior particle densities,
and let f = (f+, x)T ∈ Rm+n. We construct a system of m+n linear equations
for the m + n unknown pieces of information. Since (3) holds at each edge
e ∈ E \ ∂E−, we associate each edge (excluding incoming boundary) with
one of the m+ n equations in the obvious way.

For each edge p q, the value of f(p q) depends on the values of f on all of
the direct predecessors of p q. If p q is incident to ∂E (in particular, if f(p q)
is a component of f+), one or more of the scattering terms in (3) involve
f−, and are therefore known. We move these terms to the right-hand side.
If p has degree j, and l of its neighbors are boundary vertices, equation (3)
becomes

(−1− σa(p q))f(p q) + f(q′p) + k(r1p, p q)f(r1p) + · · ·+ k(rj−lp, p q)f(rj−lp)

= −k(rj−l+1p, p q)f(rj−l+1p)− · · · − k(rjp, p q)f(rjp). (6)

For an edge p q ∈ ∂E+, if the preferred direction q′ = φp(q) ∈ ∂V , the term
f(q′p) is a component of f− and is also sent to the right-hand side. If p q is
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an element of IntE that is not incident to ∂E, the equation will not involve
f− and all terms will remain on the left-hand side.

We now construct a matrix equation for our vector f ∈ Rm+n of unknown
quantities, which shall be indexed as follows: the first n components of f are
comprised of f+, the vector of outgoing fluxes, and the last m components
are the interior particle densities x. Since the right-hand side consists of a
linear combination of incoming flux values, our equation will be of the form
Qf = Jf−, with block form(

Q1 Q2

Q3 Q4

)(
f+

x

)
=

(
J1

J2

)
(f− ) (7)

Here we derive the properties of Q needed to solve the forward problem.
Further properties of Q and J are postponed to the end of this section.

Lemma 3.1. Properties of Q. Let f(p q) be the ith component of f .
(a) Each diagonal entry qii = −1− σa(p q).
(b) The block Q1 is diagonal.
(c) The block Q3 = 0.
(d) All off-diagonal entries are nonnegative, and in each column, the sum of
the off-diagonal entries is at most 1 +

∑
r 6=q′ k(p q, qr).

Proof. (a) is clear from the form of equation (6).

Note that for a given p q ∈ E, all the terms appearing in (6) depend on
values of f on direct predeccessors of p q. Thus, the value of f+(rs), the
outgoing flux at s ∈ ∂V , does not directly influence any equation in (7 other
than the equation for f+(rs). This proves (b) and (c).

By equation (6), nonzero off-diagonal entries of Q must be either 1 or k(aj, bl)
for some aj, bl ∈ E. If f(p q) is a component of x, it appears in d = deg(q) of
the equations in (7): once with a coefficient of 1, d− 2 times with k(p q, qrj)
for some rj, and once with (−1−σa(p q)) (on the diagonal). Thus, in the last
m columns of Q, the sum of off-diagonal entries is exactly 1+

∑
r 6=q′ k(p q, qr).

By (b) and (c), all off-diagonal entries in the first n columns are zero.

Our goal is to invert Q and solve equation (7) for f . To do this, we must
impose condition (5), and then we are able to solve the forward problem.
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Theorem 3.2. Let (G, {φp}, σa, k) be a transport network. If (5) is satisfied
for every p q ∈ E, the discrete transport equation (3) with boundary data (4)
has a unique solution f(p q).

Proof. Equation (7) contains the information from (3) evaluated at each edge.
The unknown values of f(p q) comprise the vector f . By Lemma 3.1(a) and
(d), and condition (5), Q is weakly column diagonally dominant. By Lemma
3.1(b) and (c), the first n columns are strictly diagonally dominant. Hence,
Q is invertible.

Finally, we prove more properties of Q and J which will be useful in
analyzing the inverse problem. We recall the definition of a so-called M-
matrix : E is an M-matrix if all the principle minors of E are positive (see
[2]).

Lemma 3.3. The matrix Q−1
4 has nonpositive entries.

Proof. By Lemma 3.1, −Q4 has positive diagonal entries and nonpositive
off-diagonal entries. Also, condition (5) implies the column sums of −Q4

are nonnegative with at least one positive column sum. Together, these
conditions are equivalent to the above definition of an M-matrix as well as
to the condition that a matrix’s inverse be nonnegative (see [2]). We need
the second equivalence, so we recall its proof.

Letting α = max({−Q4}ii) be the maximum diagonal entry of −Q4, we
can write −Q4 = αI−P with P nonnegative. Equivalently, −Q4 = α(I−P ′),
where P ′ is nonnegative. By the conditions on the column sums of −Q4, it
follows that the column sums of P ′ are all less than 1, except possibly in
column i, where the column sum may equal 1. Hence, I − P ′ is invertible,
and

−Q−1
4 =

1

α
(I + P ′ + (P ′)2 + · · · )

Since P ′ is nonnegative, so is −Q−1
4 .

For the next three properties, we must exclude certain cases. For p ∈ V ,
let δ′ij = 1 if qi = φp(qj) and δ′ij = 0 otherwise.

Lemma 3.4. Properties of Q and J.
(a) If k(rs, sr) 6= 0 for each rs ∈ ∂E−, and if at each corner s with bound-
ary neighbors r1, . . . , rd ∈ ∂V , we have that the d × d matrix {mij} =
−(δ′ij + k(ris, srj)) is nonsingular, then J1 is invertible.
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(b) If at each corner s with boundary neighbors r1, . . . , rd ∈ ∂V and in-
terior neigbors t1, . . . , th ∈ IntE, we have that the d × h matrix {nij} =
−(δ′ij + k(ris, stj)) has full column rank, then J2 has full column rank.
(c) If at each corner s with boundary neighbors r1, . . . , rd ∈ ∂V and in-
terior neigbors t1, . . . , th ∈ IntE, we have that the h × d matrix {oij} =
δ′ij + k(rjs, sti) has full row rank, then Q2 has full row rank.

Proof. (a) Each row of J1 corresponds to f(sr), an element of f+, and to the
associated edge sr. If sr is not a corner edge, then the corresponding row of
J1 will be nonzero only on the diagonal, where it takes the value k(rs, sr),
which is nonzero by assumption. A corner s with d boundary neighbors will
correspond to d rows of J1, and since the only boundary-to-boundary scat-
tering at s is from one of these d boundary neighbors to another, the d × d
matrix {mij} = δ′ij + k(ris, srj) is the submatrix of J1 consisting of the rows
and columns corresponding to the d corner edges incident to s. δ′ij accounts
for the coefficient of 1 which appears next to f(φs(r)) in the equation asso-
ciated to f(sr). If all the submatrices {mij} are invertible, then J1 will be
as well, since the sets of rows of J1 corresponding to each corner and to each
other boundary edge are disjoint.

(b) Each column of J2 multiplies a certain incoming flux value (a certain
component of f−), and thus corresponds to a certain incoming boundary
edge. Excluding corners, the sets of direct successors of two distinct incom-
ing boundary edges are disjoint, so the rows where the corresponding columns
have nonzero entries are disjoint as well. If the preferred direction from an
incoming boundary edge is not an interior edge, that edge is a corner edge
(this follows from φ2

p = 1). Thus, each column in J2 not corresponding to a
corner edge contains exactly one 1. This means that, regardless of the other
entries , those columns of J2 not corresponding to corner edges are indepen-
dent. Our condition on corners ensures independence of all the columns of
J2, since the set of direct successors to any corner edge will not intersect the
set of direct successors to any non-corner incoming edge or that of any edge
incident to a different corner.

(c) The argument here is similar to the proof of (b), except that now we
are keeping track of rows of Q2, which come from equations associated to
outgoing flux values, components of f+. If sr, tu ∈ ∂E+ are not corner
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edges, the sets of their direct predecessors are disjoint, so the sets of columns
in which the corresponding rows have nonzero entries will also be disjoint.
As before, every such row has exactly one 1 because the associated edge is
not a corner edge, and the rows of Q2 not corresponding to corner edges
are independent. Again, the set of direct predecessors of any corner edge
will not intersect the set of direct predecessors of any edge not incident to
the same corner, so our condition on {oij} ensures that the rows of Q2 are
independent.

Remark 1. Note that Lemma 3.4(b) and (c) fail if G contains a corner s
with more interior neighbors than boundary neighbors, since the submatrix
corresponding to s is the wrong shape to have full column rank. In that case,
J2 and Q2 are in fact not of full rank. Of all the assumptions in Lemma 3.4,
this is the only one which excludes a useful class of networks.

Remark 2. In Lemma 3.4, we give sufficient conditions for Q2, J1, and J2

to have full rank. Later, when we calculate the Jacobian of the map S, these
conditions will be imposed to try to maximize the number of linearly inde-
pendent columns of this Jacobian. We could obtain a more general estimate
of the rank of the Jacobian if we derive lower bounds on the ranks of Q2,
J1, and J2 rather than insisting they be of full rank, but to simplify the
discussion, we will exclude the cases where Lemma 3.4 is not satisfied.

4 The Inverse Problem

Throughout this section, we suppose that our graph G has n boundary edges
and m directed interior edges. Letting M =

∑
p∈IntV deg(p)(deg(p) − 1),

there are m+ n values of σa and M values of k in the network.

4.1 The Albedo Operator

Here we define the albedo operator, which maps incoming flux to outgoing
flux. Contrary to the albedo operator in the continuous transport problem,
this albedo operator is linear.

Definition 4.1. Let (G, {φp}, σa, k) be a transport network satisfying (5).
The unique solution to (3) with boundary data f− (which exists, by Theo-
rem 3.2) determines the outgoing flux f+. The albedo operator is the linear
operator that maps f− to f+ for this network.
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Since G has n boundary nodes, the albedo operator can be represented
by an n× n matrix A = {aij} (the albedo matrix):

f+ = Af−.

If we index the boundary vertices from 1, . . . , n, then aij is equal to the
outgoing flux at node i resulting from an incoming flux of 1 at node j and 0
at every other boundary node.

Equation (7) allows us to obtain an explict expression for A. By Lemma
3.1(b) and the invertibility of Q, we have x = Q−1

4 M2f−, and thus

Q1f+ +Q2Q
−1
4 J2f− = J1f−,

or
f+ = Q−1

1 (J1 −Q2Q
−1
4 J2)f−,

from which we obtain

A = Q−1
1 (J1 −Q2Q

−1
4 J2). (8)

Next we give conditions for A to be invertible. For this, we need the
matrix construction known as the Schur complement. For a matrix V with
block structure

V =

(
W X
Y Z

)
such that Z is invertible, the Schur complement of Z in V , denoted V/Z, is
given by

V/Z = W −XZ−1Y.

The rank of a Schur complement can be computed by the Guttman rank
additivity formula (see [5]),

rank(V/Z) = rank(V )− rank(Z). (9)

That formula follows from this factorization of V :

V =

(
Ip XZ−1

0 Iq

)(
W −XZ−1Y 0

0 Z

)(
Ip 0

Z−1Y Iq

)
The first and third factors are clearly invertible, so the rank of V equals the
rank of the central factor, or rank(V ) = rank(W−XZ−1Y )+rank(Z), which
implies (9).

Formula (9) gives us a lower bound on the rank of A.
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Lemma 4.2.
rank(A) = rank(J1)

In particular, if the conditions of Lemma 3.4(a) are satisfied, so that J1 is
invertible, then A is invertible.

Proof. Introduce the matrix T with the following block structure:

T =

(
Q−1

1 J1 Q−1
1 Q2

J2 Q4

)
.

Then the Scur complement of Q4 in T , denoted T/Q4, is given by

T/Q4 = Q−1
1 J1 −Q−1

1 Q2Q
−1
4 J2

= A.

Since rank(Q4) = m, we have that rank(T ) = m+ rank(J1). It follows from
(9) that rank(A) = rank(T )−m = rank(J1).

The positivity of A provided by the next lemma will also be useful for
the inverse problem. The existence of a k-path between any two boundary
vertices is a necessary and sufficient condition for this result, but the simpler
condition that k > 0 everywhere would be sufficient.

Lemma 4.3. Assume that for any two boundary vertices p, q ∈ ∂V , a k-path
exists from p to q. Then all the entries of A are positive.

Proof. Suppose that an entry aij = 0. This means that, with incoming flux
boundary conditions of 1 at boundary node j and 0 elsewhere, the measured
outgoing flux at node i is equal to zero. If rs is the outgoing boundary edge
incident to node i, the transport equation (3) at rs gives

(−1− σa(rs))f(rs) = f(s′r) +
∑
t∈N (r)
t6=s′

k(tr, rs)f(tr). (10)

By assumption, there is a k-path from node j to node i. The last edge in this
path is rs, and let qr be the next-to-last edge. All the direct predecessors
of rs appear in (10), including qr. Since f(rs) = 0 and all the terms on
the right hand side of (10) are nonnegative, each term is zero. If q = φr(s),
then this implies f(qr) = 0. Otherwise, it implies k(qr, rs)f(qr) = 0. But
k(qr, rs) 6= 0 by the defining property of a k-path, so f(qr) = 0 in this case
as well. Proceeding in this way, we find that for each edge e in the k-path
from boundary node j to boundary node i, f(e) = 0, and that the incoming
flux at node j is zero, a contradiction.
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4.2 The Differential of S

In this section we derive sufficient conditions for the map S, which takes
σa and k to A, to be locally one-to-one. We will show that our conditions
imply the differential of S is injective. For notational simplicity, we drop the
subscript a in σa = σ.

Denote the columns of A by a1, a2, . . . , an, and concatenate these columns
into a vector a∗ = (a1, a2, . . . , an) ∈ Rn2

. We will regard σ and k as vectors
having n+m and M components respectively. Thus, we are considering

S : Rn+m+M → Rn2

(σ, k) 7→ a∗

Our goal is to find the Jacobian matrix

D(σ,k)S =


∂a1

∂σ1
· · · ∂a1

∂σm

∂a1

∂k1
· · · ∂a1

∂kM
...

. . .
...

...
. . .

...
∂an

∂σ1
· · · ∂an

∂σm

∂an

∂k1
· · · ∂an

∂kM


of S and compute its rank. As of yet, we are only able to find a lower bound
for the rank of D(σ,k)S by finding subsets of the columns of D(σ,k)S that are
provably linearly independent.

Letting ν denote a general component of (σ, k), we have from (8) that

∂νA = (∂νQ
−1
1 )(J1 −Q2Q

−1
4 J2)

+ Q−1
1 (∂νJ1 − (∂νQ2)Q−1

4 J2 −Q2(∂νQ
−1
4 )J2 −Q2Q

−1
4 (∂νJ2)). (11)

This motivates us to define the following matrices in terms of factors of A:
let B = Q−1

1 Q2Q
−1
4 , and let C = Q−1

4 J2. It is clear that when Q2 and J2

are of full rank, then B and C will be as well (Lemma 3.4 gives conditions
for this to be the case). By Lemma 3.3, Q−1

4 is nonpositive. Lemma 3.1(d)
implies that Q2 is nonnegative, and Lemma 3.1(a) and (b) imply that Q−1

1

is nonpositive. We therefore have that both B and C are nonnegative.
In the matrix equation (7) for the forward problem, each component of

(σ, k) appears exactly once. To see this, consider ki = k(p q, qr) for vertices
p, q, and r. ki will appear once in the equation associated with f(qr), and
nowhere else. Similarly, σi = σa(p q) appears only in the equation associated
with f(p q). This simplifies the computation of ∂νA for each ν, and we can
classify the columns of D(σ,k)S, into six types based on the submatrix of Q or
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J in which the corresponding component of (σ, k) is present. In computing
the derivative of Q−1

4 with respect to σ and k, we will make use of the
following well-known identity, whose proof we recall for completeness.

Lemma 4.4. For a matrix valued function M(x), if M(x) is invertible at x,
then

d

dx
M−1(x) = −M−1(x)

(
d

dx
M(x)

)
M−1(x). (12)

Proof. Observe that

M−1(x+h)−M−1(x) = M−1(x+h)M(x)M−1(x)−M−1(x+h)M(x+h)M−1(x).

Dividing both sides by h and taking the limit as h → 0, we obtain formula
(12).

Now we characterize the six types of columns of D(σ,k)S.

Columns of D(σ,k)S We find ∂νA, where ν is an element of (σ, k). The
column vector ∂νa

∗ is obtained by concatenating the columns of ∂νA. It is
clear from the discussion of Section 3 that an element of σ may appear in Q1

or in Q4, and that an element of k may appear in Q2, Q4, J1, or J2, giving
us six possible forms for ∂νA. We wish to keep track of these forms, and
also the number of columns of D(σ,k)S that fall into each category. We index
σ by i1 and i2 and index k by j1, . . . j4, and classify the columns of D(σ,k)S
according to the corresponding components of (σ, k):

1. σi1 = σ(p q) for p q ∈ ∂E+. In this case, σi1 appears in Q1 only, so
∂σi1

A = (∂σi1
Q−1

1 )(J1 − Q2Q
−1
4 J2). If p q is the rth boundary edge in

the indexing of ∂E, then {Q−1
1 }rr = − 1

1+σi1
, and ∂σi1

Q−1
1 has a single

nonzero entry: 1
(1+σi1

)2
in position rr. Thus,

∂σi1
A = ci1

 −0−
−ar−
−0−

 ,

where ci1 = − 1
1+σi1

and ar is the rth row of A. The index i1 runs from

1 to n.
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2. σi2 = σ(p q) for p q ∈ IntE. Here, σi2 appears in Q4 only, so using
(12), we have ∂σi2

A = Q−1
1 Q2Q

−1
4 (∂σi2

Q4)Q−1
4 J2, or more compactly,

∂σi2
A = B(∂σi2

Q4)C. If p q is the vth interior edge in the indexing of
IntE, then {Q4}vv = −1− σi2 , and ∂σi2

Q4 has a single nonzero entry:
-1 in position vv. Thus,

∂σi2
A = B


0 · · · 0
...

. . .
...

0 · · · −1 · · · 0
...

. . .
...

0 · · · 0

C,

or

∂σi2
A = −

 |
bv
|

 (−cv−) ,

where br is the vth column of B and cv is the vth row of C. The index
i2 runs from n+ 1 to n+m.

3. kj1 = k(p q, qt) for p q, qt ∈ IntE. In this situation, kj1 appears in
Q4 only, so using (12) again, ∂kj1

A = Q−1
1 Q2Q

−1
4 (∂kj1

Q4)Q−1
4 J2, or

∂kj1
A = B(∂kj1

Q4)C. If p q and qt are the vth and uth interior edges in
the indexing of IntE respectively, then {Q4}uv = k(p q, qt) = kj1 , and
∂kj1

Q4 has a single nonzero entry: 1 in position uv. Thus,

∂kj1
A = B


0 · · · 0
... · · · 1 · · · ...

0 · · · . . . · · · 0
...

. . .
...

0 · · · 0

C,

or

∂kj1
A =

 |
bu
|

 (−cv−) .

Unlike in (2), the column of B and the row of C do not have the same
index. The index j1 runs from 1 to α (we are now indexing the vector
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k), where α is the number of components of k present in Q4. More
specific information about α is given by Lemma 4.5 below.

4. kj2 = k(p q, qt) for p q ∈ IntE, qt ∈ ∂E+. This time, kj2 appears in
Q2 only, so ∂kj2

A = −Q−1
1 (∂kj2

Q2)Q−1
4 J2 = −Q−1

1 (∂kj2
Q2)C. If p q is

the vth edge of IntE and qt is the rth edge in ∂E+, then {Q2}rv =
k(p q, qt) = kj2 , and the only nonzero entry of ∂kj2

Q2 is a 1 in position
rv. Thus,

∂kj2
A = −Q−1

1


0 · · · 0
... · · · 1 · · · ...
...

. . .
...

0 · · · 0

C,

or

∂kj2
A = cj2

 −0−
−cv−
−0−

 ,

where the rth row of ∂kj2
A is the vth row of C, and cj2 = 1

1+σr
. The

index j2 runs from α+1 to α+β, where β is the number of components
of k present in Q2 (see Lemma 4.5 below).

5. kj3 = k(p q, qt) for p q ∈ ∂E+, qt ∈ IntE. In this case, kj3 appears
in J2 only, so ∂kj3

A = −Q−1
1 Q2Q

−1
4 (∂kj3

J2) = −B(∂kj3
J2). If p q is

the rth edge of ∂E+ and qt is the vth interior edge in IntE, then
{J2}vr = −k(p q, qt) = −kj3 , and the only nonzero entry of ∂kj3

J2 is a
-1 in position vr. Thus,

∂kj3
A = −B


0 · · · 0
...

. . .
...

0
...

. . . 0
... −1 · · · ...
0 · · · 0

 ,

or

∂kj3
A =

 | | |0 br 0
| | |

 ,
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where the vth column of ∂kj3
A is the rth column of B. The index j3

runs from α+β+ 1 to α+β+γ, where γ is the number of components
of k present in the matrix J2.

6. kj4 = k(p q, qt) for p q ∈ ∂E−, qt ∈ ∂E+. In this case, kj4 appears in J1

only, so ∂kj4
A = −Q−1

1 (∂kj4
J1). If p q is the rth edge of ∂E− and qt is

the sth edge in ∂E+, then {J1}sr = −k(p q, qt) = −kj4 , and the only
nonzero entry of ∂kj4

J1 is a -1 in position sr. Note that here, s and r
may be equal. We have

∂kj4
A = −Q−1

1


0 · · · 0
...

. . .
...

0 · · · −1 · · · 0
...

. . .
...

0 · · · 0

 ,

or

∂kj4
A =


0 · · · 0
...

. . .
...

0 · · · − 1
1+σs

· · · 0
...

. . .
...

0 · · · 0

 ,

where entry sr of ∂kj4
A is equal to − 1

1+σs
. The index j4 runs from

α + β + γ + 1 to α + β + γ + δ, where δ is the number of components
of k present in the matrix J1.

For h = 1, . . . , 6, let Lh denote the collection of columns of D(σ,k)S of
the form h as numbered in the above list. To completely characterize the
columns of the differential of S, it remains to determine how many vectors
are in each Lh. We already know that |L1| = n and |L2| = m, and we
have assigned α = |L3|, β = |L4|, γ = |L5|, and δ = |L6|. It is clear that
since |L3| + · · · + |L6| is equal to the length of the vector k, we must have
α+β+γ+ δ = M . The next lemma relates the sizes of |Lh| to the geometry
of the graph G. Recall that N∂(p) is the set of boundary neighbors of p and
NInt(p) is the set of interior neighbors of p.

Lemma 4.5. Suppose that G has n boundary edges and g corners, and that
for l incoming corner edges rs, φs(r) ∈ ∂V (i.e. the preferred edge at rs is
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in ∂E+). Then,
(a) α = |L3| =

∑
p q∈IntE(|NInt(q)| − 1) + n− l.

(b) β = |L4| =
∑

sr∈∂E+
(|NInt(p)| − 1) + l

(c) γ = |L5| = β.
(d) δ = |L6| = n− l +

∑g
i=1 |N∂(si)− 1|, the sum extending over all corners

si.

Proof. (a) α, the number of occurrences of components of k in the matrix Q4,
is equal to the number of ways a particle can scatter from an interior edge to
another interior edge. If p q is an interior edge, a particle can continue along
p′ = φq(p) or it can scatter, so if p′ /∈ ∂V , there are |NInt(q)| − 1 ways to
scatter from pq. If p′ ∈ ∂V , then there are |NInt(q)| ways to scatter from p q
to an interior edge. Summing over IntE, we observe that p′ ∈ ∂V exactly
once for each boundary edge rs unless φs(r) ∈ ∂V , or n− l times.

(b) β is the number of components of k occuring in Q2, or equivalently,
the number of ways for a particle to scatter from an interior edge to an out-
going boundary edge. For an outgoing boundary edge sr, if φs(r) ∈ IntV ,
then there are |NInt(s)| − 1 ways to scatter from an interior edge to sr. If
φs(r) ∈ ∂V (this happens a total of l times), there are |NInt(s)| ways to
scatter from an interior edge to sr.

(c) γ, the number of occurrences of components of k in the matrix J2, is
equal to the number of ways a particle can scatter from an incoming bound-
ary edge to an interior edge. Since φ2

p = 1 for all p, if a particle can scatter
from p q to qr, then it can scatter from rq to qp. This gives a bijection between
incoming boundary edge-interior edge pairs (p q, qr) where k(pq, qr) 6= 0 and
interior edge-outgoing boundary edge pairs (rq, qp) where k(rq, qp) 6= 0.

(d) δ gives the number of components of k in the matrix J1, or the num-
ber of ways to scatter from outgoing to incoming boundary. If rs ∈ ∂E− is
not a corner edge, there is only one way to scatter from rs to ∂E+, namely
to sr. If rs is an incoming corner edge, it may scatter to sr or scatter to ∂E−
in |N∂(s)| − 1 additional ways, excepting the l cases where φs(r) ∈ ∂V .

The Jacobian matrix D(σ,k) is n2 × (m + n + M), so for injectivity, we
must have n2 − n ≥ m + M . It is not yet known whether this condition is
sufficient. If one could show that the all the columns of D(σ,k)S found above
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are independent, then injectivity would follow. At present, we are able to
find linearly independent subsets of columns; namely, |L1|∪|L6| forms a basis
for a subspace of dimension n+ δ, adopting the notation of Lemma 4.5. This
result relies upon Lemma 4.3, meaning that we need a k-path to exist from
any boundary node to any other boundary node.

Theorem 4.6. Let g and l be as in Lemma 4.5, and assume that the condi-
tions of Lemma 4.3 hold. If n− l+

∑g
i=1 |N∂(si)− 1| ≥ m+M , then D(σ,k)S

is one-to-one.

Proof. The collection |L1| is comprised of n matrices of the following form: all
rows are zero except the ith row, which is a scaled row of A. Regarding these
matrices as vectors in Rn2

, they are clearly linearly independent (note that
we do not have to use the invertibility of A). The collection |L6| is comprised
of δ matrices, each with one nonzero entry. No two of the matrices in |L6|
have their nonzero entries in the same position, so |L6| spans a δ-dimensional
subspace of Rn2

.
Linear combinations of elements of |L6| can only have nonzero entries

in positions where components of k appear in J1. Since every row of J1

contains at least one 0 or 1 (i.e. an entry not depending on k), every linear
combination of elements of |L6| has at least one 0 in each row. But by Lemma
4.3, each entry of A is positive, so linear combinations of elements of |L1|
have the property that each row either contains no zeroes or is all zeroes.
Therefore, no linear combination of vectors in |L6| can be equal to a linear
combination of vectors in |L1|, and |L1| ∪ |L6| spans an n + δ-dimensional
subspace of Rn2

. The Jacobian matrix D(σ,k)S has m+n+M columns , so if
n+ δ ≥ m+ n+M , i.e. δ ≥ m+M , the matrix will have full column rank.
By Lemma 4.5, δ = n− l +

∑g
i=1 |N∂(si)− 1|, completing the proof.

Now the Inverse Function Theorem gives us the desired result.

Corollary 4.7. If n− l+
∑g

i=1 |N∂(si)− 1| ≥ m+M and Lemma 4.3 holds,
the map S is locally one-to-one.

Remark 3. We have not actually used Lemma 3.4 or Lemma 4.2, which
gave us conditions for Q2,J1, J2, and A to have full rank. These results may
be useful in improving the lower bound on the rank of D(σ,k)S (see also the
next section on future work).
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5 Open Problems

5.1 Weaker Conditions for Local Uniqueness

The linearized problem is to determine whether the matrix D(σ,k)S is injec-
tive. That matrix has dimensions n2× (n+m+M), so clearly the condition
n2 − n ≥ m+M is necessary. We conjecture that it is also sufficient.

Conjecture 5.1. If n2−n ≥ m+M and the conditions of Lemmas 3.4, 4.2,
and 4.3 hold, then the differential of S is injective.

If this statement is true, it should be provable through study of the col-
lections |Lh| of columns of D(σ,k)S. If it is false, determining how many of
these columns are indeed independent may give a condition for injectivity
of D(σ,k)S which is more restrictive than that of Conjecture 5.1 but less re-
strictive than Theorem 4.6. The nonnegativity of B and C and positivity
of A (Lemma 4.3), as well as the fact that A, B, and C are of full rank
(Lemma 4.2, Lemma 3.4), may help to show linear independence of some of
the columns of D(σ,k)S.

5.2 Global Uniqueness

We have no results about global injectivity of the map S. The most natural
way to prove such a result would be to find an algorithm for reconstructing σa
and k from A. To this end, we could impose incoming flux of 1 at boundary
node p1 and 0 at every other boundary node and use the transport equation
(3) at each edge in IntE ∪ ∂E+ to build a system of m + n equations for
m + m + n + M unknowns (m unknown values of f , m + n values of σa,
and M values of k). Here, we have access to the measured outgoing flux
values, which are given by the first column of A. In general, this system
will be underdetermined, so we repeat the process n times, placing boundary
conditions of 1 at boundary node pi and 0 elsewhere and measuring the
outgoing flux values (column i of the matrix A). Each iteration gives us m
additional unknown values of f , while σa and k remain the same at each edge,
for a total of n(m+ n) equations and nm+m+ n+M unknowns. Thus, if
n2− n ≥ m+M (the same condition that is necessary for local uniqueness),
the system is overdetermined. Even in this case, however, there is no simple
way to decide whether this nonlinear system is uniquely solvable.
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For a general transport network, there are no obvious shortcuts to this
“brute force” method, and even for small graphs, the number of equations
involved is daunting. It is straightforward to check that on the b-star for b
even (see Figure 1, left), A determines σa and k. In such a case, where there
are no interior edges, every value of f can be found directly from A, and
the recovery process is trivial. But on a 2 × 2 lattice graph (see Figure 1,
right), where n = 8, m = 8, and M = 48, we have 128 equations and 128
unknowns. Analysis of this network, probably with the help of a computer
algebra system, may produce an example of a nontrivial graph on which A
determines σa and k, or, if uniqueness is found to be false, it may provide
a counterexample. To this point, neither a counterexample nor a nontrivial
example (i.e. a graph with interior edges on which S is one-to-one) has been
found.

Figure 1: Left: A directed 4-star. Right: A 2×2 directed rectangular lattice.

There are many simplifications that may make the global inverse problem
more manageable. As noted above and in [1] and [4], in the continuous
inverse problem one must assume that σa(x, v) = σa(x) for uniqueness. The
analogous assumption for our problem would be to assume σa depends only
on the vertex where a directed edge begins, i.e. σa(p q) = σa(p). To see why
this condition may be useful to us, consider a d× d rectangular lattice graph
(see Figure 2). Vertices are located at each point in {0, d + 1} × {0, d + 1}
except the corners (0, 0), (0, d+ 1), (d+ 1, 0), and (d+ 1, d+ 1). Vertices of
the form (0, t), (s, d + 1), (d + 1, t), or (s, 0) for 1 ≤ s, t ≤ d are designated
boundary vertices. When working with lattice graphs, we usually define φp
in the obvious way, so that for each p, it takes the “left-hand” neighbor of p
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to the “right-hand” neighbor of p, and so on.

Figure 2: A 4× 4 directed rectangular lattice graph.

In this situation, n = 4d, m = 4d2 − 4d, and M = 12d2. When d = 2
as above, m = n and the system is precisely determined, but for d ≥ 3, the
inequality n2−n ≥ m+M is not satisfied, so the system is underdetermined.
If, on the other hand, we assume σa(p q) = σa(p), then the number of values
of σa becomes m′ = d2. For the system to be overdetermined, we need
n2 − n ≥ m′ + M , or 16d2 − 4d ≥ d2 + 12d2, which is always satisfied for
d ≥ 2. As far as we know, this still does not imply recoverability of σa and
k.

Assumptions may also be made on the form of the scattering kernel k.
For the continuous transport equation, the inverse problem was solved with
k(x, v′, v) = k(x, v′ · v) (see the references in [4]) before it was solved in
the general case. For a precise notion of the “dot product” of two edges,
the graph G must have some regular structure; for instance, G could be a
rectangular lattice. In that case, we can let k(p q, qr) = k(q, p · r) where
p · r at q takes values in {left, right, back} and is defined as the direction
a particle must turn to scatter from p q to qr. For a square lattice graph,
we then have M ′ = 3d2 unknown values of k rather than M = 12d2. Other
possible simplifications include k(p q, qr) = k(q) (isotropic scattering) for any
graph and k(p q, qr) = k(θ(p q), θ(qr)) for a lattice graph, where θ(p q) takes
values in {↑,←, ↓,→} and is defined as the direction a particle travels as it
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moves along edge p q. If G is a d× d lattice graph, these assumptions reduce
the number of unknown values of k to d2 and 12 respectively.

Remark 4. One could also study the linearized problem under simplifying
assumptions on σa and k, but if Conjecture 5.1 is true, such study would be
unneccessary, as D(σ,k)S would remain injective under any assumption that
decreases the number of unknowns.

5.3 Asymmetric Directed Networks

Finally, we pose the inverse problem for simple directed graphs, that is, for
graphs where any two vertices have at most one directed edge joining them.
It may also be worthwhile to look at graphs where vertex pairs may have
zero, one, or two (one in each direction) directed edges joining them, but
here we look at the simpler case.

Let G = (V, ∂V,E) be a simple directed graph with boundary. Assume G
is finite and connected, and that each boundary vertex has degree one. Define
the incoming and outgoing boundary ∂E− and ∂E+ exactly as in Section 2;
the difference is that here, a given boundary vertex will be adjacent to ∂E−
or ∂E+, not to both. Also assume that at each interior vertex p, we have
a bijection φp from the set of edges ending at p (in(p)) to the set edges
beginning at p (out(p)). In particular, this implies |in(p)| = |out(p)| for
all p ∈ Int (p). Interpreting φp as in Section 2, we can consider particles
travelling along the directed edges of G. Letting q′ = φ−1

p (q), the equation
governing this transport is

−[f(p q)−f(q′p)]−σa(p q)f(p q)+
∑

r∈in(p)
r 6=q′

k(rp, p q)f(rp) = 0, p q ∈ E \∂E−.

(13)
As before, we prescribe incoming flux,

f(rs) = f−(rs), rs ∈ ∂E−, (14)

and measure outgoing flux f+ on ∂E+.
The forward problem (13)-(14) is solved exactly as in the symmetric case

(Theorem 3.2). The condition for solvability is now∑
r∈out(p)
r 6=φp(q)

k(p q, qr) ≤ σa(p q) for all p q ∈ E.
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This condition ensures the matrix Q in the equation Qf = Jf− is diagonally
dominant.

Since the forward problem is solvable, we define A : f− 7→ f+ exactly
as in Section 4. Here, if G has n boundary vertices, A is an (n/2) × (n/2)
matrix. The inverse problem is once again to recover σa and k from A. It is
hoped that this problem will be simpler than the case where G is a symmetric
directed graph because the number of unknown values of σa and k is lower.

For an edge p q ∈ E, define in(p q) = in(p) and out(p q) = out(q). One
interesting feature of this problem is that if the directed edges of G do not
form any loops, then the interior edges e1, . . . , em can be indexed so that
ej /∈ in(ei) for any i < j. That this indexing is possible follows from the
fact that any partial order can be extended to a linear order. Since (13) for
an edge e involves only edges in in(e), this means that with the appropriate
indexing of IntE, the matrix Q4 is upper triangular. This simplifies the
calculation of Q−1

4 , which may lead to explicit formulas for the entries of A
in terms of σa and k.
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