
AG NOTES

MARK BLUNK

Abstract. Some rough notes to get you all started.

1. Introduction

Here is a list of the main topics that are discussed and used in my research
talk. The information is rough and brief, but I have listed references if people
want to learn more, or if they want to see precise definitions.

2. Galois Theory

Let F be a field. a field extension K of F is a field which contains F .
K is said to be an algebraic extension if every element a ∈ K satisfies a
polynomial f with coefficients in F . An algebraic extension is finite if K is a
finite dimensional F vector space, i.e. of finite degree. A algebraic extension
is separable if every element satisfied a polynomial with no repeated roots. It
turns out that every finite separable extension K of F can be embedded in
a finite Galois extension of F , which is a separable field extension such that
the group of K-automorphisms fixing F has the same size as the degree of K
over F . By wild abuse of the Axiom of Choice, one can prove the existence
of a separable closure F of F , a field containing all the finite separable field
extensions of F . It has an automorphism group Γ = Gal(F/F ), which is the
inverse limit of finite groups.

3. Varieties

3.1. algebraically closed case.

3.1.1. Affine. Let F be an algebraically closed field (e.g. C). We will denote
by An

F the set of n-tuples with entries in the field F . This is called Affine space.
For any collection {fα} of polynomials fα ∈ F [x1, . . . , xn] (i.e. in n-variables
with coefficients in F ), we denote by Z(fα) the subset of An

F consisting of all
the points a which fα satisfy, i.e. fα(a) = 0, for all α. The first thing to note
is that for any collection fα, the points that vanish on all the fα agree with the
points that vanish on the all the polynomials in the ideal I(fα) generated by
the fα. Then, by some magical properties of F [x1, . . . , xn] (it is a Noetherian
Ring by the Hilbert Basis Theorem), you may always consider the case where
the collection is finite.

From the following properties Z(1) = ∅, Z(0) = An
F , Z(f1) ∪ Z(f2) =

Z(f1f2), and ∩αZ(fα) = Z(I(fα)), we see that the zero sets form the closed
1
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sets of a topology on An
F , called the Zariski topology. We will call the closed

sets of An
F affine F -varieties, and the open subsets quasi-affine F -varieties.

Note that this definition depends on the embedding. The set Gm = {a ∈
A1, a 6= 0} is a quasi-affine variety since it is an open subset of A1, but on the
other hand the projection A2 onto A1 defined by (x1, x2) 7→ x1 maps the closed
variety Z(x1x2 − 1) bijectively onto Gm, and so Gm should also be an affine
variety. (This variety is labelled Gm for groupe multipicatif, or multiplicative
group)

References: [3], [7].

3.1.2. Projective. We would like to enlarge our class of objects to include
spaces which are not necessarily affine or quasi-affine, but are locally so. This
is similar to the world of Topological or Smooth manifolds, where toplogical
spaces that can be covered by subspaces which are isomorphic to Euclidean
space. The first example one usually sees is projective space, Pn. The points
of Pn are formed by taking the points in F n+1 \{0}, and identifying two points
if they are scalar multiples of each other, i.e. if there is a line through the
origin connecting both points. We will denote a point of P n by [a0 : . . . : an],
so that some ai 6= 0, and [a0 : . . . : an] = [b0 : . . . : bn] if there is a λ 6= 0 such
that bi = λai, for all i.

Let F [t0, . . . , tn] be the (graded) polynomial ring, and let f be a homo-
geneous polynomial (i.e. all the terms are of the same degree). For a given
nonzero point a ∈ Pn

F , it doesn’t make sense to evaluate f at a, but it does make
sense to ask whether or not f(a) = 0, since f is homogeneous. So for a homoge-
neous ideal I (i.e. one generated by homogeneous polynomials, we will set Z(I)
to be the points of Pn

F vanishing at that ideal. Then, as in the affine case, the
sets Z(I) form the closed sets of a topology on Pn

F . Moreover, for i = 0, 1, . . . , n,
the map φi : An

F → Pn
F , where (a1, . . . , an) 7→ [a1 : . . . : 1 : . . . : an] (the 1 is

in the ith spot) is an open embedding of An
F onto the open set Pn

F \ {Z(xi)}.
So Pn can be covered by open sets where are all isomorphic to affine space.
We call closed subsets of Pn

F projective varieties, and open subsets of projec-
tive F -varieties (NOT just open subsets of Pn) we will call quasi-projective
F -varieties).

For any two varieties X and Y , there is a notion of a product variety, which
is obvious in the affine case and easy to understand in the projective case
(it uses the Segre Embedding). A morphism of varieties is a polynomial map
from one variety to another, and an isomorphism is a morphism with an inverse
morphism in the other direction. (This is not the same as a bijective morphism)
For a suitably nice variety X, the set of automorphisms form a group Aut(X),
which also has the structure of a variety. (It is an algebraic group!)

3.2. non-algebraically closed case. Now let F be a field which is not neces-
sarily algebraically closed (e.g. Q.) If R is any F -algebra and f is a polynomial
in n variables with coefficients in F , we can think of f as a polynomial in R,
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and we can ask whether or not points in Rn vanish at f . So instead of a poly-
nomial f defining a subset of F n (i.e. an algebraic variety in An

F ), we think of
f defining a subvariety of Rn, for all possible F -algebras R. For any F -variety
X and F -algebra R, we will denote the solutions of X in R by X(R).

As a concrete example, let F = Q, and let f1 = x2 + 1, and f2 = 1, as
polynomials in one variable x. Both polynomials do not vanish on the variety
A1

F , but the first polynomial does vanish over any F -algebra that contains a
square root of −1, so we would think of these polynomials as defining different
varieties. This is a very sketchy example of what’s called the functor of points.

References: Chapter 1 of [5]

3.2.1. forms. Let X be an F -variety. If K is a field extension of F , then we
can define the K-variety XK , naively by taking the same polynomials which
defined X and considering them as polynomials over K. If X and Y are two
F -varieties such that XF is isomorphic to YF , then we say that X and Y are
forms of each other. The example that I care about the most are Severi-Brauer

varieties. A Severi-Brauer variety X is a projective F -variety such that XF is
isomorphic to Pn

F
, for some n.

Here is an example relevant to the wonderful world of quadratic forms: let
F = R, X = Z(x2+y2−1), and Y = Z(xy−1), both considered as subvarieties
of A2

R
. Then over C, x2 + y2 − 1 = (x + iy)(x− iy)− 1, so X and Y are forms

of each other.
References: [8]

4. Algebraic groups

An algebraic group is an algebraic variety G such that points of G have a
group structure. Examples include An (addition), Gm (multiplication). This
last variety is called a torus, because it plays a similar role the torus in ge-
ometry. As another example, take the invertible n × n matrices over F , and
identify two such matrices if they differ by multiplication by a scalar matrix.
This defines the AFFINE variety PGLn, called the projective general linear

group. Pretty much any reasonable (i.e. semisimple) lie group that you can
think of is an algebraic variety.

References: Chapter 6 of [6], [1].

4.1. group actions. Let G be an algebraic group and X an algebraic variety.
A G-action on X is a morphism (polynomial map) from G×X → X such that
the points of G act on the points of X. An example is Gm acting on A1, by
(t, x) 7→ tx. Another example is (Gm)n acting on Pn

F , by (t1, . . . , tn)× [a0 : a1 :
. . . : an] 7→ [a0 : t1a1 . . . : tnan]. Finally, there is an obvious action of PGLn+1

on Pn
F by the obvious linear multiplication.

4.1.1. Toric Varieties. Let T be a form of Gn
m. Such a variety is called an

algebraic torus. In the first two examples in the previous section, we have
action of tori on a variety X such that X contains an open set Uon which T
acts faithfully and transitively. Such a variety is called a Toric Variety. In can
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be shown that a Toric Variety is determined by two pieces of data: A T -Torsor
U , and some combinatorical data called a fan.

References: [2], [9].

5. central simple algebras

A central simple F -algebra is a non-commutative algebra A with center F
such that the only two sided ideals are 0 and the algebra A. The basic example
is the ring of n × n matrices. If furthermore every non-zero element of A is
invertible, we say that A is a division algebra. A classical example is the
Quaternions. There are a few main results, worth mentioning. The first is
due to Wedderburn. He showed that every simple algebra A is isomorphic to
the ring of m × m-matrices over some division algebra D, and that m and D
are uniquely determined by A. If A and Bare two central simple algebras, we
say that A and B are Brauer-equivalent if they are matrix rings over the same
division algebra D. In addition, if A and B are two central simple algebras, so
is their tensor product A⊗F B. Thus we may define a group operation on the
Brauer-equivalence classes, by [A] · [B] = [A ⊗F B]. This is called the Brauer
group of F , denote Br(F ), and is an important algebraic invariant which arises
in number theory and algebraic geometry.

If K is a field extension of F and A a central simple F -algebra, then A⊗F K
is a central simple K-algebra. Moreover, any central simple algebra over an
algebraically closed field is a matrix algebra. Thus, A ⊗F F and Mn(F ) are
isomorphic as F -algebras. In fact the converse is true: If A is an F -algebra such
that A ⊗F F is isomorphic to Mn(F ), then A is a central simple F -algebras.
Finally, the Skolem-Noether Theorem says that any automorphism of A is
given by conjugating by an invertible element. In particular, Aut(Mn(F )) =
PGLn(F ).

References: [4], [6].

6. Galois Cohomology

Let Γ = Gal(F/F ) be the Galois group, and let G be an algebraic F -group.
A 1-cocycle of Γ with coefficients in G is a map Γ → G(F ), γ 7→ gγ , such that
gγγ′ = gγγ(gγ′), where elements of Γ act on G(F ) by acting on the F valued
points in G(F ). Two 1-cocycles a, a′ are said to be cohomologous if there is
some b ∈ G(F ) such that a′

γ = b−1aγγ(b) for every γ ∈ Γ. This defines an
equivalence relation on the set of cocycles, and we call the set of equivalence
classes the first cohomology group, which we label H1(F, G). There is an
obvious trivial 1-cocycle, which maps Γ to the identity element of G(F ). If G
is not abelian, than H1(F, G) is not a group, but merely a pointed set, i.e. a
set with a distinguished element, the equivalence class of the trivial 1-cocycle.

The handy thing about Galois cohomology is the long exact sequence in-
duced a short exact sequence of algebraic groups. If 1 → G → G′ → G′′ → 1
is a short exact sequence of algebraic groups (i.e. short exact on the level of F



AG NOTES 5

points), then there is a connecting homomorphism from δ : G′′(F ) → H1(F, G)
such that we get the following long exact sequence:

1 → G(F ) → G′(F ) → G′′(F ) → H1(F, G) → H1(F, G′) → H1(F, G′′).

Here is the important fact that we will need to know about H1:

Theorem 6.1. If X an algebraic F -variety There is a 1 - 1 correspondence

between the following two sets:

• forms of X
• elements of H1(F, Aut(XF ))

I will show how to get a cocycle from a form of X. Let Y be a form of X, so
that there is an isomorphism φ : XF → YF . The group Γ acts on both XF and
YF by acting on the coordinates. Pick γ ∈ Γ, and consider the following (not

necessarily commutative) diagram: XF

φ
//

γ

��

YF

γ

��

XF

φ
// YF .

In this diagram all arrows

are isomorphisms. The composite φ−1γ−1φγ ∈ Aut(XF ) is not necessarily the
identity (it is if the diagram is commutative.) The assignment γ 7→ φ−1γ−1φγ
defines a 1-cocycle of Γ with coefficients in Aut(XF ).

References: Chapter 7 of [6], [8].

7. Blow Up

The Blow Up is a process on a variety X which replaces a point x with
the tangent spaces of directions at x, without effecting any other part of the
variety. Here is an awesome picture of the blow up of P2 at three points:

The map p1 : S̃ → P2 is the blow up at the three points defined by the
intersection of any pair of the three lines. The inverse image of each point is
a line in S̃ (the lines m0, m1, and m2), and the lines connecting these three
points pull back to the three lines l0, l1, and l2.

References: Chapter 5 of [3], [7]
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Figure 1. The Hexagon of Lines.
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