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Abstract. This paper will deal with and describe a process to
amalgamate graphs. The recoverability of the resulting graphs
will be addressed as well as a reverse procedure to separate the
graphs into recoverable components. Throughout the paper, cir-
cular planar graphs will be used and their medial graphs will be
instrumental in the proofs.
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1. Introduction

This section will provide information about resistor networks, which
is covered in detail in [1]. We will define the necessary terms to describe
the inverse problem and what it means for a network to be recoverable.

We define a graph with boundary in the usual way. Let G = (intV, ∂V, E)
be a graph such that V = intV ∪ ∂V denotes the vertices of G and
intV ∩ ∂V = ∅. The set ∂V is the set of boundary nodes and intV is
the set of interior nodes. Also, E ⊆ V × V denotes the set of edges of
G. Define a relation, ∼, on V such that for p, q ∈ V we have p ∼ q if
pq ∈ E.

A conductivity on a graph G is a function γ : E → R
+. Thus γ

assigns a positive, real conductance to every edge in G. A resistor

network, Γ = (G, γ), is a pair consisting of a graph and a conductivity
on that graph. For a potential function u : V → R we can define
a current function I : E → R by Ohm’s Law. That is, I(pq) =
γ(pq)(u(p) − u(q)) for pq ∈ E.

Let Γ = (G, γ) be a resistor network. A potential function, u, is
called γ-harmonic if for each vertex in intV we have

∑

q∼p

γ(pq)(u(p) − u(q)) = 0.

This property is called Kirchhoff’s Law. The Dirichlet Problem is then,
given a boundary potential function φ : ∂V → R does there exist a
unique γ- harmonic function u : V → R such that u(p) = φ(p) for all
p ∈ ∂V ? The answer to this question is yes, as is shown in [1].

Given a boundary function on Γ we can determine uniquely the cur-
rents at each boundary node in ∂V . Supposing that |∂V | = n, we de-
fine the Dirichlet to Neumann map Λ : R

n → R
n which takes boundary

potentials to boundary currents. This map is linear and its matrix is
called the response matrix for Γ. For the inverse problem on electrical
networks, we want to recover γ from Λ. If this is possible we say that
Γ is a recoverable network.

The response matrix, Λ = [λi,j], for a network Γ with n boundary
nodes is an n × n matrix where each boundary node corresponds to a
row and column. If a boundary function is put on Γ with a value of
1 at boundary node j and 0 elsewhere, then λi,j is the current flowing
out of node i.

A circular planar graph is a planar graph with boundary which is
embedded in a disk, D. The boundary nodes lie on circle which bounds
D, while the interior nodes are completely contained in the interior of
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D. The boundary nodes can be labeled in circular order around the
boundary of D.

2. Medial Graphs

Consider a circular planar graph, G, embedded on a disk, D. The
medial graph, M, of G is a graph which has a vertex at every edge of G

and an edge connecting any two vertices which lie on edges of G that
share a vertex and a face. In addition, M has one vertex on each side
of each boundary node of G on the boundary of D. In this way, each
edge of G will have four edges of M corresponding to it. Thus we can
define the geodesics of M which start and end on the boundary of D

and transverse each other at each crossing, that is, at each edge of G.
Each boundary node of G can be identified with two geodesics. These

geodesics may or may not cross each other. If two geodesics cross more
than once, or if one geodesic crosses itself, a lens is formed. See Fig-
ure 2. It was shown in [1] that a circular planar network is recoverable
if and only if its medial graph does not contain a lens. Since lenses are
dependent on geodesics crossing each other, it’s important to realize
which properties of a graph will produce crossing geodesics.

A boundary spike is defined to be a boundary node with degree
one and an edge attached to an interior node. From the definition
of a medial graph, we know the geodesics terminating on either side
of a boundary spike will necessarily cross at the edge formed by the
boundary spike.

As is discussed in [1], if three geodesics form an empty triangle, i.e. a
triangle with no geodesics passing through it, then a Y -∆ transforma-
tion in G will put one geodesic on the other side of the crossing made
by the other two. In this way, if the two geodesics of a boundary node
cross each other, we can do Y -∆ transformations to move the crossing
so that no other geodesics are between it and the boundary node.

In Figure 3 consider the geodesics terminating at v5 and v6. The
geodesic terminating at v8 forms an empty triangle with these and by
doing a Y -∆ transformation we’ve moved it to the other side of the
crossing. Performing this again we have now moved the crossing of
these two geodesics to the boundary node between their terminating
points. This idea is summarized in the following lemma.

Lemma 2.1. Let G be a circular planar graph and let M be its medial

graph. Let g1 and g2 be two geodesics in M which terminate on either

side of a boundary node, a. Then g1 and g2 will cross each other if and

only if a is Y -∆ equivalent to a boundary spike.
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Figure 1. Graph and medial graph
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Figure 2. An example of a lens

Proof. Suppose g1 and g2 in M cross each other. If there are no other
geodesics between the crossing and a, then their crossing must corre-
spond to an edge which is directly attached to a. Thus, a is a boundary
spike. If there are geodesics between a and the crossing then consider
the one closest to the crossing. This will form an empty triangle and
thus a Y -∆ transformation in G will bring the crossing closer to a. Con-
tinue in this process until no geodesics are between a and the crossing.

Now suppose that there exists G′ which is Y -∆ equivalent to G such
that in G′, a is a boundary spike. Consider M′, the medial graph
of G′. The g1 and g2 in M′, which terminate on either side of a,
will necessarily cross each other because a is a boundary spike. Now
perform Y -∆ transformations on G′ until we arrive at G again. Since
each transformation will not uncross any geodesics, it will only move
the crossings around, g1 and g2 are still crossed. �

3. Amalgamating Graphs

This section will discuss amalgamating graphs in a general sense.
Much of this is discussed in [2] where most of the research was started.
The notation in [2] will also be adopted. We will briefly discuss the
matrix manipulations needed to amalgamate two graphs together.

Let G1 and G2 be two graphs with known response matrices Λ1 and
Λ2. Order the boundary nodes in G1 and G2 so that the nodes at
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Figure 3. An example of Y -∆ transformations to move
a crossing towards a boundary node
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which we want to amalgamate are listed last. Call the set of boundary
nodes to be amalgamated in G1, L1 and those in G2, L2. We must have
|L1| = |L2|. Then the response matrices for G1 and G2 can be written
in block form as

Λ1 =

(

A1 B1

BT
1 C1

)

Λ2 =

(

A2 B2

BT
2 C2

)

where C1 and C2 correspond to L1 and L2. Next we identify the
nodes in L1 and L2 to create a new graph which we’ll call G∗. The
response matrix is

Λ∗ =





A1 0 B1

0 A2 B2

BT
1 BT

2 C1 + C2



 .

There are no connections through the interior between boundary nodes
which were not in L1 or L2. This explains the blocks of zeros in Λ∗.
To make the nodes interior nodes, we take the Schur complement of
Λ∗ with respect to C1 + C2. Then

Λ =

(

A1 0
0 A2

)

−

(

B1

B2

)

(C1 + C2)
− 1

(

BT
1 BT

2

)

is the response matrix for G with internalized boundary nodes.
Before we continue we want to make a small modification to the

amalgamation process in order to preserve recoverability later on. In
the case of amalgamating a boundary spike to another boundary node
we will contract the boundary spike and identify its interior node with
the other boundary node. Then we can interiorize that node. Figure 4
shows this process.

4. Recoverability of Amalgamated Graphs

Let G1 and G2 be two circular planar graphs which we will amalga-
mate to form G. We will consider various cases of amalgamation at one
or more boundary nodes and the recoverability of the resulting graph.

Suppose that G1 and G2 each have at least one boundary spike and
suppose we amalgamate G1 and G2 at these boundary spikes. Then in
the medial graph of G the only geodesics which have been modified are
the ones terminating on either side of the boundary spikes. We simply
connect these geodesics when we amalgamate the graphs. Figure 5
shows an example of this process. Notice that no new crossings were
created when we amalgamated. This leads to the following theorem.
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Figure 4. Amalgamation of a boundary spike

Theorem 4.1. Let G1 and G2 be two recoverable, circular planar

graphs such that G1 and G2 each have at least one boundary spike.

Suppose that G1 and G2 are amalgamated to form G at this boundary

spike. Then G is also recoverable.

Proof. Note that G will still be circular planar since amalgamating
will simply remove boundary nodes. Consider the medial graphs of
G1 and G2. Call the geodesics which terminate on either side of the
boundary spikes A1, B1, A2 and B2 accordingly. Since G1 and G2 are
recoverable, there are no lenses in their medial graphs. Thus, A1 and B1

will cross only at the boundary spike in G1 and nowhere else. A similar
statement can be made about A2 and B2. When we amalgamate, A1

and A2 will become A in the medial graph of G and B1 and B2 will
become B. But A and B will only cross at the point where the graphs
were amalgamated. Since G is circular planar and there are no lenses
in the medial graph of G, it must be recoverable. �

The statement made in Theorem 4.1 can be made more general since
we have a particular way to amalgamate at boundary spikes.

Corollary 4.1. Let G1 and G2 be two recoverable, circular planar

graphs such that G1 has at least one boundary spike. Suppose that

G1 and G2 are amalgamated to form G at this boundary spike in G1

and at any boundary node in G2. Then G is also recoverable.

Proof. This follows from a similar argument as Theorem 4.1. As shown
in Figure 4, when we amalgamate at a boundary spike, the boundary
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Figure 5. Connecting geodesics while amalgamating
two graphs

spike is contracted. This means that the crossing that was made by
the geodesics terminating there is no longer there in the amalgamated
graph. Since both G1 and G2 are recoverable, there are no lenses. Thus
the corresponding geodesics in G2 to be connected can only cross once.
Therefore the resulting geodesics in G can only cross at most once. �

We can also make a statement about the non-recoverability of amal-
gamated graphs since we know exactly when the geodesics in the medial
graph will cross.

Corollary 4.2. Let G1 and G2 be two circular planar graphs such that

G1 and G2 each have at least one boundary node which is not a boundary

spike but is Y -∆ equivalent to a boundary spike. Suppose that G1 and
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G2 are amalgamated to form G at this boundary node. Then G is not

recoverable.

Proof. The geodesics terminating on either side of the boundary nodes
to be amalgamated must cross at least once by Lemma 2.1. Since
each boundary node is not a boundary spike the crossings will still be
present in the medial graph of G. Since we have two geodesics which
cross each other twice, the medial graph of G has a lens. Thus G is
not recoverable. �

It was shown in [2] that two circular planar graphs when amalga-
mated in circular planar order will preserve circular planarity in the
the resulting graph. Since we know which operations and boundary
nodes will produce crossing geodesics in an amalgamated graph, we
also know about the recoverability of graphs amalgamated at more
than one boundary node. That is, given two recoverable, circular pla-
nar graphs, we can amalgamate them to get a recoverable graph at as
many boundary nodes as we like, provided that they are in circular
planar oder and for each pair being amalgamated, one of the two is a
boundary spike.

5. Separation of Graphs

Since we have a process of amalgamating graphs using medial graphs
it seems natural to try and separate a circular planar graph into recov-
erable pieces.

To separate a circular planar graph, first draw its medial graph, then
look for crossings in the medial graph to separate at. It’s necessary to
be able to draw a continuous line from the boundary to the boundary
which only crosses the medial graph at its vertices. Also, the separa-
tion line must cross the edges of the original graph transversely. In
Figure 6 the x’s mark where the separation line crosses the original
graph (dotted lines). In this way, edges of the graph are broken into
boundary spikes in the resulting graphs.

Because separation breaks a graph at the crossing of geodesics, cre-
ating a boundary spike in the resulting medial graph will produce no
extra crossings. Thus, if a lens is broken during separation, the only
time it will be present in the resulting graphs is if the separation line
crosses one or both endpoints of a lens and crosses the lens nowhere
else. In this way we can separate nearly any graph into recoverable
graphs.
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Figure 6. Separation of a graph using its medial graph

6. Conclusion

This paper presents a process for amalgamating circular planar graphs
using their medial graphs as well as discusses the recoverability of the
resulting graphs. Furthermore, a separation procedure, which com-
pletely reverses amalgamation, is given and can be used to separate
nonrecoverable circular planar graphs into recoverable graphs.

Certainly the biggest limitation in this paper is the fact that all
graphs are circular planar. It would be good to be able to extend
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recoverability results to general graphs which are not necessarily circu-
lar planar. It would also be interesting if this could be done in some
way with medial graphs, albeit they may be degenerate in some form.
The fact that circular planar graphs can be amalgamated to create
non-circular planar graphs suggests that there may be a way to use
the original medial graphs to obtain a statement about the resulting
graph.

More work should be done on separating graphs and which sorts of
graphs can be separated. A result along the lines of ”Any circular pla-
nar graph can be separated into recoverable graphs” would be useful,
but at the moment a simple series connection provides a counterexam-
ple. Nevertheless, a slightly weaker claim can certainly be made.
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