
Recovering Information Starting Points

Rachael Maltiel and Jacqueline Corbitt

August 15, 2008

Abstract

In this paper, we describe several algorithms to estimate the best nodes

to begin spread of information throughout the graph. The graph models a

social network with the nodes representing people and edges representing

communication channels. We deduce the best place to start the infor-

mation by experimenting with random start points. We also analyze our

methods for how much improvement in time it takes the information to

spread throughout the graph, both compared to each other and to choos-

ing a random node.

Contents

1 Introduction of the Problem 2

1.1 Basic Graphs . 2
1.2 Basic Definitions . 2
1.3 Goals . 4

2 Fractional Method 4

2.1 The Basic Method . 4
2.2 An Improvement . 7
2.3 Analyzing the Method: Row Sums 10

3 Cost Method 10

3.1 The Basic Method . 10
3.2 A Different Interpretation . 14

4 Statistical Comparison of Fractional Method and Cost Method 14

4.1 Methodology . 14
4.2 Results . 15

5 Probability Method 16

5.1 Introduction . 16
5.2 Building the Algorithm . 17

5.2.1 Sorting the Yes, No, and Maybe Edges 17
5.2.2 Finding the Medians’ Probabilities 19

5.3 Advantages and Disadvantages 20

1

6 Further Directions 21

6.1 New Methods . 21
6.2 Graph Model Modifications . 21
6.3 Runtime Analysis . 23

7 Summary 23

8 References 23

1 Introduction of the Problem

1.1 Basic Graphs

Our problem utilizes graphs to model the spread of information. We can think
of nodes as people, and edges as relationships involving communication between
these nodes. (Because of this easy and comprehensible analogy, this problem
has been termed “the rumormonger problem.”) We work on the inverse problem
of determining the edges in the graph given certain output data.1

If information is given to node 0, we presume that after one timestep (referred
to as a “day”), node 0 has passed the information to all of its connections. Any
node that shares an edge with node 0 (i.e., is a neighbor of node 0) will receive
the information on day 1. By day 2, all the nodes which received the information
on day 1 have spread the information to all their connections, and so on until all
connected nodes have received the information. In a graph which is connected,
all the nodes will eventually receive the information, but the order of nodes will
depend on which is the first node to receive information. In each run, a different
starting node will give a different order. An example is shown in Figure 2 with
the first run beginning on node 0 and the second run beginning on node 6. As
can be seen, the information passes much more quickly when it is started with
node 6.

1.2 Basic Definitions

Adjacency Matrix: Symmetric matrix M such that

Mij =

{

1 if i and j are incident

0 otherwise

Distance: The smallest number of edges in a path between vertices i and j,
denoted as d(i, j).

1These graphs are generated randomly. A given probability determines the independent
likelihood of each possible edge existing. For graphs of 10 nodes we generally use a probability
of 0.35 and for graphs of 100 nodes we use a probability of 0.05.

2

�
�

�

�

�
�
�

�

�

	

Figure 1: A typical 10-node graph

Run One Run Two

Day 0 0 6
Day 1 1, 4 1, 3, 8
Day 2 3, 6, 7 0, 4, 5, 7, 9
Day 3 8 2
Day 4 5, 9 -
Day 5 2 -

Figure 2: Sample Run Data

Distance Matrix: Symmetric matrix M such that

Mij =

{

0 i = j

d(i, j) otherwise

Degree: The number of edges incident to a given node.

Center: u : max{d(u, v)| for v ∈ G} ≤ max{d(u′, v)| for v ∈ G} for all u′ ∈ G

A node that has the shortest path length to the farthest node. In our
problem, this is a node that takes the fewest number of days to spread
the information to all other nodes. The solution to the forward problem
of finding the center is straightforward.

Median: u : min{
∑

vεG d(u, v)} for all uεG

A node which yields the smallest sum when the shortest paths to all other
nodes are summed. In our problem, this is a node that takes the smallest
average number of days to contact all nodes. The solution to the forward
problem is to sum up the shortest connections from each node to all other
nodes. A node with the smallest sum is a median.

3

1.3 Goals

Our goal is to predict the best nodes with which to begin a run to have the

information spread the fastest without viewing the actual graph. “Best” can
be defined by either the center(s), the median(s), or both.2 In this paper, we
discuss several algorithms and their effectiveness at achieving this goal. We will
also discuss further directions this research can be taken.

2 Fractional Method

2.1 The Basic Method

One can deduce the presence or absence of some connections from just one run.
For example, from Figure 2 it is easily deduced that node 0 is connected to nodes
1 and 4, since is the only way nodes 1 and 4 can have the information by day 1.
(Henceforth, nodes shall be referred to only by their number, unless it causes
confusion in context.) Node 8 is connected to 5 and 9. Node 2 is definitely not
connected to 3, 6, or 7 since it takes more than a day for the information to pass
between these nodes. However, some connections are still in question. Node 2
may be connected to only 5, only 9, or both. Our method represents these
possible connections by modifying the adjacency matrix. Instead of recording
a 1 or a 0 in the (2,5), (5,2), (2,9), or (9,2) positions, a fraction is calculated
and recorded. In this case, the fraction recorded in all four of those positions
would be 1/2. This does not correctly represent the accurate probability of
the connection; instead it is meant to symbolize one edge spread between this
many nodes (possibilities for more accurate probabilities will be discussed in
Section 5). We calculate these fractions by taking the reciprocal of the number
of possible nodes from which it could have received the information. That is to
say, for a node a which received information on day x, it could have heard the
information from any of n nodes which received the information on day x − 1.
Therefore, the probability for node a to be connected to any of the n nodes
would be represented by 1/n. In the case above, the 2 in the denominator of
1/2 indicates the number of nodes (node 5 and node 9) from which it is possible
that node 2 got the information. Also, since no information can be deduced
about the connection between 5 and 9 (or any nodes that get the information
on the same day), the entries in (9,5) and (5,9) will be -1 as a placeholder. In
other words:

1. Create a matrix M which is m x m, where m is the number of total nodes
in the graph. Each entry is -1 (placeholder).

2. Put 0’s on all diagonals (no node is connected directly to itself).

3. For all nodes a that received the information on Day x and for any node
b that received the information on Day x − 1 of which there are n, enter
1/n in position M[a, b].

2Often, several nodes are both centers and medians.

4

0 1 2 3 4 5 6 7 8 9 Row Sum

0 0 1 0 0 1 0 0 0 0 0 2
1 1 0 0 1/2 -1 0 1/2 1/2 0 0 2.5

2 0 0 0 0 0 1/2 0 0 0 1/2 1
3 0 1/2 0 0 1/2 0 -1 -1 1/3 0 1.33

4 1 -1 0 1/2 0 0 1/2 1/2 0 0 2.5
5 0 0 1/2 0 0 0 0 0 1 -1 1.5
6 0 1/2 0 -1 1/2 0 0 -1 1/3 0 1.33

7 0 1/2 0 -1 1/2 0 -1 0 1/3 0 1.33
8 0 0 0 1/3 0 1 1/3 1/3 0 1 3

9 0 0 1/2 0 0 -1 0 0 1 0 1.5
(a) Data from only Run One

0 1 2 3 4 5 6 7 8 9 Row Sum

0 0 1 0 0 1 0 0 0 0 0 2
1 1 0 0 1/2 1/3 0 1 1/2 0 0 3.33
2 0 0 0 0 0 1/2 0 0 0 1/2 1

3 0 1/2 0 0 1/2 0 1 1/3 1/3 0 2.67
4 1 1/3 0 1/2 0 0 0 1/2 0 0 1.33

5 0 0 1/2 0 0 0 0 0 1 -1 1.5
6 0 1 0 1 0 0 0 0 1 0 3

7 0 1/2 0 1/3 1/2 0 0 0 1/3 0 1.67
8 0 0 0 1/3 0 1 1 1/3 0 1 3.67

9 0 0 1/2 0 0 -1 0 0 1 0 1.5
(b) Data from Run One and Run Two

Figure 3: Fractional Matrices using data from Figure 2

4. For all other matrix entries (all other connections) which are still -1, check
to see if connection is impossible. The entry is impossible if the days on
which the information is received have a difference of greater than 1. If the
nodes of the entry receive information on the same day, leave connection
as -1. Else, change entry to 0.

Given only the data from run one, our matrix appears in Figure 3(a)3.
Because this graph does not have many connections, we already know much

of the information about the graph’s actual connections. However, with another
run, even more data can be obtained. We can use the information from the
second run to modify our matrix.

1. Iterate through our original matrix and look for entries which are not
either 1 or 0, as these represent connections or lack of connections that
we know with certainty already.

3The last column represents the row sum, treating -1’s as 0’s because nothing is known
about them. The reason for row sums will be discussed in Section 2.3.

5

Run One Run Two

Day 0 0 4
Day 1 2, 4 0, 2
Day 2 1 1
Day 3 3 3

(a) Five Node Sample Data

0 1 2 3 4

0 0 0 1 0 1
1 0 0 1/2 1 0

2 1 1/2 0 0 1
3 0 1 0 0 0

4 1 0 1 0 0
(b) Fractional Matrix

Figure 4: Sample Data with more information than Fractional Method can catch

2. If a fraction or a place-holding -1 is found, look at the data for that
connection for run two.

3. If there is no information about that connection in run two (i.e. both
nodes received the information on the same day), make no changes.

4. If the connection is shown impossible, replace that connection in the ma-
trix with a 0.

5. If the connection is shown certain (i.e. there is only one node the informa-
tion could have come from), replace that connection in the matrix with a
1.

6. If the connection is neither impossible nor certain, calculate what the
fractional probability would be. If it’s a larger fraction than the original
entry, or the original entry was -1, replace the original entry with the new
fraction. Else, leave the original entry.

7. Find the next entry neither 1 nor 0 and continue.

Using this idea, the modified matrix becomes the matrix in Figure 3(b). As
you can see, this second run made a significant difference to the matrix. More
connections were discovered or proved impossible, and there is now only one
connection for which no information is given.

The information obtained through this algorithm lacks some information
that we can gather from the run data, however. Let’s take a look at another
example, this time with only five nodes in Figure 4(a). We’ll just look at the
runs, not the graph.

According to the first run, 2 and 4 are connected to 0, but 1 is not. According
to the second run, 0 and 2 are connected to 4, but 1 is not. It is simple to deduce
that 1 must be connected to 2, but our previous algorithm would not show this.
After having been given these two runs, that algorithm would give us the matrix
in Figure 4(b).

Thus we can see that in some cases our algorithm cannot see as much as the
human eye. In this case, it is possible to actually discover the whole graph with
these two runs, but we must be clever with our algorithm.

6

0 1 2 3 4

0 0 0 1 0 1
1 0 0 1/2 1 1/2

2 1 1/2 0 0 -1
3 0 1 0 0 0

4 1 1/2 -1 0 0

Figure 5: M1

Node 0 1 2 3 4
Day 0 2 1 3 1

Figure 6: dayinfo1

2.2 An Improvement

In order to recover more information and solve the above problem, we describe
an improved method.

1. Write a matrix as seen in Figure 5, using previous method and entering
only the data from the first run (M1).

2. Create an array, Figure 6, with a length the same as the number of nodes
n. The nth index’s entry is the day that node received the information
(i.e. for run one of the previous example, dayinfo1[0] = 0, dayinfo1[1]
= 2, dayinfo1[2]=1, etc).

3. Write a second matrix as seen in Figure 7 using the previous method and
entering only the data from the first run (M2).

4. Create an array (dayinfo2) using the same strategy as dayinfo1, but
using the data from run two. See Figure 8.

5. Start to put this information into a final matrix (Mfinal). Iterate through
M1 and M2 and record all 1’s and 0’s (all certain and impossible connec-
tions). Leave other entries as -1. See Figure 9.

0 1 2 3 4

0 0 1/2 -1 0 1
1 1/2 0 1/2 1 0

2 -1 1/2 0 0 1
3 0 1 0 0 0

4 1 0 1 0 0

Figure 7: M2

7

Node 0 1 2 3 4
Day 1 2 1 3 0

Figure 8: dayinfo2

0 1 2 3 4

0 0 0 1 0 1

1 0 0 -1 1 0
2 1 -1 0 0 1

3 0 1 0 0 0
4 1 0 1 0 0

Figure 9: The first draft of Mfinal

6. Write a new matrix (M1iffy) according to this procedure: Begin with
all entries in M1iffy as [0]. For each entry in M1, record which entries
are fractional. Then check the same connection in Mfinal. If the same
connection in Mfinal is a 1, then the entry at that position in M1iffy

becomes a 0. If the same connection in Mfinal is a 0, then mark the
connection as a 2 in M1iffy. If the same connection in Mfinal is -1,
put a 1 in M1iffy. (All these numbers are meant simply as symbolic
placeholders.) See Figure 10.

7. Write a new matrix (M2iffy) according to the above procedure, but it-
erating through M2. There are now two new matrices recording all the
unsure connections and all possible connections which have been shown
to not be connections by the other run of data. See Figure 11.

8. In each iffy matrix, look for each 2. This represents a connection that the
first run showed was possible but that the second run proved nonexistent.
For the two nodes for which a connection has been disproven, the dayinfo
of one node is x and the dayinfo of the other node is x− 1. Let’s call the
first node a and the second node b. Thus, we can update the probabilities
of a connection between node a with the other nodes with dayinfo x − 1.

0 1 2 3 4

0 0 0 0 0 0
1 0 0 1 0 2
2 0 1 0 0 0

3 0 0 0 0 0
4 0 2 0 0 0

Figure 10: M1iffy

8

0 1 2 3 4

0 0 2 0 0 0
1 2 0 1 0 0

2 0 1 0 0 0
3 0 0 0 0 0

4 0 0 0 0 0

Figure 11: M2iffy

0 1 2 3 4

0 0 0 1 0 1

1 0 0 1 1 0
2 1 1 0 0 1

3 0 1 0 0 0
4 1 0 1 0 0

Figure 12: The final version of Mfinal

n is the number of nodes with dayinfo x − 1. The original entry for all
said connections between node a and all nodes with dayinfo x− 1 is 1/n.
We can now update this fraction to be 1/(n − 1). This, for example, can
change an entry from 1/3 to 1/2, or from 1/2 to 1. If the number of nodes
with dayinfo x− 1 except for node b is 1, that means that we have proven
a definite connection between node a and the remaining node with dayinfo
x − 1. We now set this connection to 0 in the iffy matrix and record a
1 in the entries in Mfinal. 4 Then we continue looking through the iffy
matrix until the next 2 is found.

9. At this point, all the certain and disproven connections - all 1’s and 0’s -
are recorded in Mfinal. Finally, we iterate through both M1 and M2 one
last time, comparing all connections which are still listed as -1 in Mfinal.
For each such connection in M1 and M2, we take the larger fraction and
record that in Mfinal. If there is no information about a connection in
either M1 or M2, the connection is left as -1 in Mfinal.

This example may be trivial but it demonstrates the algorithm clearly.
In effect, this algorithm can either increase the fraction to accurately take

into account how many nodes a given node may be connected to or change a
fraction to 1 when a connection can be determined given both sets of data. The
effectiveness of this improvement in the algorithm is debatable. In graphs with
10 or fewer nodes, this could make a significant difference in our knowledge
about connections. However, for a 100-node graph, several extra matrices are

4Remember that since our graph is symmetric, connections will be updated in both the
(i, j) and the (j, i) entries.

9

created which may not make important modifications. This could slow down
the run time significantly while only making small changes. The importance of
this discussion is made more evident in the next section.

2.3 Analyzing the Method: Row Sums

In a real adjacency matrix, each row sum would indicate the degree of the node
(the index of the row being the node’s number). Although the matrix created
through this algorithm is not a real adjacency matrix, it is an approximation in
that row sums can still give valuable information. In a real adjacency matrix, the
row with the highest sum would indicate the node with most connections, and
in our pseudo-adjacency matrix, the row sum often is very close to the actual
row sum of the real adjacency matrix (if the graph was given). During the
calculation of row sums, each -1 is treated as a 0, since an edge’s nonexistence
is more likely than its existence.

In this algorithm, we are looking for the highest row sum. This indicates the
nodes which are more likely to have a high degree, and thus the nodes which are
more likely to be better start points. In the matrix in Figure 3(b), 8 is indicated
as the best start point, with nodes 6 and 1 following close behind. If we look at
the actual graph and calculate the centers and medians, we discover that nodes
6, 7, and 8 are centers, while nodes 6 and 8 are medians. Thus our algorithm
chose the medians as the best start points, which also happen to be centers.
Since the medians are also centers, this test does not demonstrate the accuracy
of our method in determining centers; judging from this one test, it seems that
our algorithm has chosen the medians. A statistical analysis to determine how
accurate our methods are in both determining centers and medians will be given
in Section 4.

At first glance, it would seem that the previous modification to our algo-
rithm would have a significant effect on the row sum, as it has the potential to
increase fractional entries to 1. However, often our algorithm merely changes a
1/3 to a 1/2 (not a significant difference), or, if no changes are necessary, leaves
the row sum unchanged. For the time being, since the random graphs we have
experimented with rarely have more than 100 nodes, making a few extra matri-
ces does not unreasonably affect the run time of the operation. This addition
to the algorithm will only become an issue in graphs with hundreds of nodes.

3 Cost Method

3.1 The Basic Method

In Fractional Method, we use an estimate of which nodes are connected to each
other and each node’s estimated degree to determine the best starting nodes.
In Cost Method, we estimate how far apart every node is from every other node
— or at least find an upper bound on the minimum distance between nodes.
Both of these are important in finding the median of a graph. From Figure 2,

10

for example, we can conclude that 0 has a distance of one from 1 and 4, 0 has a
distance of two from 3, 6, and 7, etc.5 However, just looking at the first set of
data, we don’t know if 1 and 4 are connected. We do know that (0,1) and (0,4)
are edges so we know that the upper bound on the minimum distance between
1 and 4 is two (a path can go from 1 to 0 to 4 to get between nodes 1 and
4). By the same logic, 1 and 4 have a distance of at most three from nodes 3,
6, and 7, etc. An important deduction is that we can add the respective days
which the nodes receive information on to find the maximum distance between
the two nodes.

1. Put 0’s on the diagonals as there are no connections between a node and
itself.

2. For each connection (0, a), where 0 < a < n, the number of total nodes,
add the number of day node 0 learned the information with the number of
day node a learned the information on (i.e. for this data, node 0 received
information on day 0 and node 1 received information on day 1. 0 + 1 =
1, so the entry (0,1) is set to 1). Only look at run one.

3. Repeat for (x, a), where 0 < x < n and x < a < n.

4. To keep the graph symmetric, for every calculated (i, j) connection, the
(j, i) connection is set to the same.

5. Repeat the process, but this time examining run two. If a calculated con-
nection is less than the entry already in the matrix, then the new, smaller
entry replaces the old entry. If not, the old entry remains. Remember to
keep the graph symmetric; if an (i, j) entry is changed, the corresponding
(j, i) entry should be changed as well.

We can put these bounds of the shortest path lengths between two nodes in a
modified Distance Matrix. The matrix generated using this algorithm appears
in Figure 13(a) (the last column is the row sum for that row) using the data
from run one in Figure 2.

Now, we calculate distances between nodes the same way we did before, but
this time using data from run two. Then, for each connection, we compare the
lengths and keep the smallest in our matrix. The updated and modified matrix,
using data from both runs, appears in Figure 13(b).

The second run made a huge improvement on the first matrix. Note that
the only row sum it did not affect was the row sum of node 0. This is because
run one began on node 0, allowing this run to provide the information for the
actual minimum distances to each node. It will always be the case that the
start nodes for the two runs will have their actual minimum distances to each
node. All the distances between all other nodes are only estimated. We call this
“starting point bias.” Because of this effect, our method sometimes recognizes

5Note that the distance from each node to the beginning node is the same as the number
of days from each node to the beginning node; or in other words, it takes one day to travel a
distance of one.

11

0 1 2 3 4 5 6 7 8 9 Row Sum

0 0 1 5 2 1 4 2 2 3 4 24
1 1 0 6 3 2 5 3 3 4 5 32

2 5 6 0 7 6 9 7 7 8 9 64
3 2 3 7 0 3 6 4 4 5 6 40

4 1 2 6 3 0 5 3 3 4 5 32
5 4 5 9 6 5 0 6 6 7 8 56

6 2 3 7 4 3 6 0 4 5 6 40
7 2 3 7 4 3 6 4 0 5 6 40

8 3 4 8 5 4 7 5 5 0 7 48
9 4 5 9 6 5 8 6 6 7 0 56

(a) Data from only Run One

0 1 2 3 4 5 6 7 8 9 Row Sum

0 0 1 5 2 1 4 2 2 3 4 24
1 1 0 4 2 2 3 1 3 2 3 21

2 5 4 0 4 5 5 3 5 4 5 40
3 2 2 4 0 3 3 1 3 2 3 23

4 1 2 5 3 0 4 2 3 3 4 27
5 4 3 5 3 4 0 2 4 3 4 32
6 2 1 3 1 2 2 0 2 1 2 16

7 2 3 5 3 3 4 2 0 3 4 29
8 3 2 4 2 3 3 1 3 0 3 24

9 4 3 5 3 4 4 2 4 3 0 32
(b) Data from Run One and Run Two

Figure 13: Cost Matrices using data from Figure 2

12

0 1 2 3 4 5 6 7 8 9 Row Sum

0 0 1 5 2 1 4 2 2 3 4 24
1 1 0 4 2 2 3 1 3 2 3 21

2 5 4 0 4 5 3 3 5 2 3 34
3 2 2 4 0 3 3 1 3 2 3 23

4 1 2 5 3 0 4 2 3 3 4 27
5 4 3 3 3 4 0 2 4 1 2 26
6 2 1 3 1 2 2 0 2 1 2 16

7 2 3 5 3 3 4 2 0 3 4 29
8 3 2 2 2 3 1 1 3 0 1 18

9 4 3 3 3 4 2 2 4 1 0 26

Figure 14: Improved Cost Matrix

the start nodes as a good starting point even when this is not the case. With a
large enough graph, we can throw out the start nodes in our search for centers
and medians. However, in a small graph like this one, the chance of one or both
of the start nodes being a center or median is high, so throwing these nodes out
would harm our results.

Since we want the node(s) with the smallest sum of shortest path lengths
between itself and the other nodes, we want the node that gives the smallest
row sum (since each column along the row represents a bound of a shortest path
length). According to our second matrix, node 6 is the best choice, with nodes
1, 3, 8, and 0 also recommended. As previously noted, the centers of this graph
are nodes 6, 7, and 8, while the medians are 6 and 8. It’s useful to note that
node 6 did well; it is also interesting to note that nodes 0 and 8 were tied in
their row sums. While it is apparent even just from looking at the data that
0 is a poor choice for a start node, 0 was a start point for run one and so its
row sum is its actual sum of shortest path lengths. Node 8, however, must loop
back through the starting node, increasing its estimated shortest path lengths.
Also, node 6 was another starting point. While by the definition of median 6
should have the same row sum as node 8, it actually did far better because 6
was a starting point.

Another problem with this method is that in run one, we assumed we had
to travel all the way back to the start node every time when we were counting
distances. However, the interconnections between nodes 2, 5, 8, and 9 could be
calculated more exactly, since the only node on day 3 is 8, as seen in Figure 2.
Thus, instead of counting all the steps from 5 to 0 and from 0 to 8 (7 steps), 5
can just be connected to 8 (1 step). This is a vast improvement in the bound
of the shortest path length. At the time of this writing, this improvement has
not been written into the code yet. This can be done easily by hand, however,
and combined with data from run two as in Figure 14.

Glancing over the row sums, we can see that this matrix gives us a far more
accurate idea of the best nodes to choose; node 6 again comes in first, but it is

13

closely followed by node 8. In sparse graphs such as this one, we can see that
this modification to the algorithm would make a significant difference in the
accuracy of our method. In more dense graphs, where the chance of only one
node being contacted on one day is very small, this change in code would not
help at all.

3.2 A Different Interpretation

Instead of comparing all row sums in the final matrix, we can take a shortcut
by only looking at row sums of rows which have the smallest numbers. In this
example, for instance, we wouldn’t look at any row sum with a 5. We can do this
because it is unlikely that any good start nodes would have such a high upper
bound on their minimum distance to any node. If we look at the modified
matrix in Figure 14, we realize some rows have neither 4s nor 5s, so we can
throw out those rows. This leaves us with rows 6 and 8, the best nodes in the
matrix! Even looking at Figure 13(b), which isn’t as accurate as Figure 14, we
can ignore rows with entries of 5, leaving us to compare the nodes 1, 3, 6, and
8. When comparing large graphs (particularly when doing row sums by hand),
this method makes comparisons easier.6

4 Statistical Comparison of Fractional Method

and Cost Method

4.1 Methodology

To determine how accurate our algorithms are in determining the best starting
points in a network, we constructed confidence intervals comparing the effec-
tiveness on average of choosing the best nodes from Fractional Method or Cost
Method and choosing a random node in the graph. We wanted to evaluate how
much more effective both our methods were than simply choosing a random
node and we also wanted to compare the methods to each other. We evaluated
all methods on their ability to predict the center or median. To compare how
close an algorithm is to the center, we calculated the number of days it took
the actual center to reach all nodes and compared this to the number of days it
took the nodes our algorithm predicted to reach all nodes:

1. Find the actual center of the graph. Calculate the number of days it takes
to reach all nodes.

2. For each node our algorithm chooses, calculate the number of days it takes
to reach all nodes.

3. Find the difference between these.

6It’s not always accurate, but is often a good indicator of which nodes are ideal.

14

4. Repeat for i iterations and then calculate the mean of all of these differ-
ences.

We use a similar method to compare how close each algorithm is to the
median:

1. Find the actual median of the graph. Find the sum of the shortest paths
to each node.

2. For each node our algorithm chooses, find the sum of the shortest paths
to each node.

3. Calculate the difference between these two sums.

4. Repeat for i iterations and then calculate the mean of all of these differ-
ences.

From these differences, we computed the mean and standard deviation and
compared the normal plots.

4.2 Results

The graphs in Figure 15 show plots comparing the difference between centers
and medians. We did this for both 10 and 100 node graphs for both algorithms
and a random node, running 100 simulations in each case. Fractional Method
is represented by the blue dotted line, Cost Method is represented by the green
solid line, and choosing a node randomly is represented by the red dashed line.
For centers for 10 node graphs, the mean of the difference from the center (cal-
culated as described previously) is .395 days for Fractional Method with a stan-
dard deviation of .4101, .565 days for Cost Method with a standard deviation
of .4749, and .7164 days with a standard deviation of .3583 for choosing a node
randomly. For medians for 10 node graphs, the mean of the difference from the
median (calculated as described previously) is 1.715 for Fractional Method with
a standard deviation of 1.2355, 2.82 for Cost Method with a standard deviation
of 2.3177, and 3.5967 with a standard deviation of 1.3751 for choosing a node
randomly. For centers for 100 node graphs, the mean of the difference from
the center is .9667 for Fractional Method with a standard deviation of .5061,
1.1667 days for Cost Method with a standard deviation of .3824, and 1.4156
with a standard deviation of .3749 for choosing a node randomly. For medians
for 100 node graphs, the mean of the difference from the median is 34.2967 for
Fractional Method with a standard deviation of 12.436, 44.84 for Cost Method
with a standard deviation of 18.0246, and 55.5538 with a standard deviation
of 7.0242 for choosing a node randomly. We can say with 99% confidence that
the mean of Fractional Method is less than the mean of Cost Method, while
we can say with 95% confidence that the mean of Cost Method is less than the
mean from choosing a node randomly. The mean of Fractional Method is also
a significant improvement on the mean when using a random node. We can
summarize these results by saying that while Cost Method generally provides

15

���

�

�

(a) Comparison of Difference of
Average Distance (Difference of
Medians) for 10 Node Graphs

�������

���

�

���

��

(b) Comparison of Difference
of Average Number of Days
(Difference of Centers) for 10
Node Graphs

������������

����

���

����

�

(c) Comparison of Difference of
Average Distance (Difference of
Medians) for 100 Node Graphs

�� !!� "

"�

#�

!�

(d) Comparison of Difference
of Average Number of Days
(Difference of Centers) for 100
Node Graphs

Figure 15: True Mean Comparisons

a significant improvement over choosing a random node, Fractional Method’s
improvement is larger.

5 Probability Method

5.1 Introduction

While our first methods provide an estimate about the center and median nodes
of the graph based on the known data, they do not account for the probability
of our estimate being correct. In a graph, there is a certain probability that a
given edge is in the graph dependent upon how many edges the graph already
contains. Our project utilizes Erdős-Rényi Random Graphs. The graphs take
the input of a number of nodes and a probability of an edge existing between any
two nodes, and the graph is generated by using the probabilities to determine
which edges exist. When we look at the inverse problem, there is a conditional
probability to find if a certain additional edge exists in the graph when we

16

already know that certain edges definitely exist in the graph since the edges are
not independent. The Probability Method takes this conditional probability
into account.

In the Probability Method, we find all the possible graphs given our run data.
From this data, there are certain connections known either to exist or not exist
while other connections remain as possibilities. By grouping the edges into Yes,
No, and Maybe categories, the possible graphs can be formed by inserting edges
from all the possible combinations of Maybe edges. We can find the median of
each possible graph. Then by summing the probability of each graph with a
given median, we can find the probability of that node being the median.

5.2 Building the Algorithm

5.2.1 Sorting the Yes, No, and Maybe Edges

The first step of sorting the Yes, No, and Maybe edges (which will be referred
to as the Yes’s, No’s, and Maybe’s) proved to be more difficult than originally
anticipated. As discussed in the Fractional Method, while it is easy to find
obvious connections or lack of connections, some connections can be determined
through two runs of data in a manner that is easy for us to determine but hard
for the computer.

A clear way to display the information from two runs is in a grid, as seen in
Figure 16, using data from Figure 2. Each node is placed in the grid according
to when each learned the information. Any node that learned the information
on the Day 0 in run one is placed on the top row, the Day 1 on the second row,
etc. The day it learned the information in run two determines the node’s column
placement with nodes starting with the information being placed in the farthest
left column, nodes receiving the information on the second day being placed in
the next column, etc. For example, since node 4 learned the information on Day
1 in run one and Day 2 in run two, 4 is placed in the second row from the top
and the third column from the left.

Based off this placement, there are allowable manners in which the infor-
mation can flow. Since each node must learn the information from a node that
occurs on the day before in both runs, lines can only cross at most one horizontal
line and at most one vertical line. If there is only one possible line in either an
upward or leftward direction from a given node, then this line can be drawn in
as a Yes (represented with a solid line). This is because that node must get the
information both from above and from the left, representing the two separate
runs. If there is more than one node either above or left from which the data
could have come, then a dotted line is drawn in representing a Maybe. If two
nodes occur in the same box, as with 5 and 9, not enough information is known.
This edge is a possible edge so a dotted line representing a Maybe can be drawn
in. Any nodes that are too far away from either run (so not one cell apart in
either a upward or sideways direction) can be classified as No. If the edge is
too far in either direction, then the information could not have passed between
these two nodes in at least one run, indicating that the edge does not exist.

17

0

1 4

6 3 7

8

5 9

2

Figure 16: Visualization for sorting Yes’s and Maybe’s

Creating an algorithm for the computer proved difficult.

1. The method iterates through all the possible node connections and looks
at the dayinfo of each node compared to each other node (the dayinfo

is an array with the day that the node first appears in a given run, as
in Fractional Method). If x and y are nodes, then if dayinfo[x] and
dayinfo[y] have a difference of more than 1 on either run, then the
edge must be a No. This means that on one of the runs, the nodes were
more then two days apart in learning the information meaning that there
cannot be a connection. If there was a connection, the first node to learn
the information would pass it along to the other node on the next day,
giving the nodes a difference in their dayinfo of 1. So if the dayinfo

difference is more than 1, the two nodes (indicating an edge) are put in
the No category but if it is less than or equal to 1 then the two nodes are
put in the Maybe category.

2. After this, the Maybe’s must be sorted to remove the Yes edges. An
edge has a definite connection if there is only one node from which a
given node could have received the information. To determine when this
occurs, we created a list that stored each node’s location in the grid. Using
this, the program jumps between two rows or columns. Let’s say we are
looking for possible sources of information for node x. First we jump
between rows and the program counts the number of nodes that occur in
the previous row from x’s row that are within one column to the left or
right of x’s column. If there is only one node located in this position, then
the connection must exist as this the only source of information for x. This
edge is then moved to the Yes’s and removed from the Maybe’s. Then, we
look at the column before x’s column, again only looking for nodes one
above or one below x’s row. After this process, the possible edges have
been sorted into Yes, No, and Maybe edges as can be determined from the
run data.

3. Within the category of Maybe’s, there are two different types of possible
edges. Some edges are unnecessary to get the specific run data. Some

18

Maybe edges, however, must be included in the graph to be able to get
the run data that we have. For example, in the visualization in Figure 16,
currently node 4 has no way of learning the information in run two. At
least one of the possible edges that 4 has from the left, (1,4) and (3,4),
must exist in the graph. These edges will all be Maybe edges but we would
need at least one of them for the run data to occur. We created another
category, known as Maybe Necessary edges. By checking if a node has a
connection from the prior day, this list groups the potential edges from
where the information could have come. When building a possible graph,
at least one edge from each of these groups must be part of the graph.
The edges that are not necessary for the data to occur as it does, but still
could be part of the graph, remain in the Maybe category (for example,
edge (3,8)).

At this point, we have deduced all the information that is possible regarding
the sorting of the edges from our data. Any edges that we know cannot exist
are in the No category. Any edge that we know is a connection is in the Yes

category. All that remains are possible connections. These are in the Maybe and
Maybe Necessary category, depending on if they are needed for the information
to pass as it passes in the data. Any combinations of these edges can exist as
long as at least one edge from each Maybe Necessary group is taken.

5.2.2 Finding the Medians’ Probabilities

Once all edges are sorted, we can create all possible graphs and determine their
medians. We must be sure to include at least one edge from every vertex that
does not yet have a connection explaining how it learned the information when
it did. These edges come from the Maybe Necessary category. Extra edges from
the Maybe’s make different possible graphs as well. We can also determine the
probability of each possible graph being the actual graph given the run data.

We use Bayes’ law to compute the conditional probabilities of each graph.
The weight of a possible graph is

w(g) = pn · (1 − p)M−n

where p is the probability7 of an edge existing in the graph, n is the number
of Maybe edges included in this possible graph, and M is the total number of
Maybe edges (so M−n is the number or Maybe edges not included in the possible
graph g). As these weights do not sum to 18, they are weighted by dividing by
the sum of all the weights. So,

W =
∑

g

w(g)

7Although in a true inverse problem, this p would not be known, it can be estimated. The
algorithm is effective even with an estimated p. A method for estimating this p is outside
the realm of this paper and could be done through evaluating the approximate density of the
network.

8The weights do not sum to 1 because some combinations of Maybe edges are not possible
graphs, namely graphs that do not include all the necessary Maybe Necessary edges

19

Node Actual Probability Estimated Probability

0 0 0
1 0 0

2 0 0
3 0.1856 0

4 0 0
5 0 0
6 0.5649 0.8644

7 0.0583 0
8 0.5245 0.2832

9 0 0

Figure 17: Probabilities of node being the median

The probability of a given graph g then becomes

P (G = g) =
w(g)

W

Now, by summing the probabilities of each possible graph where a given
median occurs, the probability of a node being the median is determined. The
probability of of node x being the median is the sum of the probabilities of all
graphs g where x is the median of g. Figure 17 depicts the actual and estimated
probabilities9 using the data from Figure 2. Estimated probabilities only look
at some of the possible graphs, as explained in the next section. As can be seen,
nodes 6 and 8 have the highest probability of being the median, which indeed
they are.

5.3 Advantages and Disadvantages

The method has the obvious advantage of indicating how “correct” the median
prediction is. While our other methods provide us with several good answers
that are likely to be the best starting nodes, they do not indicate how likely

this prediction is. Probability Method, on the other hand, determines the exact
probability of each node being the median. The reliability of the answer is the
answer. There is no guesswork in this method. This can however be misleading.
Sometimes even if a node has only a 0.05 chance of being the median, the actual
graph may be one of the few graphs where this node is the median.

This method also has the disadvantage of a long run time. When graphs
have more than even ten nodes, the number of possible graphs is extremely large.
Finding even just this number of graphs takes a long time to run, let alone hav-
ing the program make the graphs and find their medians. A slight modification
on the algorithm is to have it make only all of the “necessary” graphs. This is

9The probabilities do not sum to 1 because in some graphs more than one node is the
median.

20

done by only looking at the possible combinations of the Maybe Necessary edges.
There are significantly fewer possible combinations when the extra Maybe’s are
ignored. Since in all of our graphs, we are working with p’s that are less than
0.5, there is more chance of an edge not being there than of an edge being
there. Therefore, adding extra Maybe edges when we have already added sev-
eral Maybe Necessary edges creates graphs that have a very low probability
of being the actual graph. Ignoring these extra Maybe edges, particularly as p

becomes smaller making extra edges even less likely, does not largely impact
the probabilities. However, this decrease in the number of possible combina-
tions only allows a quick run time for slightly larger graphs. By about thirteen
nodes10, even this method cannot run quickly. This method is best suited to
problems with very few nodes.

6 Further Directions

6.1 New Methods

We have developed methods that look both at the degree of nodes (Fractional
Method) and the shortest path lenghts to other nodes (Cost Method). We also
looked at the probability of certain graphs existing given our run data (Probabil-
ity Method). However, in determining the center of the graph, there are several
facts about adjacency matrices that may also play a role. For example, squar-
ing adjacency matrices gives information about the number of paths of length
two between various vertices in the graph. However, although our Fractional
Method makes a modified adjacency matrix, we do not have an actual adja-
cency matrix. We have not evaluated how our pseudo-adjacency matrix from
Fractional Method reacts to this manipulations. Much work could be done in
this area. Another way in which adjacency matrices are sometimes used to find
information about a graph is by looking at their determinants. We also did
not analyze the determinants of our psuedo-adjacency matrices but this may
provide more accurate methods for uncovering the best starting nodes.

6.2 Graph Model Modifications

For our problem, we worked with very basic graphs. Our model was based
on the fact that any node would immediately pass the information along to
any other node to which it was connected. However, using more realistic and
complex models of graphs can enhance the problem.

One example is a directed graph. While it may be the case that person A
would tell a rumor to person B, person B might not necessarily tell a rumor to
person A. So while an edge could point from node A to B, there would not be
an edge from A to B. This models realistic human behavior and creates a more

10The run time depends on the number of Maybe Necessary edges, which can vary even
within graphs with the same number of nodes. Because of this, there is not an exact number
of nodes that serve as the cut off point for a decent run time of this algorithm.

21

complex graph. It is likely that information regarding the best starting points
could be recovered from this sort of graph.

Additionally, a weighted graph could be used to reflect information not being
immediately passed along. A large weight could indicate that while node A will
eventually tell node B, A will not pass along the information for several days.
This would make it much harder to determine who passed information along to
whom. It would also have similar properties to an electrical network if these
weights are thought of as conductivities or resistors.

A regular graph with each node having the same degree (or the limited degree
in a modified regular graph) could also illustrate another way information could
be passed along. In real life, a person with a lot of connections may not tell the
information along to everyone he or she knows but instead only to the first few
people they see while the information is still new. A graph could model this
behavior by having each node pass the information along to a certain number
(or certain maximum number) of nodes. When a node has a degree higher than
this number of nodes, there could be a probabilistic analysis as to which nodes
the original node is most likely to pass the information.

One final model could take into account a person’s willingness to act upon
learning information. For example, an advertiser wants the information to get
to people who will actually buy the product. If we have two different types of
nodes, one to represent people who will buy the product and people who will
not, work could be done to analyze how to get the information to the nodes
who will buy the product. Reaching the nodes who will not buy the product is
of less importance in passing along the information. While everyone still passes
information along, only certain nodes act on this information and it is most
important that the information gets to these nodes.

In our methods, we first planted the information with one starting point in
our sample runs11. However, analyzing data with runs that use multiple starting
points could provide information about finding the best group of starting points.
In many applications, this would provide a more realistic model. For example, in
large scale advertising, a company does not advertise to one person and expect
them to tell all his or her friends. Instead, an advertising campaign would try to
target the best group of people, hoping that these people would then pass along
the information. More analysis could be done regarding when data comes from
runs with multiple starting points as well as choosing the best group of starting
points. We know that we would not want two (or more) starting points that are
connected to the same nodes as this would not cause the information to move
along faster. Instead, we would want two (or more) starting points that pass
the information along to different nodes, causing the information to pass faster
then if it were started with one node alone. However, analysis beyond that has
not yet been done.

Lastly, our graphs used Erdős-Rényi Random Graphs. Generally, social net-

11Fractional Method can run with more than one starting node whereas Cost Method can
only have one starting node in each run. This is because if Cost Method starts with multiple
starting nodes, we never have a single that we know is certainly connected to multiple points
through which we can connect other nodes.

22

works are modeled using Power Law (Zipf) Distributions[3]. These distributions
acknowledge the fact that in a social network, few nodes are connected to a lot
of nodes while many nodes are connected to only a few nodes. This more ac-
cepted model of social networks would provide more accurate analysis about
how information travels in a social networks.

6.3 Runtime Analysis

While we have analyzed how accurate our algorithms are at finding the actual
center or median, we have not done any analysis about the speed of our algo-
rithms. An algorithm with a fast runtime, even if it is slightly less accurate
but still an improvement, can be useful in certain situations. Runtime analyses
could be done for the algorithms to compare them in this manner.

7 Summary

While Fractional Method utilizes estimated degree of nodes in choosing best
starting points, Cost Method takes into account a maximum shortest path
length between nodes. Fractional Method does a better job of picking a starting
point that has the information spread throughout the graph in a similar manner
to a center or median. Both, however, provide a statistical improvement upon
picking a random node from the graph. The analysis also indicates that the
methods work better for larger graphs.

Probability Method takes into account the exact probability of a given node
being the median. While this method can pick the best starting nodes, it is slow.
It takes too long to run on large graphs and therefore cannot be quickly used
for as many situations. An estimated version speeds up the process somewhat
but still cannot be used on large graphs.

8 References

References

[1] Evans, James Robert and Edward Minieka. Optimization algorithms for
networks and graphs. New York: Marcel Dekker, Inc., 1992.

[2] Foulds, L.R.. Graph Theory Applications. New York: Springer Verlag, 1995.

[3] Chung, Fan and Linyuan Lu and Van Vu. “Eigenvalues of Random Power
law Graphs.” Annals of Combinatorics 7(2003): 21-33.

23

