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Abstract. In this paper, we develop a means to calculating expected number

of steps in a random walk from boundary node to boundary node in a graph
or resistance network with boundary nodes using elementary probability ar-

guments. We express this expected random walk length in terms of a pair of

inner products that are calculated using solutions to the Dirichlet problem on
the graph or network. We, then, consider the expected number of steps in a

random walk from boundary node to boundary node as a means for making

an external measurement of a graph or network from which we can infer its
properties and use the inner products as tools to analyze this inverse problem.

1. Introduction

[ ... ]
In Megan McCormick’s REU paper of 2005, Metric Recoverability [1], she con-

sidered the problem of recovering distances between interior vertices of a metric
graph with a boundary if given the lengths of the shortest path between boundary
nodes. One of the problems that made this difficult was this metric’s tendency to
provide information only on a few short paths through the graph leaving most of
the graph unrecoverable. The motivation for this paper was the desire to develop
an alternative metric which avoided this difficulty. This effort instead leads to a
pair of inner products upon which we can build an inverse problem.

2. The Model

We begin with the following toy model: Imagine a set of boundary nodes and
interior nodes connected in a network with resistors of varying value. Imagine
further that there is no voltage across any of the nodes and we drop a conducting
particle on one of the boundary nodes and let it diffuse into the network. The
conducting particle will scatter off the atoms of the resistors and random walk
through the network. The number off scattering atoms in a resistor should be
proportional to the resistance so the higher the resistance the more time the particle
will require random walk though a resistor. Eventually, the particle will random
walk out of the network at some boundary node – possibly the one it started
at. If we note the node it emerged at and the time it took, after repeating the
experiment a large number of times, we could measure the the expected time the
particle requires to get from one boundary node to another. Since we could build
this resistance network from wire of constant resistance per unit, using different wire
lengths for different resistor values, this expected time becomes a rough measure
of the distance, in wire length, between to different boundary nodes. Unlike the
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standard shortest path metric this new measure provides information about all
portions of the network as it is an average over all possible paths from one boundary
node to another.

This physical model has a mathematical counterpart involving graphs. Given a
graph with vertices and undirected edges (V,E) where the vertices are partitioned
into interior vertices I and boundary vertices ∂V . We may think of a resistor
connecting two nodes in our physical network as a line of n−1 vertices and n edges
connecting the two nodes where n is proportional to the resistance value of the
resistor. In this way, we can convert, a resistance network into a graph where each
edge represents a resistor with some small unit resistance.
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Figure 1. An example of converting a network with resistors of
value 1, 2, 3, 4 into one with unit resistors.

!!! A particle can then be fed into such a graph at one of the boundary vertices
and made to step to the nearest interior vertex. From there it is allowed to random
walk from vertex to vertex assuming it can step from the vertex it is on to each
neighboring vertex with equal probability. In other words, at each step the particle
can cross each available edge with equal probability. The random walk ends when
the particle reaches a boundary vertex. Our proposed measurement is the expected
number of steps from any two boundary nodes. Note that this is not a metric as
the expected number of steps from a given boundary node back to itself is not zero.

At this point, we note that this is not the only way to model a resistance net-
work with a random walk. The more typical approach is to build a random walk
from node to node in the network without the intervening vertices to represent the
resistance. Instead of giving an equal probability of crossing each available edge, we
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would weight the probability according to the resistance: the probability of crossing
from vertex i to vertex j, where j is among i’s immediate neighbors N(i), is

(1) Pij =
1/rij∑

k∈N(i) 1/rik
,

where rij [= rji] is the resistance of the edge connecting vertex i andj.

Weighted in this fashion, the lower the resistance of an edge compared with
the other edges available at a vertex the more likely it will be crossed. Since the
resistances are encoded into the random walk according to their relative size, some
information is lost in this approach, but it is a reasonable approach which may also
lead to a good inverse problem. It is not the model used in this paper. Interestingly,
however, most of the main results in this paper also apply when this model is used.
We will state and prove results assuming the weighting of equation (1) wherever
possible. Just keep in mind that the model we will have in mind imagines each
edge have the same small unit resistance, and, consequently, from equation (1), the
probability of crossing any edge connected to i is

(2) Pij =
1∑

k∈N(i) 1
=

1
di
,

where di is the degree of vertex i.

3. Some Definitions

For a undirected graph G = (V,E) with boundary vertices {A,B,C . . .}, let the
space out outcomes be all possible paths on the graph from any vertex i1 to a
boundary vertex ik (possibly the starting vertex) through interior vertices. So a
path may begin and must end at a boundary node, but must pass through only
interior nodes in between.

Definition 3.1. The probability that a given path π from vertex i1 to ik following
the series of neighboring vertices i1, i2, i3, . . . , ik−1, ik is, from equation (1),

prob(π) = Pi1i2Pi2i3Pi3i4 · · ·Pik−1ik .

This reduces in our unit resistance model to

prob(π) =
1
di1

1
di2

1
di3
· · · 1

dik−1

, again, where di is the degree of vertex i.

Definition 3.2. Let piA be the probability that a random walk that starts at i arrives
at the boundary first at node A. For an interior node i and boundary nodes, A and
B, A 6= B, this can be calculated as

(3)
piA =

∑
all paths π
starting at i

prob(π),

pAA = 1 and pAB = 0.
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Let Xi be the random variable that represents the number of steps in a random
walk path π leaving vertex i and arriving eventually at any boundary node. Let
XiA be the random variable that represents the number of steps in a random walk
path π leaving vertex i and arriving at a given boundary node A, for any other
path starting at i but not ending at boundary node A is zero.

Definition 3.3. Let l(π) be the length of a given path π. The expected value of Xi

is

(4) E[Xi] =
∑

all paths π
starting at i

l(π)prob(π),

and the expected value of XiA is

(5) E[XiA] =
∑

all paths π
starting at i
ending at A

l(π)prob(π).

Since all random walks beginning at i must eventually end at some boundary
node E[Xi] measures the expected number of steps in a random walk π leaving
vertex i and arriving at the boundary. However, since E[XiA] measures number
of steps for some paths, but ignores other paths, we must be careful so that we
understand what it represents. Let’s say we start a random walk at vertex i and
wait until it goes out at some boundary node and note the number of steps it took
to reach that node. If we repeat this a number of times (n times), each time writing
down the number of steps it required in a table under the appropriate boundary
node, and when we are done we total the number of step under each boundary node
and divide by n, then as n gets large the number calculated under each boundary
node {A,B,C . . .} approaches E[XiA], E[XiB ], E[XiC ], . . ..

Notice that E[XiA] is not the expected number of steps in a random walk given
that it exits at A – that would be correctly calculated as a conditional expectation
E[XiA]/piA. Our initial intuition might suggest that this conditional expectation
is the like measure that we are looking for, and, indeed, it may also form the basis
of a good inverse problem. Instead, however, we will be using E[XAB ] for any two
boundary nodes A and B (possibly the same) as the measurements from which we
will infer properties of the graph and base our inverse problem because, as the last
paragraph indicates, it is a natural quantity to measure and because, as we shall
see, it has such interesting properties.

4. Properties of piA

For A ∈ ∂V a boundary node, and i ∈ I an interior vertex on a general random
walk graphs described by equation (1) – keep in mind our model is the special case
where rij = 1 for all neighboring vertices i, j, and di be the degree of vertex i,
let piA be the probability of a random walk beginning at vertex i and arriving at
the boundary first at boundary node A as defined in equation (3). Let uA(i) be
the solution to the Dirichlet problem on our graph with boundary values: one at
boundary node A and zero at all other boundary nodes. More precisely, uA(i) is
the unique function on the vertices of the graph, uA : V → R, which has the three
properties:

For each interior vertex, i, where N(i) is the set of immediate neighbors of i,
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uA(i) =

 ∑
j∈N(i)

1/rij

−1 ∑
j∈N(i)

(1/rij)uA(j)



(6)

[
In the case of our model:

uA(i) = (1/di)
(∑

j∈N(i) uA(j)
)]

and

uA(A) = 1

while, for any other boundary node B,

uA(B) = 0

Theorem 4.1. Given the above definitions of piA and uA(i),

piA = uA(i)

Proof. For any interior vertex, i, if vertex j ∈ Ni, then, by equation (1),

Pij =
1/rij∑

k∈N(i) 1/rik
.

Pij is the probability of transition from i to one of its neighbors j. A random walk
can only go from i to one of its neighbors, so since probability is conserved,

piA =
∑

j∈N(i)

PijpjA =
∑

j∈N(i)

[
(1/rij)pjA∑
k∈N(i) 1/rik

]
.

So, piA satisfies the first of the above three properties. The probability of getting
to boundary node A first, starting at A, is one, and the probability of getting to
A first, starting at another boundary node, B, is zero, i.e. pAA = 1 and pBA = 0.
Thus, piA satisfies all the properties that uA(i) does, and since uA(i) is unique,
they must be the same. �

Remark 4.2. If we compare the paths through the graph that are involved in
calculating piA and E[XiA], when i is an interior vertex, the set of paths involved
in the calculation are the same. When i is a boundary node, in calculating piA,
the path never leaves the boundary, but, in calculating E[XiA], we assume they
do. Thus, under the assumptions we make about paths for E[XiA], the probability
of getting from interior vertex i to boundary node A is piA, but the probability of
getting from boundary node B to boundary node A (even when A = B) is∑

j∈N(B)

PBjpjA =
∑

j∈N(B)

[
(1/rBj)pjA∑
k∈N(B) 1/rBk

]
.

And under the model that we will look at more closely, where the resistances are
all one, this becomes(

1
dB

) ∑
j∈N(B)

pjA where dB is the degree of boundary node B.
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Remark 4.3. When we compare our preferred model of a random walk on a
resistance network, where we divide up each resistor into strings of unit resistors
with the alternative approach in which we weight the transition probabilities using
equation (1), if we treat them only as resistance networks – ignoring the random
walk aspects for the moment – they are identical. Consequently, their response to
a unit voltage at boundary node A and zero voltage at all other nodes will, on the
shared the nodes of the original network, be identical, that is, the solutions to the
Dirichlet problem, uA(i), for node i in the original network, will be the same in
both models. Hence, again, for original nodes i, piA, the probability that a random
walk that starts at i arrives at the boundary first at node A, is the same in both
models. We should expect, however, that E[XiA] for the two models to be quite
different.

5. Properties of E[Xi] and E[XiA]

5.1. The Leaving and Crossing Random Variables. In order to calculate
E[Xi] and E[XiA], we need to define some additional random variables as tools.

Let LA(j) represent the number of times that random walk path π that starts
at (and leaves) boundary node A leaves vertex j. Let λA(j) be the expected value
of LA(j), namely,

Definition 5.1. Let l(π) be the length of random walk path π,

λA(j) =
∑

all paths π
starting at A

l(π)prob(π),

Note that, for any random walk path, LA(A) = 1 and LA(B) = 0, for boundary
node B, A 6= B. So, λA(A) = 1 and λA(B) = 0

Similarly, for two boundary nodes A and B not necessarily different, let LAB(j)
be the number of times that path starting at and leaving boundary node A leaves
vertex j provided the path ends at B. LAB(j) = 0 if the path does not end at B.
λAB(j) will be the expected value of LAB(j).

Definition 5.2. Let l(π) be the length of random walk path π.

λAB(j) =
∑

all paths π
starting at A
ending at B

l(π)prob(π),

λA(j) is the expected number of times a random walk beginning at A leaves
vertex j, and λAB(j) is the expected number of times a random walk beginning at
A leaves vertex j, counting only those random walks that end at boundary node
B. Notice that

λA(j) =
∑

all boundary nodes B

λAB(j)

Moreover, since each step in a path involves leaving a vertex once,

E[XA] =
∑

all vertices j

λA(j)

and
E[XAB ] =

∑
all vertices j

λAB(j).
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We can do much the same thing with edge crossings. Let CAB(i, j) represent the
number of times path π crosses edge {i, j} ∈ E from i to j on a path that begins
at A and ends at B. CAB(i, j) is zero on any other path. Let κAB(i, j) be the the
expected value of CAB(i, j). We observe that κAB(i, j) + κAB(j, i) is the expected
number times edge {i, j} is crossed in a random walk from A to B. Thus, similarly
to what happened above, since each step in a random walk involves crossing an
edge once,

E[XAB ] =
∑

all edges {i,j}

[κAB(i, j) + κAB(j, i)].

5.2. A calculation of λA(i). If we consider a random walk starting boundary
node A finishing at the next boundary node it visits, we know that the visits to
an interior vertex i must be the result of leaving the neighboring vertices. So the
expected number of leavings of interior vertex i is the sum of contributions from
neighboring vertices. A random walk which is about to leave vertex j ∈ N(i) has
a probability Pji visiting vertex i next. So, if λA(j) is the expected number of
leavings from vertex j, then j will contribute PjiλA(j) to the expected number of
leavings from i. Consequently, for interior vertex i,

(7) λA(i) =
∑

j∈N(i)

PjiλA(j) =
∑

j∈N(i)

1/rji∑
k∈N(j) 1/rjk

λA(j).

An interior vertex in a random walk beginning at boundary node A, will only
be visited from A or another interior node. So,

If i is an interior vertex that is not a neighbor of A,

(8) λA(i) =
∑
j∈N(i)

j interior vertex

PjiλA(j).

If i is a neighbor of A, then λA(i) gets an additional contributions from A:

1/rAi∑
k∈N(A) 1/rAk

λA(A) =
1/rAi∑

k∈N(A) 1/rAk
= PAi (as λA(A) = 1)

or

(9) λA(i)− PAi =
∑
j∈N(i)

j interior vertex

PjiλA(j).

If we index the interior vertices, putting those that neighbor A, first, Pij forms
a matrix and equations (7) and (8) become

[λA(i1), · · · , λA(ik), λA(ik+1), · · · , λA(im)]P =[
λA(i1)− PAi1 , · · · , λA(ik)− PAik , λA(ik+1), · · · , λA(im)

]
or

(10) [λA(i1), · · · , λA(ik), λA(ik+1), · · · , λA(im)](I − P ) =[
PAi1 , · · · , PAik , 0, · · · , 0

]
With these considerations in mind we can show:
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Lemma 5.3. For vertex i and boundary node A in a resistance network, let uA(i) be
the solution to the Dirichlet problem on the resistance network setting uA(A) = 1
and uA(B) = 0 at any other boundary node B, and let σi =

∑
k∈N(i) 1/rik. If

λA(i) is the expected number of leavings from vertex i on a random walk, governed
by equation (1), from boundary node A to any node on the boundary, then

λA(i) =
(

1
σA

)
σiuA(i).

Note that for the model with unit resistances this formula becomes

λA(i) =
(

1
dA

)
diuA(i), where dj is the degree of vertex j.

Proof. The jth row of matrix P represents the probabilities that a random walk at
vertex j will make its next step to any of the other interior vertices, so the sum of
any row is less than or equal to one. If the vertex j is next to a boundary node,
the sum of the jth row is less than one, since the probability of leaving the interior
from vertex j is positive. This implies that the matrix I −P is diagonal dominant,
and, thus, must have an inverse, and so, equation (10) has a unique solution. Let’s
show the solution is λA(i) = (1/σA)σiuA(i) for each interior vertex i.

Observe that since uA(i) is harmonic at any interior vertex i,

uA(i) = σ−1
i

 ∑
j∈N(i)

(1/rij)uA(j)


or (

1
σA

)
σiuA(i) =

(
1
σA

) ∑
j∈N(i)

(1/rij)uA(j)



=
∑

j∈N(i)

(1/rij)
(

1
σA

)
σjuA(j)

σj

This is a restatement of equation (7) for λA(i) = (1/σA)σiuA(i). If i is not a neigh-
bor of A, then, for any boundary node B, B ∈ N(i), uA(B) = 0, so B’s contribution
to the above sum is zero. Thus, equation (8) holds for λA(i) = (1/σA)σiuA(i).

If, on the other hand, i is a neighbor of A, then since uA(A) = 1 the above sum
becomes

(
1
σA

)
σiuA(i) =

 ∑
j∈N(i)

j interior vertex

(1/rij)
(

1
σA

)
σjuA(j)

σj

+
(1/riA)

(
1
σA

)
σA

σA

Since PAi = (1/riA)
σA

, equation (9) holds as well, and, thus, λA(i) must equal
(1/σA)σiuA(i) on the interior. We also know that λA(A) = 1 = (1/σA)σAuA(A),
and, for any boundary node B, A 6= B, λA(B) = 0 = (1/σA)σBuA(B). Hence,
λA(i) = (1/σA)σiuA(i) holds for all vertices i. �
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5.3. The vertex inner product. We will use Lemma 5.3 and some probability
arguments about paths from boundary node A to boundary node B to calculate
λAB(i). If we, in turn, calculate E[XAB ] =

∑
all vertices j λAB(j)., the result will

involve an interesting inner product.
If we, now, consider a random walk starting boundary node A finishing at bound-

ary node B (possibly equal to A), we might intuit that the expected number of
leavings from vertex i on such random walks, λAB(i), is equal to the expected
number of leaving on a random walk from A to anywhere on the boundary, λA(i),
times the probability of getting from i to B, piB [= uB(i)], that is,

λAB(i) = λA(i)uB(i) =
(

1
σA

)
σiuA(i)uB(i).

This turns out to be true for vertices i, i 6= A, but requires some care to demon-
strate.

Lemma 5.4. Given boundary nodes A and B possibly equal, let λA(i) and λAB(i)
are as defined in section 5.1, namely, λA(i) is the expected number of leavings
from vertex i starting at boundary node A and ending the next time the boundary is
reached, and λAB(i) is the expected number of leavings from vertex i in such random
walks counting only leavings for walks that end at boundary node B. Moreover, if
uB(i) is the solution for all vertices i to the Dirichet problem on the resistance
network satisfying the boundary conditions:

uB(B) = 1

while, for any other boundary node C,C 6= B

uB(C) = 0
then, for all vertices i, i 6= A,

λAB(i) = λA(i)uB(i)

Proof. For interior vertex i and boundary nodes A and B possibly equal, Let pAi−→
be the probability of random walk going directly from A to i, that is, not visiting
i only at the end of the walk. Let p i−→ be the probability of random walk going
directly from i to the boundary, that is, not returning to i along the way. Let piB−→
be the probability of random walk going directly from i to B, again, not returning
to i along the way. Finally, let ri be the probability of random walk returning to i.

Notice that if a random walk is at i it can go directly to the boundary or it can
return to i, so p i−→

+ ri = 1 or p i−→ = 1 − ri. Notice also that we can use these
defined quantities to calculate λA(i) directly as one times the probability of a one
visit random walk plus two times the probability of a two visit random walk and
so on. This translates into one times the probability of going from A directly to i
and directly from i to the boundary plus two times the probability of going from
A directly to i, returning to i once, and then going directly from i to the boundary
etc, namely,

(11)

λA(i) = 1× pAi−→
p i−→

(one visit to i )
+ 2× pAi−→

ri p i−→
(two visits to i )

+ 3× pAi−→
r2i p i−→

(three visits to i )
...

...
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We can make similar calculation for λAB(i).

(12)

λAB(i) = 1× pAi−→
piB−→

(one visit to i )
+ 2× pAi−→

ri piB−→
(two visits to i )

+ 3× pAi−→
r2i piB−→

(three visits to i )
...

...

Comparing equations (11) and (12), we realize that λAB(i) = λA(i)(piB−→/p i−→). Fi-
nally, using the same approach, we can calculate piB the probability a random walk
going from i to B:

(13)

piB = piB−→
(go directly to B )

+ ri piB−→
(return to i once, then go directly to B )

+ r2i piB−→
(return to i twice, then go directly to B )

...
...

= piB−→

∞∑
n=0

rni =
piB−→

1− ri
=

piB−→
p i−→

.

So, λAB(i) = λA(i)piB = λA(i)uB(i) holds for all interior vertices i. Since,
for boundary node C, C 6= A, λAB(C) = λA(C) = 0, it holds for all vertices i,
i 6= A. �

If we substitute A for i in λAB(i) = λA(i)uB(i) =
(

1
σA

)
σiuA(i)uB(i), we get

λAB(A) = 0, which is obviously untrue. We may, however, calculate λAB(A)
directly. Every random walk from A to any node on the boundary has one leaving
from node A, so λA(A) = 1. λAB(A), however, counts only those random walk
paths that end at B. Hence, it will equal one times the probability of getting from
A to B, which is, as discussed in remark 4.2,

(14) λAB(A) =
∑

j∈N(A)

PAjpjB =
∑

j∈N(A)

[
(1/rAj)uB(j)

σA

]
.

We can now make the calculation

E[XAB ] =
∑

all vertices i

λAB(i) =

(15) =
∑

all vertices i,
i6=A

(
1
σA

)
σiuA(i)uB(i) +

∑
j∈N(A)

[
(1/rAj)uB(j)

σA

]

=
(

1
σA

) ∑
all vertices i,

i6=A

σiuA(i)uB(i) +
∑

j∈N(A)

(1/rAj)uB(j)

 .
For our special model where all resistances are one, this becomes

(16) E[XAB ] =
(

1
dA

) ∑
all vertices i,

i6=A

diuA(i)uB(i) +
∑

j∈N(A)

uB(j)

 .
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where di is the degree of vertex i. Note that
∑
σiuA(i)uB(i) or, alternatively,∑

diuA(i)uB(i) has the form of a weighted inner product. We shall refer this sum
as the random walk inner product over vertices.

Remark 5.5. Before launching into a formal definition, we should call attention
to a small abuse of notation. Up to this point, we have use uA(i) and uB(i) to
denote the the solutions to the Dirichlet problem on the vertices of network where
for boundary node C, in the first case, uA(C) = 1, if A = C, and uA(C) = 0
otherwise and, in the second case, uB(C) = 1, if B = C, and uB(C) = 0 otherwise.
This is to say the boundary values are the basis vectors eA and eB , respectively.
We will want to denote sometimes use the notation ueA(i) and ueB (i) for uA(i)
and uB(i), because this notation also allows us to easily denote solutions to the
Dirichlet problem with an arbitrary vector, φ, the boundary condition, as uφ(i).
This alternative notation should not cause any confusion.

Definition 5.6. Let φ and ψ be two vectors representing the boundary conditions
for two solutions, uφ(i) and uψ(i), to the Dirichlet problem for resistance network
G on all vertices i in G. Also, let rij be the resistance on edge {i, j} and σi =∑
k∈N(i) 1/rik. The random walk inner product over vertices of φ and ψ is

(17) 〈φ, ψ〉G =
∑

all vertices i
in G

σiuφ(i)uψ(i).

For our special model where all resistances are one, this may be written

(18) 〈φ, ψ〉G =
∑

all vertices i
in G

diuφ(i)uψ(i).

where di is the degree of vertex i. We shall often omit the subscript G where it is
obvious and, also, often use 〈A,B〉G to mean 〈eA, eB〉G.

It can be readily verified that this construction has all the properties of an inner
product: it is symmetric [〈φ, ψ〉 = 〈ψ, φ〉], positive [〈φ, φ〉 > 0 if φ 6= 0], definite
[〈φ, φ〉 = 0 impies φ = 0]. It is less obvious that it is bilinear, but this follows since
the solutions to the Dirichlet problem are linear in their boundary conditions, that
is, uaφ+bψ(i) = auφ(i) + buψ(i) for any real numbers a, b.

For the case of a simple random walk on a network G where resistances are one,
given boundary nodes A 6= B,

(19) 〈A,B〉G = dAE[XAB ]−
∑

j∈N(A)

uB(j)

affords a straightforward interpretation. As discussed earlier, (1/dA)
∑
j∈N(A) uB(j)

is the expected number of leavings from A. So, subtracting them, means E[XAB ]−
(1/dA)

∑
j∈N(A) uB(j) is the expected number of steps on a random walk from A

to B, just forgetting to count the first step. The first term in the product of prob-
abilities for paths summed in this expectation is 1/dA as every path still starts by
leaving A. Thus, multiplying by dA, pushes A out of the random walk entirely and
gives us the expected total number of steps if we started dA random walks each
beginning at each of the neighbors of A. In other words,

(20) 〈A,B〉G =
∑

j∈N(A)

E[XjB ]
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The interpretation of 〈A,A〉G works the same way except in that case the inner
product sum includes the term dAuA(A)uA(A) [= dA] for vertex A, so equation
(19) becomes

(21) 〈A,A〉G − dA = dAE[XAA]−
∑

j∈N(A)

uA(j),

and, hence,

(22) 〈A,A〉G − dA =
∑

j∈N(A)

E[XjA].

A similar interpretation is possible for the network model in which the resistances
vary, but it is much less straight forward.

Example 5.7. Let’s calculate this inner product for a simple network of a line
of n unit resistors connecting boundary nodes A and B. Labeling the vertices

A B. . .

n unit resistors

Figure 2. A linear network of unit resistors.

as A = 0, 1, 2, · · ·n − 1, n = B, the solutions to the Dirichlet problem are linear:
uA(i) = (n− i)/n and uB(i) = i/n. So,

〈B,B〉 = 1uB(0)2 +
n−1∑
i=1

2uB(i)2 + 1uB(n)2

= 1 + 2
n−1∑
i=1

i2

n2

= 1 + 2
[
n(n− 1)(2n− 1)

6n2

]
=

3n
3n

+
2n2 − 3n+ 1

3n
=

2
3
n+

1
3n

〈A,A〉 is the same, since it is the same sum done in reverse order, and

〈A,B〉 = 〈B,A〉 = 1uA(0)uB(0) +
n−1∑
i=1

2uA(i)uB(i) + 1uA(n)uB(n)

= 2
n−1∑
i=1

(n− i)i
n2

= 2
[
n
n(n− 1)

2n2
− n(n− 1)(2n− 1)

6n2

]
=

3n2 − 3n
3n

− 2n2 − 3n+ 1
3n

=
1
3
n− 1

3n
.
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Since, in this example, the degree of A is one, 〈A,B〉 is expected number of steps
in a random walk starting at A counting only those paths that end at B. Similarly,
〈A,A〉 − 1 is expected number of steps in a random walk starting at A counting
only those paths that end at A.

Note also in this example

〈A,A〉+ 〈A,B〉+ 〈B,A〉+ 〈B,B〉 = 2n,

which, along with a number other calculations, motivates the following theorem.

Theorem 5.8. Let G be a resistance network, let a random walk be defined on that
network using either model. Let ∂V be the set of boundary nodes of G.

∑
A,B∈∂V

〈A,B〉G =
∑

all vertices i
in G

σi = 2

 ∑
all edges
{i,j} in G

1
rij

 .

This may not seem especially interesting as stated, but in the special model where
resistances are one, the above sum of inner products equals twice the number of
edges in the network. This portends good things for the inverse problem to come.

Proof. ∑
A,B∈∂V

〈A,B〉G =
∑

A,B∈∂V

∑
all vertices i

in G

σiuA(i)uB(i)

=
∑

all vertices i
in G

σi
∑
A∈∂V

uA(i)
∑
B∈∂V

uB(i)

Since a random walk beginning at some vertex i must eventually walk out at some
boundary node,

∑
A∈∂V uA(i) =

∑
B∈∂V uB(i) = 1, so∑

A,B∈∂V

〈A,B〉G =
∑

all vertices i
in G

σi.

Since this last term sums (1/rij) on each end of each edge {i, j}, it is equal to

2

 ∑
all edges
{i,j} in G

1
rij

 .

�

Example 5.9. As an simple application of theorem 5.8, imagine we have resistance
network with only one boundary node A. If we model this network using unit
resistances, we have from equation (21)

〈A,A〉G − dA = dAE[XAA]−
∑

j∈N(A)

uA(j).

The solution to the Dirichlet problem in this instance is easy: uA(i) = 1 for all i.
Hence, by theorem 5.8,

〈A,A〉G = dAE[XAA] = 2× (the number of edges in G).
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5.4. The edge inner product. We can go through the same line of thinking
that we went though for vertices in section 5.3 and apply it to edges, that is, use
probability arguments to calculate κAB(i, j), and then calculate

E[XAB ] =
∑

all edges {i,j}

[κAB(i, j) + κAB(j, i)].

The result will involve yet another inner product.

Lemma 5.10. Given boundary nodes A and B possibly equal, let λA(i) and κAB(i, j)
are as defined in section 5.1, namely, λA(i) is the expected number of leavings from
vertex i starting at boundary node A and ending the next time the boundary is
reached, and κAB(i, j) is the expected number of crossings of edge {i, j} from vertex
i to j in such random walks counting only crossings for walks that end at boundary
node B. Moreover, if uB(i) = ueB (i) is the solution for all vertices i to the Dirichet
problem on the resistance network satisfying the boundary conditions:

uB(B) = 1

while, for any other boundary node C,C 6= B

uB(C) = 0

then, for all vertices i and j, where j ∈ N(i),

κAB(i, j) = λA(i)PijuB(j)

where Pij is the probability of a random walk at vertex i crossing to j.

Proof. The argument is very similar to that for lemma 5.4. Our definitions will
be a little different, however. For boundary nodes A and B possibly equal, and
vertex i, that is either an interior vertex or i = A, and for vertex j neighboring i,
let pAi−→ be the probability of random walk going ‘directly’ from A to i, in a crossing
sense this time, that is, without crossing from i to j. Let p j

−→
be the probability

of random walk going ‘directly’ from i to the boundary, that is, not returning to j
by crossing from i anywhere in the process. Similarly, let piB−→ be the probability of
random walk going ‘directly’ from i to B, again, not crossing from i to j along the
way. Finally, let rij be the probability of random walk returning to j by crossing
from i. Note that if i = A, rij = 0.

As before, if a random walk is at i it can go ‘directly’ to the boundary or it can
return to i, by crossing edge {i, j}, so p j

−→
+ rij = 1 or p j

−→
= 1 − rij . Notice, also,

on a random walk from A to the boundary, every time it leaves i, it has probability
Pij of crossing to j. So, on such a random walk, the expected number of crossings
from i to j is λA(i)Pij . We can expand this as we did λA(i) in the proof of lemma
5.4,

λA(i)Pij = 1× pAi−→
Pij p j

−→
(one crossing from i to j)

+ 2× pAi−→
Pijrij p j

−→
(two crossings from i to j)

+ 3× pAi−→
Pijr

2
ij p j−→

(three crossings from i to j)
...

...

Of course, we can make similar calculation for κAB(i, j) in which we only count
crossings on paths that end at B. There we would replace the p j

−→
on the end of
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each term with a pjB
−→

. Hence, κAB(i, j) = λA(i)Pij
(
pjB
−→
/p j
−→

)
. Finally, we can

calculate pjB , the probability a random walk going from j to B:

pjB = pjB
−→

(go directly to B)

+ rij pjB
−→

(return to j by crossing from i, once, then directly to B)

+ r2ij pjB−→
(return to j by crossing from i, twice, then directly to B)

...
...

= pjB
−→

∞∑
n=0

rnij =
pjB
−→

1− rij
=

pjB
−→
p j
−→

.

And so,

(23) κAB(i, j) = λA(i)PijpjB = λA(i)PijuB(j)

holds for interior vertex i or if i = A with neighboring vertex j. If i is a boundary
node, and i 6= A then κAB(i, j) = 0, but λA(i) = 0, so equation (23) holds for all
neighboring vertices i and j. �

With this, we can calculate the expected number of steps in a random walk
starting at A counting only those walks that end at B,

E[XAB ] =
∑

all edges {i,j}

[κAB(i, j) + κAB(j, i)]

(24) =
∑

all edges {i,j}

[λA(i)PijuB(j) + λA(j)PjiuB(i)]

=
∑

all edges {i,j}

[(
1
σA

)
σiuA(i)

(
1/rij
σi

)
uB(j) +

(
1
σA

)
σjuA(j)

(
1/rij
σj

)
uB(i)

]

=
(

1
σA

) ∑
all edges {i,j}

(
1
rij

)
[uA(i)uB(j) + uA(j)uB(i)] .

In our model with unit resistances, this is

(25) E[XAB ] =
(

1
dA

) ∑
all edges {i,j}

[uA(i)uB(j) + uA(j)uB(i)] .

Once again, E[XAB ] involves a sum with the form of an inner product, in this case,
over edges instead of vertices.

Definition 5.11. Let φ and ψ be two vectors representing the boundary conditions
for two solutions, uφ(i) and uψ(i), to the Dirichlet problem for resistance network
G on all vertices i in G, and rij be the resistance on edge {i, j}. The random walk
inner product over edges of φ and ψ is

(26) 〈φ̃, ψ〉G =
∑

all edges {i,j}

(
1
rij

)
[uφ(i)uψ(j) + uφ(j)uψ(i)] .

(Again, this can be readily shown to have all the properties of an inner product.)
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This time the interpretation of the inner product is simple and straightforward
regardless of the random walk model we use. Let A and B be boundary nodes of
resistance network G. For the general model,

(27) 〈Ã, B〉G [= 〈ẽA, eB〉G] = σAE[XAB ]

For the unit resistor model,

(28) 〈Ã, B〉G = dAE[XAB ]

where dA is the degree of boundary node A.
Lets calculate the edge inner product for the simple line of n unit resistors

connecting boundary nodes A and B just as we did for the vertex inner product in
example 5.7. Remember, we labeled A = 0, 1, 2, · · ·n − 1, n = B, the solutions to
the Dirichlet problem were uA(i) = (n− i)/n and uB(i) = i/n. Thus,

〈Ã, A〉 = 〈B̃, B〉 =
n−1∑
i=0

2
[
i(i+ 1)
n2

]
= 2

[
n(n− 1)

2n2
+
n(n− 1)(2n− 1)

6n2

]

=
3(n− 1)

3n
+

(n− 1)(2n− 1)
3n

=
2(n− 1)(n+ 1)

3n
=

2
3
n− 2

3n

and

〈Ã, B〉 = 〈B̃, A〉 =
n−1∑
i=0

[
i(n− i− 1)

n2
+

(i+ 1)(n− i)
n2

]
=
n−1∑
i=0

[
n+ 2i(n− 1)− 2i2

n2

]

=
[
n2

n2
+
n(n− 1)2

n2
− n(n− 1)(2n− 1)

3n2

]
=

1
3n
[
3n+ 3n2 − 6n+ 3− 2n2 + 3n− 1

]
=

1
3n
[
n2 + 2

]
=

1
3
n+

2
3n

Notice that this is slightly different from the values calculated for the vertex inner
product. We will expore the relationship between the two inner products in the
next section. Now, we must prove the edge inner product version of theorem 5.8.

Theorem 5.12. Let G be a resistance network, let a random walk be defined on
that network using either model. Let ∂V be the set of boundary nodes of G.

∑
A,B∈∂V

〈Ã, B〉G =
∑

all vertices i
in G

σi = 2

 ∑
all edges
{i,j} in G

1
rij

 .

Proof. ∑
A,B∈∂V

〈Ã, B〉G =
∑

A,B∈∂V

∑
all edges
{i,j} in G

(
1
rij

)
[uA(i)uB(j) + uA(j)uB(i)]

=
∑

all edges
{i,j} in G

(
1
rij

)[ ∑
A∈∂V

uA(i)
∑
B∈∂V

uB(j) +
∑
A∈∂V

uA(j)
∑
B∈∂V

uB(i)

]
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Since a random walk beginning at some vertex i must eventually walk out at some
boundary node,

∑
A∈∂V uA(i) =

∑
B∈∂V uB(i) = 1, so∑

A,B∈∂V

〈Ã, B〉G =
∑

all edges
{i,j} in G

2
(

1
rij

)
Since this last term sums (1/rij) on each end of each edge {i, j}, we can apply each
(1/rij) to each vertex the edge contacts, so∑

A,B∈∂V

〈Ã, B〉G =
∑

all vertices i
in G

∑
j∈N(i)

1
rij

=
∑

all vertices i
in G

σi

�

6. Relationships between the vertex inner product, the edge inner
product, and the Dirichlet-Neumann map

two [ ... ]
atop

abottom

References

[1] McCormick, Megan. “Metric Recoverability” 2005.

http://www.math.washington.edu/ reu/papers/2005/megan/metric6.pdf


